Variations on
 Diffie Hellman Key Exchange

Let the following key exchange protocol with input $\langle g, G, m\rangle$, which can be described by the following moves:

1. Alice selects $x_{A} \stackrel{R}{\leftarrow} \mathbb{Z}_{m}$ and sends $y_{A}=g^{x_{A}}$ to Bob.
2. Bob selects $r \stackrel{R}{\leftarrow} \mathbb{Z}_{m}$ and calculates $k_{B}=g^{r}$, while sending $z=y_{A}^{r}$ to Alice.
3. Alice calculates $k_{A}=z^{\frac{1}{x_{A}}}$, which is the key.

Correctness

$$
k_{A}=z^{\frac{1}{x_{A}}}=\left(\left(g^{x_{A}}\right)^{r}\right)^{\frac{1}{x_{A}}}=g^{r}=k_{B}
$$

Security

We will show that the above described protocol is secure under the DDH assumption:

$$
\left|\operatorname{Prob}\left[B\left(\langle g, G, m\rangle, g^{x}, g^{y}, g^{x y}\right)=1\right]-\operatorname{Prob}\left[B\left(\langle g, G, m\rangle, g^{x}, g^{y}, g^{z}\right)=1\right]\right| \leq \operatorname{negl}\left(1^{\lambda}\right)
$$

Suppose that

$$
\underset{k e y \leftarrow \operatorname{Key}(\lambda)}{\operatorname{Prob}}[V(\text { key })=1]=\delta
$$

meaning that the Adversary can extract some part of the key.
Suppose that the protocol is not secure. Then there exists an algorithm A and a predicate V such that

$$
\begin{equation*}
\operatorname{Prob}[A(\tau)=V(k e y(\tau))] \geq \max \{\delta, 1-\delta\}+\alpha \tag{1}
\end{equation*}
$$

with α a non negligible function of λ. Then for $\operatorname{trans}\left(1^{\lambda}\right)=\langle g, G, m, y, z\rangle$ we have that

$$
\operatorname{key}(\langle g, G, m, y, z\rangle)=z^{\frac{1}{\log _{g} y}}
$$

Let

$$
D_{\lambda}=\left\{\langle g, G, m\rangle \leftarrow G G e n\left(1^{\lambda}\right) ; a, b \stackrel{R}{\leftarrow} \mathbb{Z}_{m}:\left(G, m, g^{a}, g^{a b}, g^{b}\right)\right\}
$$

and

$$
R_{\lambda}=\left\{\left\langleg, G, m\left\langle\leftarrow G G e n\left(1^{\lambda}\right) ; a, b, c \stackrel{R}{\leftarrow} \mathbb{Z}_{m}:\left(G, m, g^{a}, g^{c}, g^{b}\right)\right\}\right.\right.
$$

We devise a statistical test B that on input $\langle g, G, m, a, b, c\rangle$ sends $(\langle g, G, m\rangle, a, c)$ to A, which extracts σ and if $V(b)=\sigma$, then B outputs 1, else B outputs 0 .

Then from (1) we have that

$$
\left.\underset{\gamma \leftarrow D_{\lambda}}{\operatorname{Prob}[B(\gamma)}=1\right] \geq \max \{\delta, 1-\delta\}+\alpha
$$

and

$$
\begin{aligned}
\operatorname{Prob}[B(\gamma)=1] & =\operatorname{Prob}\left[A\left(\tau_{\gamma}\right)=1\right] \cdot \operatorname{Prob}[V(c)=1]+\operatorname{Prob}\left[A\left(\tau_{\gamma}\right)=0\right] \cdot \operatorname{Prob}[V(c)=0] \\
& =\operatorname{Prob}\left[A\left(\tau_{\gamma}\right)=1\right] \delta+\operatorname{Prob}\left[A\left(\tau_{\gamma}\right)=0\right](1-\delta) \\
& \leq \operatorname{Prob}\left[A\left(\tau_{\gamma}\right)=1\right] \max \{\delta, 1-\delta\}+\operatorname{Prob}\left[A\left(\tau_{\gamma}\right)=0\right] \max \{\delta, 1-\delta\} \\
& =\max \{\delta, 1-\delta\}^{*}
\end{aligned}
$$

and

$$
|\operatorname{Prob}[B(D)=1]-\operatorname{Prob}[B(R)=1]|=|\max \{\delta, 1-\delta\}+\alpha-\max \{\delta, 1-\delta\}|=\alpha
$$

which we have supposed to be non negligible, and therefore leads us to a contradiction since we have assumed the DDH assumption.

[^0]
[^0]: ${ }^{*}$ More accurately $\operatorname{Prob}[V(c)=1]=\delta^{\prime}$ but it is easy to show that $\left|\delta-\delta^{\prime}\right|=\operatorname{negl}(\lambda)$

