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Bloom filters are probabilistic space-efficient data structures. They are used 

exclusively for membership existence in a set. These structures allow users to check 

if  an element most likely belongs to a set, or if  it absolutely doesn’t. Bloom filters were 

conceived by Burton Howard Bloom in 1970.  

1. Applications of  Bloom Filters 

The classic example is using bloom filters to reduce expensive disk lookups for 

non-existent keys. Google’s Bigtable, Apache Cassandra and Postrgresql use them 

to reduce disk lookups for non-existent rows or columns. Avoiding costly disk 

lookups increases the performance of  a database query operation. Google Chrome 

browser used to use bloom filters to identify malicious URLS.  Any URL was first 

checked against a local Bloom filter and only if  the Bloom filter returned a positive 

result, a full check of  the URL was performed.Bitcoin uses this to speed up wallet 

synchronization. Even Youtube uses them to make new recommendations to users. 

2. Description  

Bloom filters are composed of  a bit array of  m bits. Initially, all bits of  the 

table are set to 0 . The bit array is packed with k different hash functions.  

A hash function is any function that is used to map data of  arbitrary size to 

fixed-size values. It takes as input a key and outputs a hash code or digest to index a 

table.  Generally a good hash function should be i) fast to compute and ii)minimize 

duplication of  output values(collisions). 
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In bloom filters all k hash functions are used in element additions and 

existence checks. Every time we want to add an element to the bloom filter, all k 

functions are being executed with this element as key. The output of  each one of  

them is a position in the bit array. As a final step, the bits of  the outputs’ positions 

are set to 1.  

Every time we want to check the existence of  an element, we again feed all k  

hash functions with the element, taking in the output k array positions. If  any of  

the bits at these positions  is 0, the element is definitely not in the set. If  it was in the 

set, all the bits would have been 1 during element’s insertion. If  the bits at all k 

positions are 1, then either the element belongs to a set or the bits have been set to 

1 during the insertion of  other elements, resulting in a false positive. 

3. Example 

In this section, we present an example using Bloom filters. We assume having 

an array of  10 bits that are all set to 0. Also, we assume using two simple hash 

functions: 

1) !  

2) !  

Initially, we have the following (empty) bloom filter: 

Insertions 

h1(x) = x mod 10

h2(x) = (5x + 4) mod 10
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0 0 0 0 0 0 0 0 0 0



We want to insert to the bloom filter the elements of  the set A = [ 19, 132, 

25 ]. 

i)To insert 19 in bloom filter, we compute the digests of  !  : 

!  

!  

Then, the bit in 9th position of  the filter is set to 1. After insertion of  19 the 

filter is : 

ii) Similarly, to insert 132 we compute !  and ! . Then the 

bits in positions 2 and 4 are set to 1. The filter now is : 

iii) Finally, regarding insertion of  25, digests of  hash functions are !  

and ! . Bit 5 is set 1. Bit 9 is already 1, as it has been set by the insertion of  

element 19. Bloom filter after the insertion of  25 is : 

Existence Checks 

Now, we check using the previously formed Bloom filter the existence of  the 

elements 133,25 and 24 in the set A. 

i) To check if  element 133 exists in A, we first compute the digests of  ! : 

!  

!  

h1, h2

h1(19) = 19 mod 10 = 9

h2(19) = (5 * 19 + 4) mod 10 = 99 mod 10 = 9

0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 1

h1(132) = 2 h2(132) = 4

h1(25) = 5

h2(25) = 9

h1, h2

h1(133) = 3

h2(133) = 9
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0 0 1 0 1 0 0 0 0 1

0 1 2 3 4 5 6 7 8 9

0 0 1 0 1 1 0 0 0 1



Then we check whether the bits of  positions 3 and 9 of  the Bloom filter are set  

to 1. Although bit 9 is set, the bit in position 3 is 0. As a result, the filter returns 

NO. 

ii) To check if  element 25 exists in A, we compute !  and ! . 

Then we check whether the bits of  positions 5 and 9 of  the Bloom filter are set  to 

1. Indeed, both bits are 1. So, Bloom filter returns YES. It is a true positive, as 

element 25 exists in the set. 

iii) To check if  element 24 exists in A, we compute !  

and  !  . Then we check whether the bits of  position 4 is set 

to 1. Indeed, it is set to 1. Although Bloom filter return again YES, element 24 does 

not exist in the set (resulting in a false positive). 

4. Performance of  Bloom filter 

Generally, a Bloom filter is considered of  high quality if  it minimizes the false 

positive probability. This is strongly dependent of  the number of  bits m of  the bit 

array as well as the number k of  the hash functions(as well as their quality).  

Given that we want to insert n elements to the filter and the desired false 

positive probability p , it has been proved that the filter should have size 

!  . Also, it has been proved that the optimal number of  hash functions 

is !  .  As we can observe, it only depends on the desired false positive 

probability. 

According to Kirsch-Mitzenmacher Optimization, instead of  using k different 

hash functions we only need two hash functions. The digests of  the k hash 

functions can be computed through the following transformation :

! , !  

h1(25) = 5 h2(25) = 9

h1(24) = 24 mod 10 = 4

h2(24) = 124 mod 10 = 4

m = −
n ln p
(ln 2)2

k = − log2 p

gi(x) = h1(x) + ih2(x) 0 ≤ i ≤ k − 1
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https://www.eecs.harvard.edu/~michaelm/postscripts/tr-02-05.pdf


5. Quality of  hash functions 

The quality of  hash functions plays a crucial role to bloom filter’s 

performance. Hash functions should be independent and uniformly distributed. 

Also, they should be as fast as possible.  

The speed of  a hash function can be easily measured through running 

benchmarks on random input. Uniformity of  a hash function can be measured 

using Chi-Square test. A useful Github repo that analyses quality of  hash functions 

for Bloom Filter can be found here. 

6. What we propose 

For the needs of  Assignment 1, we propose to construct a bloom filter with 3 

hash functions. Those hash functions will be of  your choice and you’ll need to 

explain them in README. You are not obliged to use the functions of  the above 

repo. Regarding the size of  the bloom filter, we propose it to be equal to the first 

prime !  , where R is the number of  the records in the registry file.p ⩾ 3 * |R |
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https://en.wikipedia.org/wiki/Chi-squared_test
https://github.com/Baqend/Orestes-Bloomfilter#hash-functions

