
Internetworking with Sockets

Spring 2025

1 / 73

Cross-host Interprocess Communication (IPC)

▶ Typically client-server model over network

▶ Server - Provides a service

▶ Server - Waits for clients to connect

▶ Clients - Connect to utilize the service

▶ Clients - Possibly more than one at a time

2 / 73

The Internet Protocol

▶ Each device in a network is assigned an IP address

▶ IPv4 32 bit, IPv6 128 bit
– IPv4 (in dec)

69.89.31.226 ⇐ 4 octets
– IPv6 (in hex)

2001:0db8:0a0b:12f0:0000:0000:0000:0001 ⇐ 8 16-bit blocks

▶ Each device may host many services

▶ Accessing a service requires a (IP,port) pair

▶ Services you know of: ssh (port 22), http (port 80), DNS
(port 53), DHCP (ports 67,68)

3 / 73

Common Service Use Cases

Browse the World Wide Web

▶ Each device has a static IP

▶ DNS used to translate www.google.com to 216.58.213.4

▶ Contact service at 216.58.213.4 and port 80 (http)

4 / 73

Common Service Use Cases

Your home network.

▶ You turn on your modem. It gets a public from you ISP (eg.
79.166.80.131)

▶ Your modem runs a DHCP server giving IPs in 192.168.x.y

▶ Your modem acts as a Internet gateway. Translates IPs from
192.168.x.y to 79.166.80.131. IP Masquerade.

▶ What if you need to setup a service running inside your
192.168.x.y network available to the internet?
Do port forwarding.

5 / 73

The Transmission Control Protocol
▶ TCP Uses acknowledgments

▶ Non-acknowledged messages are retransmitted

▶ Messages re-ordered by the receiver’s OS network stack

▶ Application sees a properly ordered data stream

Server Host

Passive communication endpoint

Communication endpoint

Connection request

for communication
Connection open

Waits for connections

Server Process Client Process

Client Host

6 / 73

TCP - multiple clients

Server Host

Passive communication endpoint

Communication endpoint

Server Process

Client Process

Client Host

Client Process

Client Host

7 / 73

Sockets

▶ A socket is a communication endpoint

▶ Processes refer to a socket using an integer descriptor

▶ Communication domain
▶ Internet domain (over internet)
▶ Unix domain (same host)

▶ Communication type
▶ Stream (usually TCP)
▶ Datagram (usually UDP)

8 / 73

TCP vs. UDP

TCP UDP

Connection Required ✓ ✗

Reliability ✓ ✗

Message Boundaries ✗ ✓

In-Order Data Delivery ✓ ✗

Socket Type SOCK STREAM SOCK DGRAM

Socket Domain Internet Internet

Latency higher lower

Flow Control ✓ ✗

9 / 73

Serial Server (TCP)

Create listening socket a
loop

Wait for client request on a

Open two-way channel b with client
while request received through b do

Process request
Send response through b

end while

Close file descriptor of b
end loop

Drawbacks:

▶ Serves only one client
at a time

▶ Other clients are forced
to wait or even fail

10 / 73

1 process per client model

Passive communication endpoint

Communication endpoint

Server Host

fork()

Client Process

Client Host

Server Process

Server Child
▶ New process forked for

each client

▶ Multiple clients served at
the same time

▶ Inefficient, too many
clients → too many
processes

11 / 73

1 process per client model

Parent process

Create listening socket a
loop

Wait for client request on a

Create two-way channel b with client
Fork a child to handle the client
Close file descriptor of b

end loop

Child process

Close listening socket a
Serve client requests through b

Close private channel b
Exit

12 / 73

Parent process: why close file descriptor b?

▶ Parent doesn’t need this file descriptor

▶ Risk of running out of file descriptors otherwise

▶ Enables the destruction of the channel once the other two
parties (child & client) close their file descriptors

▶ Enables the child process to receive EOF after the client
closes its end of the channel (and vice versa).

