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Abstract. In this paper, we propose a three participants variation of
the Diffie-Hellman protocol. This variation is based on the Weil and
Tate pairings on elliptic curves, which were first used in cryptography as
cryptanalytic tools for reducing the discrete logarithm problem on some
elliptic curves to the discrete logarithm problem in a finite field.

1 Introduction

Since its discovery in 1976, the Diffie-Hellman protocol has become one of the
most famous and largely used cryptographic primitive. In its basic version, it is
an efficient solution to the problem of creating a common secret between two
participants. Since this protocol is also used as a building block in many complex
cryptographic protocols, finding a generalization of Diffie-Hellman would give a
new tool and might lead to new and more efficient protocols.

In this paper, we show that the Weil and Tate pairings can be used to build
a tripartite generalization of the Diffie-Hellman protocol. These pairings were
first used in cryptography as cryptanalytic tools to reduce the complexity of the
discrete logarithm problem on some “weak” elliptic curves. Of course, the prob-
lem of setting a common key between more than two participants has already
been addressed (see the protocol for conference keying in [H]). However, all the
known techniques require at least two round of communication. In some proto-
cols having these two rounds can be somewhat cumbersome, and a single round
would be much preferable. To give an example, exchanging an email message
key with a two round Diffie-Hellman protocol would require both participants
to be connected at the same time, which is a very undesirable property for a
key exchange protocol. For this reason, we believe that the one round tripartite
Diffie-Hellman presented here is a real improvement over conference keying even
though the computational cost will be somewhat higher.

2 The Discrete Logarithm Problem on Weak Elliptic
Curve

The discrete logarithm problem on elliptic curves is now playing an increasingly
important role in cryptography. When elliptic curve cryptosystems where first

W. Bosma (Ed.): ANTS-IV, LNCS 1838, pp. 385-1lll 2000.
© Springer-Verlag Berlin Heidelberg 2000



386 Antoine Joux

proposed in [d], computing the number of points of a given curve was a challeng-
ing task, since the Schoof, Elkies and Atkin algorithm was not yet mature (for a
survey of this algorithm see []). For this reason and also to simplify the addition
formulas, the idea of using special curves quickly arose. However, it was shown
later on that some of these special cases are not good enough. Today, three weak
special cases have been identified. In one of them, the discrete logarithm problem
becomes easy (i.e. polynomial time) as was shown in [EIT. This easiest case
happens when the number of points of the elliptic curve over I, is exactly p.
In the two other cases, the discrete logarithm problem on the elliptic curve is
transformed into a discrete logarithm problem in a small extension of the field
of definition of the elliptic curve. These two reductions are called the Menezes,
Okamoto, Vanstone (MOV) reduction [H] and the Frey, Riick (FR) reduction
[E. A survey of these reductions was published at Eurocrypt’99 [H, and gave a
comparison of these two reductions. The conclusion was the FR reduction can
be applied to more curves than the MOV reduction and moreover that it can be
computed faster than the MOV reduction. Thus for all practical usage, the au-
thors recommend the FR reduction. However, they claim that the computation
of the FR and MOV reduction may be a heavy load. We will show that in fact
this is not the case and that these reductions can be turned from cryptanalytic
to cryptographic tools.

Pairings on Elliptic Curve

The MOV and FR reductions are both based on a bilinear pairing, in the MOV
case it is the Weil pairing and in the FR case it is (a variation of) the Tate
pairing. In the sequel, we describe these pairings for an elliptic curve E defined
over F),. In order to define these pairings, we first need to introduce the function
field and the divisors of the elliptic curve. Very informally, the function field
K(E) of E is the set of rational map in z and y modulo the equation of E (e.g.
y? — 2% —ax — b). A divisor D is an element of the free group generated by
the points on E, i.e. it can be written as a finite formal sum: D = " a;(F;),
where the P; are points on E and the a; are integers. In the sequel, we will only
consider divisors of degree 0, i.e. such that ). a; = 0.

Given any function f in K(FE), we can build a degree 0 divisor div(f) from
the zeros and poles of f simply by forming the formal sum of the zeroes (with
multiplicity) minus the formal sum of the poles (with multiplicity). Any divisor
D = div(f) will be called a principal divisor. In the reverse direction, testing
whether a degree 0 divisor D = )", a;(F;) is principal or not, can be done by
evaluating > a; P; on E. The result will be the point at infinity if and only if D
is principal.

