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The GQ protocol allows P to prove to V that she knows the e−th root w modulo n of a given
number y ∈ Zn.
The protocol works as follows:

1. P chooses t ∈ Z∗
n at random and sends the group element u = te mod n to V

2. V chooses the challenge value c ∈ {0, . . . , e− 1}

3. P answers by sending the value s = t · wc and V accepts if and only if se = u · yc

Define
RRSA = {(x,w) : x = (u, e, y), w = y

1
e mod n}1

We show the three basic properties of the Zero Knowledge Proofs of Knowledge, i.e. Complete-
ness, Soundness and Zero Knowledge:

Completeness: It suffices to show that if x ∈ L and R(x,w) = 1 for some witness w, then for all
strings z

Prob[outVP,V(x,w, z) = 1] = 1

It is easy to see that
se = (twc)e = te(we)c

and
uyc = te(we)c

Soundness: We need to show that for every convincing prover P∗ there exists a knowledge ex-
tractor K such that on P∗’s input it extracts a w for x.

Firstly we see how we can obtain two accepting conversations from P∗ with challenge values
c, c∗ such that c ̸= c∗:

Let two conversations with P∗, that share the same first move, (u, c, s) and (u, c∗, s∗). Then
from the first conversation we have that

se = uyc (1)

and from the second we get

(s∗)e = uyc∗ (2)

1as opposed to RDLOG = {(x, w) : x = (G, g, m.h), w = logg h} that we used in Schnorr’s Protocol
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Combining (1) and (2) we have that ( s

s∗

)e

= yc−c∗

and using Euclid’s extended gcd algorithm we can find a and b such that

ae + b(c− c∗) = 1

Then define
z =

( s

s∗

)b

ya

then we have that
ze =

( s

s∗

)be

yae = y(c−c∗)byae = y

Following the same methodology that was used in class to prove the soundness property for
Schnorr’s protocol, we first view P as a probabilistic program in two steps:

1. P(first, ⟨e, n⟩, y) outputs ⟨u, aux⟩
2. P(second, ⟨e, n⟩, c, aux) outputs s

where aux represents the internal information used by P and that is not published.

Now we develop a Knowledge Extractor with the following structure:

1. Let ρ1
R← {0, 1}λ1 be the coin tosses required by the first step of P. Fix the randomness

of P with ρ1 and simulate P(first, ⟨e, n⟩, y) to obtain u.

2. Choose c
R← Zn

3. Let ρ2
R← {0, 1}λ2 be the coin tosses required by step 2 of P. Simulate P(second, ⟨e, n⟩, c, aux)

with fixed randomness ρ2 to obtain s

4. Choose c∗
R← Zn, ρ∗2

R← {0, 1}λ2 . Repeat steps 2 and 3 to obtain s∗ and output ⟨u, c, s⟩
and ⟨u, c∗, s∗⟩

So using the above technique, the knowledge extractor cat obtain two accepting conversations
and reconstruct the witness as previously discussed. We will now show that the knowledge
extractor can produce the two accepting conversations with adequate probability.

Suppose that the prover is successful with at least non negligable probability α. Let

X × Y =
{
(ρ1, (c, ρ2)) : ρ1 ∈ {0, 1}λ1 , (c, ρ2) ∈ Zn × {0, 1}λ2

}
and define A be the set of (ρ1, (c, ρ2)) that the verifier accepts. Then |A| ≥ α|X × Y |. Then
we can fix a good sequence (ρ1, (c, ρ2)) in A such that the resulting conversation from K
is accepting. By the Splitting Lemma, K hits a super-good sequence in steps 1 to 3 with
probability α/2.

Suppose the knowledge extractor hits a super-good sequence. Then there is an α/2 probability
that K hits another super-good sequence when repeating step 4. So the probability that both
conversations are accepting is α2/4. Moreover, there is a 1/e probability that K will generate
the same challenge values c = c∗, which implies that for the property of Soundness to be valid
in this protocol, e needs to be sufficiently large.
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Now let S be the event that the knowledge extractor is successful, C the event that c ̸= c∗ in
the second choice, D the event that the sequence (ρ1, (c, ρ2)) is super-good and E the event
that the sequence (ρ1, (c∗, ρ∗2)) is good. Then

Prob[S] ≥ Prob[C ∧D ∧E] = Prob[D ∧E]− Prob[¬C] =
α2

4
− 1

e

which proves the soundness property for the GQ protocol.

Zero Knowledge: In order to prove the Zero Knowledge property we must show that for every
verifier V∗ there exists some simulator S such that for every x,w the following holds:

∆[S(x, z), outV
∗

P,V∗(x, w, z)] = negl

First we define the simulator S:
On input (u, e, y), S selects c

R← {0, . . . , e} and s
R← Zn and outputs (sy−c, c, s)

A real conversation is of the form

outV
∗

P,V∗(x,w, z) = (te, c, twc)

and so we see that∣∣∣Prob[A(S(x, z) = 1)]− Prob[A(outV
∗

P,V∗(x,w, z)) = 1]
∣∣∣ ≤ ∆[S(x, z), outV

∗

P,V∗ ]

≤
∣∣∣∣ 1
e · n

− 1
e · n

∣∣∣∣
= 0
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