13 / 73

Multithreaded server model

Server Host

Communication endpoint

Passive communication endpoint

Thread

Connection request

for communication
Connection open

Server Process Client Process

Client Host

▶ Multiple threads handle multiple clients concurrently

▶ Drawback: Requires synchronization for access to shared
resources

14 / 73

Dealing with byte order

▶ Byte order poses a problem for the communication among
different architectures.

▶ Network Protocols specify a byte ordering: ip addresses, port
numbers etc. are all in what is known as Network Byte Order

▶ Convert long/short integers between Host and Network Byte

Order

/* host to network byte order for long -32 bits */

uint32_t htonl(uint32_t hostlong);

/* host to network byte order for short -16bits */

uint16_t htons(uint16_t hostshort);

/* network to host byte order for long -32 bits */

uint32_t ntohl(uint32_t netlong);

/* network to host byte order for short -16bits */

uint16_t ntohs(uint16_t netshort);

15 / 73

Depicting the Byte Order ByteOrder-p16.c
#include <stdio.h>

#include <arpa/inet.h>

int main(){

uint16_t nhost = 0xD04C , nnetwork;

unsigned char *p;

p=(unsigned char *)&nhost;

printf("%x %x \n", *p, *(p+1));

/* 16-bit number from host to network byte order */

nnetwork=htons(nhost);

p=(unsigned char *)&nnetwork;

printf("%x %x \n", *p, *(p+1));

exit (1);

}

• Experimenting with an Intel-based (Little-Endian) machine:
antoulas@sazerac :~/ src$./ByteOrder -p16

4c d0

d0 4c

antoulas@sazerac :~/ src$

• Experimenting with a Sparc (Big-Endian/Network Byte Order)
machine:
pubsrv1 :/k24 -examples >./ ByteOrder -p16

d0 4c

d0 4c

pubsrv1 :/k24 -examples >

16 / 73

From Domain Names to Addresses and back

▶ An address is needed for network communication

▶ We often have to resolve the address from a domain name.
ex. spiderman.di.uoa.gr ↔ 195.134.66.107

struct hostent {

char *h_name; /* official name of host */

char ** h_aliases; /* aliases (alt. names) */

int h_addrtype; /* usually AF_INET */

int h_length; /* bytelength of address */

char ** h_addr_list; /* pointer to array of network addresses */

};

struct hostent *gethostbyname(const char *name);

struct hostent *gethostbyaddr(const void *addr , socklen_t len , int type);

▶ For error reporting use h error & hstrerror(int err).

▶ Both calls return pointers to statically allocated hostent

structure on sucesss and NULL on error.

17 / 73

Resolving names for machines

#include <netdb.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

void main(int argc , char **argv){

int i=0;

char hostname [50], symbolicip [50];

struct hostent *mymachine;

struct in_addr ** addr_list;

if (argc !=2) {printf("Usage: GetHostByName -p18 host -name\n"); exit (0);}

if ((mymachine=gethostbyname(argv [1])) == NULL)

printf("Could not resolved Name: %s\n",argv [1]);

else {

printf("Name To Be Resolved: %s\n", mymachine ->h_name);

printf("Name Length in Bytes: %d\n", mymachine ->h_length);

addr_list = (struct in_addr **) mymachine ->h_addr_list;

for(i = 0; addr_list[i] != NULL; i++) {

strcpy(symbolicip , inet_ntoa (* addr_list[i]));

printf("%s resolved to %s \n",mymachine ->h_name ,symbolicip);