Given a function f in K(F) and a point P of E, f can be evaluated at P by
substituting the coordinates of P for x and y in any rational map representing
f. The function f can also be evaluates at a divisor D = ). a;(F;), using the
following definition:

#0) = [T #epo.
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Using these notions, we can now define the Weil pairing: it is a bilinear
function from the torsion group E[n] to the multiplicative group u, of n-th
roots of unity in some extension of F,, say IF,x. Given two n-torsion points P
and @, we compute their pairing e, (P, Q) by finding two functions fp and fg
such that div(fp) = n(P)—n(0) and div(fq) = n(Q)—n(0), and by evaluating:

en(P, Q) = fr(Q)/fo(P).

This pairing e, : E[n] x E[n] — w, is bilinear and non-degenerate. This
means that e, (aP,bQ) = e,(P,Q)® and that for some values of P and Q, we
have e, (P, Q) # 1. We can easily see that given a point X “independent” from
P and @, we can reduce the discrete logarithm problem @ = AP on the elliptic
curve to the discrete logarithm problem e, (Q, X) = e, (P, X)" in Fpp.

The variant of the Tate pairing described in [H is more complicated, since
it operates on divisors instead of points. The Tate pairing operates on n-fold
divisors, i.e. divisors D such that nD is principal, it takes values in p,, and it is
bilinear and non-degenerate. Given two n-fold divisors Dy and Dy defined over
an extension F,x that contains the n-th roots of unity, we find fp, and fp, such
that div(fp,) = nD;y and div(fp,) = nD3. The Tate pairing of Dy and Dy is
then defined as:

t(D1, D3) = fp, (D)@ =/",

This pairing is also bilinear and non-degenerate. Moreover, for the purpose
of discrete logarithm reduction, the Tate pairing t,,(D1, D2) can easily be trans-
formed into a pairing that involves points. One can simply fix two points R and
S, and remark that t,((AP) — (O), (R) — (5)) = t.((P) — (0), (R) — (5))*.

For more details about the properties and definitions of the Weil and Tate
pairing, we refer the reader to [HEH].

3 A Tripartite Diffie-Hellman Protocol

In this section, we want to build an analog of the Diffie-Hellman protocol, that
involves three participants A, B and C, requires a single pass of communica-
tions and allows the construction of a common secret K4 g c. By a single pass
of communication, we mean that each participant is allowed to talk once and
broadcast some data to the other two. The main idea is as in ordinary Diffie-
Hellman, we start from some elliptic curve E and some point P. Then A, B
and C each chose a random number (a, b or ¢) and they respectively compute
P4 =aP, P =bP and Pc = cP and broadcast these values. Then they respec-
tively compute F'(a, P, Pc), F(b, Pa, Pc) and F (¢, Pa, Pg), where the function
F' is chosen in a way that ensures that these numbers will be equal and that
this common value K4 g,c will be hard to compute given P4, Pg and Pc. The
problem now is to find such an F.

Using the Weil pairing, it is seems very easy to define such an F' using the
following formula:

FW<x7 P7 Q) = €n<Pa Q)x
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With this definition, one can easily check that:
Fw<a,PB,Pc) = Fw<b, PA,Pc) = Fw<C, PA,PB) = Fw<1,P, P)abc.

However, this function is not satisfying because e, (P, P) = 1 and thus K4 p ¢
is a constant. Nevertheless, the basic idea is quite sound and can in fact be
implemented if we use two independent points P, and @} and if we have the
three participants compute and broadcast (Pa,Q4), (Pp,Qp) and (Pc,Q¢).
Then A, B and C can respectively compute Fy (a, Pg,Qc) = Fw(a, @, Pc),
Fw (b, Pa,Qc) = Fw(b,Qa, Pc) and Fy(c, Pa,Qp) = Fw(c,Qa, Pg). More-
over, all these values are equal and thanks to the independence of P and @, they
are not constant.

Moreover, using two points P and @, it is easy to use the Tate pairing instead
of the Weil pairing, and to define another function F' as:

F‘T<.'177 Dl, DQ) = tn<D1, DQ)w
Then A, B and C can respectively compute:

Fr(a,(Pp) — (@B) (Pc +Qc) —(0)) =
Fr(a, (Pc) — (Qc), (PB+QB)—(O))’
Fr(b, (Pa) — (Qa), (Pc +Qc) — (0)
Fr(b, (Pc) -
Fr(c,(Pp) — (@B), (Pa+Qa) —
Fr(c, (Pa) — (Qa ,(PB + @) — (0)).

Because of the bilinearity of the pairing, all these numbers are equal and because
of the non-degeneracy, their common value

Fr(1,(P) = (Q), (P + Q) — (0)"*

is not independent from the choice of a, b and c.

