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Abstract. Researchers, nowadays, have at their disposal valuable data
from social networking applications, of which Twitter and Facebook are
the most prominent examples. To retrieve this content, the Twitter ser-
vice provides 2 distinct Application Programming Interfaces (APIs): a
probe-based and a streaming one, each of which imposes different limi-
tations on the data collection process. In this paper, we present a general
architecture to facilitate faceted crawling of the service, which simplifies
retrieval. We give implementation details of our system, while providing
a simple way to express the crawling process, i.e., the crawl flow. We
experimentally evaluate it on a variety of faceted crawls, depicting its
efficacy for the online medium.
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1 Introduction

The numerous prototypes built on top of social networks are proof of their
importance [19, 16, 23, 22, 18, 15, 14, 6, 7]. These applications focus on different
key properties of the underlying data. Big data problems require voluminous
datasets. Emergency management requires access to locational information [5,
21, 12]. News reporting must access high-quality information from high-quality
posters. Social graphs are another major asset.

In this paper we focus on Twitter because it is prevalent, and has an open-
data policy. Building a system to retrieve the desired information is both time
consuming and technically challenging. For example, the service provides two
distinct Application Programming Interfaces (APIs), with certain limitations:
Access is restricted to authenticated (i.e., registered) users, and to public tweets,
i.e., tweets visible to anyone. The default streaming API returns only 1% of
public tweets 1, while the REST API limits the number of requests issued within
a specific timeframe, imitating the politeness principle [11].

In this paper, we consider the problem of an efficient crawler for the Twitter
service, to fetch content with desired properties. Those properties refer to dif-
ferent facets of the data (tweets, users, graph, location, etc.), giving rise to the
faceted crawling problem. We discuss our system’s design and implementation
details. In summary, we make the following contributions:

1 Elevated access can be granted for a fee.



– We present the architecture and implementation of a faceted crawler for the
Twitter service.

– We simplify the crawling process through a crawl flow, which can multiplex
queries in an elegant, yet effective way. We have implemented default crawl
flows, which can be used in numerous scenarios.

– We present results on our crawler’s performance and discuss lessons learned
from our interaction with the service’s APIs.

2 Related Work

Harvesting web documents is as old a task as the web itself. Search engines rely
on web crawlers [9, 10, 17] to fetch online documents, which they subsequently
index and make available. These are built for the surface web, where webpages
are reachable through hyperlinks. However, Twitter’s multiple information facets
do not allow a straight-forward modification of existing crawlers, which would
also violate the politeness policy, given the real-time nature of the medium.
Similar problems exist for crawlers of the Hidden Web [8, 13], where information
can be accessed through query forms.

Several libraries exist [3], to access Twitter’s APIs programmatically, one
resource at a time. Therefore, these are not complete solutions, whereas we
facilitate the faceted crawling process through the crawl flow.

The work in [4] also discusses facets on Twitter, but in a conceptually dif-
ferent way. More importantly, our research goals are different: [4] is interested
in enriching tweets with “context”, whereas we aim at the implementation of an
efficient and robust crawler. Therefore, [4] can be thought of as an application,
that one can build on top of our proposed infrastructure.

3 Twitter API Background

Twitter provides two main Application Programming Interfaces (APIs) to access
publicly available data, i.e., data that anyone can see. The first API is a REST-
ful one, and requires probing the service with HTTP requests. The second API
is a streaming one, and resembles a publish-subscribe mechanism. In both cases,
the user can apply filters, to restrict the information they are looking for. In both
cases the user needs to be authenticated through one of the available options.
In the next paragraphs, we give a more detailed overview of these two APIs.

3.1 REST API

The REST API uses HTTP requests (i.e., GET, POST) to perform the communi-
cation between the end user and the Twitter service. This API supports multiple
query types, each of which can be employed by contacting a carefully constructed
URL, with all the necessary information.

From the REST API specification [1], we identify four types of restrictions,
which we must take into account in our crawler. Table 1 gives additional details.



– Rate restrictions: The number of queries of a specific type that the devel-
oper can issue within the 15 minute window.

– Maximum Result Size: The upper bound on the results of a particular
query. For instance, even if a user has posted 5000 tweets, we are only able
to access the most recent 3200.

– Probing Result Size: The number of results that we can retrieve each time
we probe the service with that particular query. For instance, a query for a
user’s timeline will return at most 200 tweets.

– Maximum Query Size: The number of objects that we can query simulta-
neously with a single probe to the service. Typically this is 1, (e.g., 1 tweet
each time, using its id), but there are some exceptions (e.g., lookup at most
100 users).

3.2 Streaming API

Through this API, one can receive data as a flow of tweets. The API returns a 1%
sample of all public posts, though not uniformly [?]. Consequently, data received
through this API may reflect fluctuations of the actual stream, e.g., increase /
decrease of posts, temporal patterns of user interactions, etc. A drawback of this
API is that it can not be used for all information facets, e.g., the social graph.