}

}

}

18 / 73

Resolving names

antoulas@sazerac :~/ src$

antoulas@sazerac :~/ src$./ GetHostByName -p18 federal.gov.ar

Name To Be Resolved: federal.gov.ar

Name Length in Bytes: 4

federal.gov.ar resolved to 190.210.161.110

antoulas@sazerac :~/ src$

antoulas@sazerac :~/ src$

antoulas@sazerac :~/ src$./ GetHostByName -p18 www.bbc.co.uk

Name To Be Resolved: www.bbc.net.uk

Name Length in Bytes: 4

www.bbc.net.uk resolved to 212.58.246.95

www.bbc.net.uk resolved to 212.58.244.71

antoulas@sazerac :~/ src$

antoulas@sazerac :~/ src$./ GetHostByName -p18 www.nytimes.com

Name To Be Resolved: www.gtm.nytimes.com

Name Length in Bytes: 4

www.gtm.nytimes.com resolved to 170.149.161.130

antoulas@sazerac :~/ src$

antoulas@sazerac :~/ src$./ GetHostByName -p18 170.149.161.130

Name To Be Resolved: 170.149.161.130

Name Length in Bytes: 4

170.149.161.130 resolved to 170.149.161.130

antoulas@sazerac :~/ src$

antoulas@sazerac :~/ src$

19 / 73

Resolving IP-addresses

#include <netdb.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

int main(int argc , char *argv []) {

struct hostent* foundhost;

struct in_addr myaddress;

/* IPv4 dot -number into binary form (network byte order) */

inet_aton(argv[1], &myaddress);

foundhost=gethostbyaddr ((const char*)&myaddress , sizeof(myaddress), AF_INET);

if (foundhost !=NULL){

printf("IP-address :%s Resolved to: %s\n", argv[1],foundhost ->h_name);

exit (0);

}

else {

printf("IP-address :%s could not be resolved\n",argv [1]);

exit (1);

}

}

20 / 73

Resolving IP-addresses

antoulas@sazerac :~/ src$

antoulas@sazerac :~/ src$./ GetHostByAddress 128.10.2.166

IP-address :128.10.2.166 Resolved to: merlin.cs.purdue.edu

antoulas@sazerac :~/ src$

antoulas@sazerac :~/ src$./ GetHostByAddress 195.134.67.183

IP-address :195.134.67.183 Resolved to: sydney.di.uoa.gr

antoulas@sazerac :~/ src$

▶ gethostbyname() and gethostbyaddr() have been in use.

▶ POSIX.1-2001 suggests instead the use of getnameinfo() and
getaddrinfo() respectively.

21 / 73

Our goal
Create the communication endpoint. Use it as a file descriptor.

socket()

bind()

listen()

accept()

read()

write()

connect()

socket()

write()

read()

wait for
connection

request for connection establishment

request

response

processing

Server Process Client Process

22 / 73

Address Format for Sockets
▶ An address identifies a socket in a specific communication

domain.

▶ Addresses with different formats can be passed to the socket
functions – all casted to the generic sockaddr structure.

▶ Internet addresses are defined in <netinet/in.h>.

▶ Specifically in IPv4 Internet domain (AF INET), a socket
address is represented by the sockaddr in as follows:

struct in_addr{

in_addr_t s_addr; /* IPv4 address */

};

struct sockaddr_in{

sa_family_t sin_family; /* address family */

in_port_t sin_port; /* port number */

struct in_addr sin_addt; /* IPv4 address */

};

▶ in port t data type is uint16 t (defined in <stdint.h>)

▶ in addr t data type is uint32 t (defined in <stdint.h>)

23 / 73

Creating sockets

▶ socket creates an endpoint for communication

▶ returns a descriptor or -1 on error

#include <sys/socket.h>

#include <sys/type.h>

int socket(int domain , int type , int protocol);

domain communication domain (mostly AF INET)

type communication semantics (often SOCK STREAM,

SOCK DGRAM)

protocol Use 0 as typically only one protocol is available

if ((sock = socket(AF_INET , SOCK_STREAM , 0)) == -1)

perror("Socket creation failed!");

24 / 73

Binding sockets to addresses

▶ bind requests for an address to be assigned to a socket

▶ You must bind a SOCK STREAM socket to a local address
before receiving connections

int bind(int socket , const struct sockaddr *address ,

socklen_t address_len);

▶ We pass a sockaddr in struct as the address that has at
least the following members expressed in network byte-order:

– sin family: address family is AF INET in the Internet domain
– sin addr.s addr: address can be a specific IP or INADDR ANY