Since Fr is based on the Tate pairing, it will be faster to evaluate then Fy,
(see the general remark about the efficiency of the Tate pairing versus that of
the Weil pairing in []). Finally, our tripartite Diffie-Hellman protocol can be
summarized as follows:

Alice Bob Charlie
Choose a Choose b Choose ¢
Compute (P4, Q4) Compute (Pp, Qp) Compute (Pc, Qc)
Broadcast Pa, Pg, Pc and Q4, Qp, Qc-
Compute the common key as:

Fr(a, (P) = (@), (Po + Qo) = (0))
Fr(b, (Pa) = (Qa), (Pc + Qc) — (0))
Fr(c,(Pp) = (@), (Pa+Qa) — (0))
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Choice of Parameters and Construction of the Elliptic Curve

For the tripartite Diffie-Hellman protocol to be efficient, we need to choose
elliptic curves such that the pairing can be efficiently computed. This means
that the group p, should be in a small extension I, i.e. k£ should be small.
Moreover, we need to choose two points P and @ such that the pairing will be
non-degenerate, this point can easily be checked by testing whether e, (P, Q) or
t,((P) — (Q),(P+ Q) — (0)) is 1 or not. Note that when k # 1 at least one of
the points P and Q must be defined over the extension IF,x rather than over I,
otherwise the pairing will always be degenerate.

Two kind of curves are very promising for this tripartite Diffie-Hellman:
supersingular curves (which leads to k£ = 2 according to the MOV reduction),
and curves of trace 2 (which leads to k = 1 according to the FR reduction). It
might seem strange to use elliptic curves which are known to be weaker than
random curves, however, since we are also mixing in exponentiation in [F,x, we
need to choose a large enough p for the discrete logarithm in F,» to be hard and
then nobody knows how to compute discrete logarithms on the elliptic curve.
The first kind of curve, i.e. supersingular curves, is well known and very easy to
build. However, curves of trace 2 are not so easy to construct, in fact, we only
known how to construct such curve when p — 1 is a square or a small multiple
of a square (see [H] or for some examples [H]). This is a pity because curves of
trace 2 with a squarefree p — 1 would allow us to work with a single point over
F,, instead of two which would be very nice and efficient.

4 Efficient Implementation of the Pairing

The main step when computing the Weil or the Tate pairing is given a n-fold
divisor D = (X) — (Y), to write the principal divisor nD as the divisor of a
(bivariate) function f denoted by div(f). Then we need to evaluate f at some
other point Z. There exists a standard method to do that, which is based on the
fact that every divisor can be written as (P) — (O) + div(f) for some point P
and some function f, and that adding two divisors of that form is easy. Indeed,
if

D = (P)— (0) + div(f),

D' = (P') = (0) + div(f")

then
D+ D = (P+P)—(0)+div(ff'g),

where g = [/v with [ the line through P and P’ and v the vertical line through
P+ P.

As explained in [d], when writing nD as div(f), f cannot be expressed as
an expanded polynomial (which would be exponentially large) but should be
kept in factored form. However, even in factored form, writing down f is quite
costly. As an example, the data in [l] shows that such a computation took about
40000 seconds for a supersingular curve when using a 50-digit prime p. This is
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not acceptable since with supersingular curves we want to work with a prime
number of at least 100 or 150 digits.

In fact, a much better approach is to avoid the computation of f and to
directly compute f(Z). This is easily done by keeping for each intermediate
divisor D the values of P and f(Z) and by forgetting f. Computing ff'g(Z) is
easily performed by multiplying f(Z), f/(Z) and g(Z). Thus at each step, we
only need to evaluate two linear polynomials, to compute one inverse and to
multiply a couple of numbers. Using this approach and the ZEN library [H], we
see in the following example that the Tate pairing can be computed in a single
second on a Pentium II-400 processor for a supersingular curve defined over a
prime field of more than 150 digits.

A Small Example

In this section, we give an example of the tripartite Diffie-Hellman using a
supersingular curve. We chose a prime p of more than 512 bits:

p = 48267777815770043535044410856360047038953960729113574
29530850774144832990078179684573230519991072031530329
37333023591271636050696817523671646492380723773419011.

We are working on the supersingular curve defined by y? = 23 + z. Since we
need to work in an extension field with p? elements, we define this field from the
irreducible polynomial 22 + 1, and we denote the square root of 1 by the letter
i.