4 Faceted Crawler Architecture

Figure 1 shows the architecture of a classic web crawler [10] on the left, compared
against our Faceted crawler architecture, on the right. The two designs appear
to be similar for the most part. The contents of the frontier queue, however, in
the two cases are different, because surface crawlers need only handle URLs of
the next pages to fetch. On the contrary, our crawler needs to handle different
query types, each of which takes different parameters.

The components Seeder, Ranker and Streamer are also different. The
latter exists to harvest data using the streaming API. The Seeder exists to
support various applications in a unified way. The Ranker is separate from the
scheduler, because one application may combine multiple query types, and to
simplify application development.

Table 1. Restrictions for some major query types.

Max Probe API
Query Rate Result Result limit

User Lookup 180 ∞ 100 100

Tweet Show 180 1 1 1

Friends 15 ∞ 5000 1

Followers 15 ∞ 5000 1

Timeline 180 3200 200 1

Retweets 15 100 100 1



(a) Classic Web Crawler (b) Twitter Faceted Crawler

Fig. 1. Architectural designs of both classic web crawler and our Twitter faceted
crawler

4.1 Streaming API

To obtain information from the Streaming API, we employ the Streamer
component, as shown in Figure 1. The component receives the stream, and may
forward it for processing, storage and seeding.

4.2 REST-based crawling

Aside the Streamer, the components in Figure 1 largely resemble a classic
crawler architecture. However, the actual design is quite different. We have al-
ready pointed out the difference in the frontier queue. Moreover, each application
may have a different crawling process, therefore we need to efficiently multiplex
queries. For this reason, we have decoupled crawling (i.e., accessing the service)
from seeding.

4.3 Scheduler

A major component of our system is the Scheduler, responsible for queueing
crawl tasks. A crawl task contains information about the query type and all
of the parameters that accompany it. The Scheduler is also responsible for
enforcing the rate limits. To achieve this, the component operates in an event-
driven manner, shown in Algorithm 1.

The component starts with the query types of the crawling process. It will
enqueue these queries to a timedQueue, and will trigger the event, leading to
the execution of the “EventTrigger()” method. The queries that triggered the
alarm are dequeued and passed to the queue for crawling. We then reset the
timer to trigger for the next query item.

Items in queue are processed one by one, by the main scheduler thread. For
the current query type, we probe th “Frontier Queue” (Line 3), implemented
as a database relation, and pass the result for crawling. The scheduler stores
metadata in the database (e.g., statistics) and requeues the query for timely
execution, computed through its rate limit.



Algorithm 1 Scheduler Algorithm
Input: Database db, Ranker ranker
Output: outQueue
Shared Queue queue, timedQueue

//Main Thread
1: while !stopped do
2: qry ← queue.dequeue();
3: data ← ranker.getNext( qry );
4: outQueue.enqueue( qry, data );
5: db.store( qry.qryMeta );
6: timedQueue.enqueue( qry, NOW + qry.ival );

EventTrigger()
7: nextQuery ← timedQueue.dequeue();
8: top ← timedQueue.top();
9: queue.enqueue( nextQuery );
10: resetTimer( top.TIME - NOW );

Algorithm 2 Seeder Algorithm
Input: Database db, ResultQueue RQ, CrawlFlow CF

1: while !stopped do
2: (result, qry) ← RQ.dequeue();
3: storeResult( result );
4: update = CF .stepSeeding( qry, result );
5: if (update) then
6: nxtQrs ← CF .nextQueries( qryMeta );
7: for ( i = 0; i ¡ nxtQrs.size; i++ ) do
8: nxtQrs( i ).stepSeeding( qry, result );

9: db.store( qry.qryMeta );

4.4 Ranker

As seen in Algorithm 1, the scheduler relies on a Ranker object. A Ranker

implements our IRanker interface, shown in Figure 2. The init() method is
used to properly initialize resources (e.g., database relations). The getNext()
method returns the next item to submit to a crawler as our next query. The id
is decided by the scheduler to simplify the architecture. The query also contains
the RateLimit information. This allows for a common interface across queries.

4.5 Seeder

As shown in Algorithm 2, the Seeder operates in an endless loop, much like
the Scheduler. It receives information from the result queue RQ (Line 2),
where crawlers write the result of probing Twitter. Results are forwarded for
storage (line 3). We then update the frontier in two steps. First, update the
current query (line 4). The result is a binary variable (TRUE/FALSE), that

public interface IRanker{
public void init();
public List getNext( long qid, Query query );

}

Fig. 2. The IRanker interface



(a) Timeline (b) Sampling

Fig. 3. Schematic representation of Crawl Flow examples.

determines whether we should move to the second step, i.e., update subsequent
frontiers (lines 5-8).

4.6 The QueryLog Relation
To restart after a (forceful) shutdown, and monitor our system’s performance, we
store appropriate information, in a relational table, called QuerLog. A partial
view is shown in Table 2. Statistics of the system include rank time, seed time,
etc (not shown here). Fields qid and result are straightforward. Values of the
result field can be found in [2]. The next three fields ensure that the rate limits
are enforced in cases of failure or restarts.