– sin port: TCP or UDP port number

25 / 73

Socket binding example

#include <netinet/in.h> /* for sockaddr_in */

#include <sys/socket.h>

#include <sys/types.h>

#include <arpa/inet.h> /* for hton* */

int bind_on_port(int sock , short port) {

struct sockaddr_in server;

server.sin_family = AF_INET;

server.sin_addr.s_addr = htonl(INADDR_ANY);

server.sin_port = htons(port);

return bind(sock , (struct sockaddr *) &server , sizeof(server));

}

▶ INADDR ANY is a special address (0.0.0.0) meaning “any
address”

▶ sock will receive connections from all addresses of the host
machine

26 / 73

listen, accept

int listen(int socket , int backlog);

▶ Listen for connections on a socket

▶ At most backlog connections will be queued waiting to be
accepted

int accept(int socket , struct sockaddr *address ,

socklen_t *address_len);

▶ Accepts a connection on a socket

▶ Blocks until a client connects/gets-interrupted by a signal

▶ Returns new socket descriptor to communicate with client

▶ Returns info on clients address through address.
Pass NULL if you don’t care.

▶ Value-result address len must be set to the amount of space
pointed to by address (or NULL).

27 / 73

connect

int connect(int socket , struct sockaddr *address ,

socklen_t address_len);

▶ When called by a client, a connection is attempted to a
listening socket on the server in address. Normally, the
server accepts the connection and a communication channel
is established.

▶ If socket is of type SOCK DGRAM, address specifies the peer
with which the socket is to be associated (datagrams are
sent/received only to/from this peer).

28 / 73

TCP connection

socket()

bind()

listen()

accept()

read()

write()

connect()

socket()

write()

read()

wait for
connection

request for connection establishment

request

response

processing

Server Process Client Process

29 / 73

Tips and warnings

▶ In Solaris compile with “-lsocket -lnsl”

▶ If a process attempts to write through a socket that has been
closed by the other peer, a SIGPIPE signal is received.

▶ SIGPIPE is by default fatal, install a signal handler to override
this.

▶ Use system program netstat to view the status of sockets.

antoulas@linux03 :~> netstat -ant

▶ When a server quits, the listening port remains busy (state
TIME WAIT) for a while

▶ Restarting the server fails in bind with
“Bind: Address Already in Use”

▶ To override this, use setsockopt() to enable SO REUSEADDR

before you call bind().

30 / 73

TCP server that receives a string and replies with the string capitalized.

/* inet_str_server .c: Internet stream sockets server */

#include <stdio.h>

#include <sys/wait.h> /* sockets */

#include <sys/types.h> /* sockets */

#include <sys/socket.h> /* sockets */

#include <netinet/in.h> /* internet sockets */

#include <netdb.h> /* gethostbyaddr */

#include <unistd.h> /* fork */

#include <stdlib.h> /* exit */

#include <ctype.h> /* toupper */

#include <signal.h> /* signal */

void child_server(int newsock);

void perror_exit(char *message);

void sigchld_handler (int sig);

void main(int argc , char *argv []) {

int port , sock , newsock;

struct sockaddr_in server , client;

socklen_t clientlen;

struct sockaddr *serverptr =(struct sockaddr *)&server;

31 / 73

struct sockaddr *clientptr =(struct sockaddr *)&client;

struct hostent *rem;

if (argc != 2) {

printf("Please give port number\n");exit (1);}

port = atoi(argv [1]);

/* Reap dead children asynchronously */

signal(SIGCHLD , sigchld_handler);

/* Create socket */

if ((sock = socket(AF_INET , SOCK_STREAM , 0)) < 0)

perror_exit("socket");

server.sin_family = AF_INET; /* Internet domain */

server.sin_addr.s_addr = htonl(INADDR_ANY);

server.sin_port = htons(port); /* The given port */

/* Bind socket to address */

if (bind(sock , serverptr , sizeof(server)) < 0)

perror_exit("bind");

32 / 73

/* Listen for connections */

if (listen(sock , 5) < 0) perror_exit("listen");

printf("Listening for connections to port %d\n", port);

while (1) {

/* accept connection */

if ((newsock = accept(sock , clientptr , &clientlen)) < 0) perror_exit("

accept");