Remark that p was chosen in such a way that the large (160 bits) prime ¢
divides p + 1, where:

g = 593917583375891588584754753148372137203682206097.
We then choose our two points P and @ as points of order ¢:

P = (4419030020021957060597995505214357695235725551511568
68511701918183168420954869076254808843953176168634019
27551006066189692708095924815897927498508535823262371,
26090947680860922395540330613428690525406329616428470
73807303133884126088547738030713042022034220476530186
5163480203757570223664606235381540801075563801118751)
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Q = (4174183901517981791573276838146590144608495183505084
36411447781417311430237331232958577456865429161040089
806217226455983348248260335272068783343983410685645620,
85984079438328066829535503806402848425113755688042614
53460943539888201506845050435386547281506353153165721
001906397291121864181015596430468303363508583810642517)

Using the Tate pairing we can compute

Fr(1,(P) - (Q),(P+@Q) - (0)) =
321226044133092484635656769053049333393058975135298190055
149195187870368117448022160010655718390434221411264718401
2057960459613431923269557790286442357677246557 +
188248671808397625173631034231316372667592199772896982055
003439080715924660694288538218628657757570098468723289223
254974186814834824668646542592184808038517084

Then for a =4, b =7 and ¢ = 28 we compute

Fr(a, (0P) — (bQ), (cP + Q) — (0)) =
21704655273258595020185058036714661585432952223857344835
67773957210551020200586870416066057916675619991969502192
641850458307828001561451703866966014963187271197 +
18547967545356005000241995328735966990113791703635028416
23483761786522135284562773843989027568976094155038271048
94436481787700370161453899874562738321254026146

and we check that indeed

Fr(a, (bP) = (bQ), (cP + cQ) = (0)) = Fr(1, (P) = (Q), (P + Q) — (0))***

Each evaluation of Fr took 1 second on a Pentium II-400 PC running under
linux, which is very efficient compared to the 40000 seconds (on a Pentium-75)
in ).

5 Security Issues

Clearly in order to be secure the tripartite Diffie-Hellman described here requires
the discrete logarithm on the chosen elliptic curve to be hard, and the discrete
logarithm in the finite field F,,x to be hard. Since we placed ourselves in the cases
where either the MOV or the FR reduction applies, the hardness of the elliptic
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curve discrete log implies the hardness of the finite field discrete log and we can
remove the second condition. This is a simple restatement of the fact that when
the finite field discrete log, then to solve the elliptic curve discrete log we simply
transport the problem in the finite field using the pairing and then solve the
problem in the finite field. However, it is not known whether the elliptic curve
discrete logarithm on a weak curve is as hard as the discrete logarithm in the
corresponding finite field (in the sense of the MOV or FR reduction). In fact,
this is a very interesting open problem. Moreover, as in the Diffie-Hellman case
this is not the whole story, some Diffie-Hellman like problem and Diffie-Hellman
like decision problem should be hard in order to get security.

Quite amusingly, we should note that on curves where either the MOV or FR
reduction applies, the usual Diffie-Hellman decision problem is mostly easy. Re-
member that the usual Diffie-Hellman problem is given a quadruple (g, g%, g%, %)
to decide whether ¢ = ab. This problem can also be expressed with the following
formulation which is slightly different. Given a quadruple (g, g%, h, h®), decide
whether a = b. Now on an elliptic curve where the MOV reduction applies, we
can easily test for a quadruple (P, aP, Q, bQ) whether a = b, it suffices to com-
pute e, (aP, Q) and e, (P,bQ) and to compare them. This test works as soon
as P and @ are independent (i.e. when e,(P,Q) # 1). Of course, in the FR
case, such a test also exists. More precisely, one can test for the equality of
tn((aP) — (0),(AQ) — (Q)) and t,((P) — (O), (AbQ) — (bQ)), where X is essen-
tially any constant number (some values of A\ are excluded, for example A = 1
is not allowed). Note than when P and @ are not independent, the test usually
doesn’t work, thus some cases of the usual Diffie-Hellman decision problem are
still hard on these elliptic curves.

With the current knowledge of elliptic curves, we believe that this system
is secure in practice as soon as the discrete logarithm in F,» is hard. For the
supersingular case (k = 2), we think that p should be a 512 bits prime. In the
trace 2 case (k = 1), we recommend to choose a 1024 bits prime. Moreover,
the usual precautions should be taken, i.e. some large prime ¢ should divide the
order of the elliptic curve, all the points involved in the computation should be
of order ¢, and we should use the pairing e, or ¢,.

6 Conclusion

In this article, we described a generalization of the Diffie-Hellman protocol to
three parties using the Weil or Tate pairing on elliptic curves. We also showed
that this pairing can be implemented much more efficiently than previously
shown in [l]. Therefore, this new protocol seems quite promising as a new build-
ing block to construct new and efficient complex cryptographic protocols. On the
other hand, we sincerely hope that people will try to attack it, since finding a
weakness in this protocol would certainly give some new insight in the difficulty
of the discrete logarithm on elliptic curves.
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