4.7 Crawl Flow
To further simplify the crawling process, we introduce the concept of a Crawl
Flow. The idea is that on Twitter, a crawl is driven by the underlying appli-
cation, which can be generally expressed as a sequence of faceted probes (with
cycles). The Crawl Flow can be thought of as a state automaton, and defines
the sequence of the queries to the service. Figure 3 shows a schematic represen-
tation of two Crawl Flows that we provide, a user’s timeline, and sampling the
social graph. Through the Crawl Flow, the user specifies:

– The general execution sequence of queries. The sequence may contain loops
(including self-loops), depending on the goal.

– An object implementing the IRank interface.
– An object implementing the ISeed interface.

5 Use Cases

We have fully implemented our system in Java 1.6 and used the Twitter4j li-
brary 2 for method probes. We used PostgreSQL 8.4 with its default configura-

2 http://twitter4j.org

Table 2. Fields of the QueryLog relation

Field Description

qid Unique Identifier for the Query
result Code Signifying how the query
toq The type of query associated with this tuple
crawler An identifier for a crawler
tssched Timestamp when this query was scheduled



tion, but any SQL-compliant database will suffice. Each component runs on a
separate thread. Nevertheless, our experiments were run on a single quad core
machine @3.4GHz, with 16Gb of RAM, though half of it was set as Java’s heap
space, and Ubuntu Linux 64bit.

5.1 Crawling by Location
Location is a very important aspect of tweets. Tweets with location can be re-
trieved through a geographical filter, specified as 2D bounding box with GPS.
Despite its accuracy, GPS is not the sole approach to geocode data. External
geocoders [21] can be applied directly to the streaming API. Figure 4 shows
the number of tweets (on the left) and users (on the right). Custom geocod-
ing (Geocoded) can extract an additional 10% to GPS-filtered information
(Crawled).
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Fig. 4. Comparing raw counts between crawled and geocoded locational information

Changing the bounding box of a crawl returns different results, even when the
boxes overlap. Table 3 depicts the similarities in terms of received users (upper
right, in red) and tweets (lower left, in blue), where each crawler is configured to
monitor the corresponding location. Despite some commonly shared users and
tweets, a lot of new content is being delivered by each stream.

5.2 Crawling User Timelines

User timelines are useful in several cases, e.g., behavior analysis. To efficiently
crawl a user’s timeline, it is best to know the number of expected results.

Crawling Basic User Information: We improve user information extraction
by 1%, as seen in Figure 5(a), through the combination of two query types.

Table 3. Jaccard Similarity between the GPS enabled crawls using the Streaming API

Any GPS UK N Amer CA, USA

Any GPS 1.0 0.069 0.249 0.038

UK 0.057 1.0 6×10−4 0.001
N Amer 0.218 0.0 1.0 0.138
CA, USA 0.042 0.0 0.145 1.0



Figure 5(b) depicts this improvement (blue line) as a percentage. The 1 less
query out of every 4, shown in Figure 5(a), is due to our best-effort approach
for crawling the service, which has tight time constraints.

Crawling the Timeline: Figure 6(a) shows how much time is spent on the get-
Next method by the Ranker component, which is below 10ms. Both the getNext
and stepSeeding methods do not take, on average, more than 4ms (Figure 6(b)).

The average elapsed time between consecutive schedulings of Timeline queries
is shown in Figure 6(c). The interval does not increase, but stabilizes over time.
Even with multiple crawlers, our system maintains its performance. With 10
crawlers, we are at more than 98.5% of the optimal case for Timeline queries
(Figure 7(a)) perform similarly for Lookup queries (Figure 7(b)). Evidently, more
crawlers yield more results faster (Figure 7(c)).

5.3 Sampling

For large networks, sampling is important. We have implemented the Metropolis-
Hastings algorithm [20], through the IRank and ISeed interfaces. Instead of
thinning, we use reservoir sampling on the collected nodes, which has the same
effect. Figure 8a) shows the time required for ranking and seeding. This is the
only case where the timings are high, compared to other use cases, and eventually
reach an average of ∼2.5 seconds. The reason is that sampling, synchronizes on
shared resources. Regardless, our implementation is well within the timeframe
between subsequent queries of this type (60 seconds).

5.4 Additional Use Cases

Retweet Graph Retweets are a key concept in Twitter, allowing users to re-post
/ endorse tweets of others. They can be used to identify cascades of information,
leaving the actual reason as a latent feature to be explored. Crawling retweets
has been implemented through appropriate seeders / rankers in our framework.

Retrieve tweets by ID Per Twitter policy, one may only disclose the tweet
IDs of their dataset. Therefore, this use case becomes very important for repro-
ducibility of results and fair comparison of techniques.
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Fig. 6. Average crawler performance for harvesting (a) user information, (b)-(c)and
user timelines.
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Crawl Social Graph We have also implemented a BFS traversal of the social
graph of Twitter, through Seeders and Rankers.

6 Conclusion

In this paper we presented a framework for faceted crawling of the Twitter ser-
vice. Our framework respects rate limits imposed by the service, and interleaves
queries to boost performance. We simplify the crawling process through the
Crawl Flow concept.
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