/* Find client ’s address */

//if ((rem = gethostbyaddr ((char *) &client.sin_addr.s_addr , sizeof(

client.sin_addr.s_addr), client. sin_family)) == NULL) {

// herror (" gethostbyaddr "); exit (1) ;}

// printf (" Accepted connection from %s\n", rem ->h_name);

printf("Accepted connection\n");

switch (fork()) { /* Create child for serving client */

case -1: /* Error */

perror("fork"); break;

case 0: /* Child process */

close(sock); child_server(newsock);

exit (0);

33 / 73

close(newsock); /* parent closes socket to client */

/* must be closed before it gets re -assigned */

}

}

void child_server(int newsock) {

char buf [1];

while(read(newsock , buf , 1) > 0) { /* Receive 1 char */

putchar(buf [0]); /* Print received char */

/* Capitalize character */

buf [0] = toupper(buf [0]);

/* Reply */

if (write(newsock , buf , 1) < 0)

perror_exit("write");

}

printf("Closing connection .\n");

close(newsock); /* Close socket */

}

/* Wait for all dead child processes */

void sigchld_handler (int sig) {

while (waitpid(-1, NULL , WNOHANG) > 0);

}

void perror_exit(char *message) {

perror(message);

exit(EXIT_FAILURE);

}

34 / 73

TCP client example. (definitions)

/* inet_str_client .c: Internet stream sockets client */

#include <stdio.h>

#include <sys/types.h> /* sockets */

#include <sys/socket.h> /* sockets */

#include <netinet/in.h> /* internet sockets */

#include <unistd.h> /* read , write , close */

#include <netdb.h> /* gethostbyaddr */

#include <stdlib.h> /* exit */

#include <string.h> /* strlen */

void perror_exit(char *message);

void main(int argc , char *argv []) {

int port , sock , i;

char buf [256];

struct sockaddr_in server;

struct sockaddr *serverptr = (struct sockaddr *)&server;

struct hostent *rem;

if (argc != 3) {

35 / 73

TCP client example. (connection)

printf("Please give host name and port number\n");

exit (1);}

/* Create socket */

if ((sock = socket(AF_INET , SOCK_STREAM , 0)) < 0)

perror_exit("socket");

/* Find server address */

if ((rem = gethostbyname(argv [1])) == NULL) {

herror("gethostbyname"); exit (1);

}

port = atoi(argv [2]); /* Convert port number to integer */

server.sin_family = AF_INET; /* Internet domain */

memcpy (& server.sin_addr , rem ->h_addr , rem ->h_length);

server.sin_port = htons(port); /* Server port */

/* Initiate connection */

if (connect(sock , serverptr , sizeof(server)) < 0)

36 / 73

TCP client example. (transfer loop)

perror_exit("connect");

printf("Connecting to %s port %d\n", argv[1], port);

do {

printf("Give input string: ");

fgets(buf , sizeof(buf), stdin); /* Read from stdin */

for(i=0; buf[i] != ’\0’; i++) { /* For every char */

/* Send i-th character */

if (write(sock , buf + i, 1) < 0)

perror_exit("write");

/* receive i-th character transformed */

if (read(sock , buf + i, 1) < 0)

perror_exit("read");

}

printf("Received string: %s", buf);

} while (strcmp(buf , "END\n") != 0); /* Finish on "end" */

close(sock); /* Close socket and exit */

}

void perror_exit(char *message)

{

perror(message);

exit(EXIT_FAILURE);

}

37 / 73

Execution

Server on linux02:

antoulas@linux02 :~> ./ server 9002

Listening for connections to port 9002

Accepted connection from linux03.di.uoa.gr

Hello world

EnD

Closing connection.

Client on linux03:

antoulas@linux03 :~> ./ client linux02.di.uoa.gr 9002

Connecting to linux02.di.uoa.gr port 9002

Give input string: Hello world

Received string: HELLO WORLD

Give input string: EnD

Received string: END

antoulas@linux03 :~>

38 / 73

