Shared Memory

> A shared memory region is a portion of physical memory that

is shared by multiple processes.

memory map of Process A

0

0x30000

0x50000

shared memory

region

memory map of process B

0

0x50000

0x70000

> In this region, structures can be set up by processes and

others may read/write on them.

» Synchronization among processes using the segment (if

required) is achieved with the help of semaphores.

28/76

Creating a shared segment with shmget ()

#include <sys/ipc.h>
#include <sys/shm.h>

int shmget(key_t key, size_t size, int shmflg)

P returns the identifier of the shared memory segment
associated with the value of the argument key.

> the returned size of the segment is equal to size rounded up
to a multiple of PAGE_SIZE.

P shmflg helps designate the access rights for the segment
(IPC_CREAT and IPC_EXCL are used in a way similar to that of
message queues).

P If shmflg specifies both IPC_CREAT and IPC_EXCL and a shared
memory segment already exists for key, then shmget () fails with
errno set to EEXIST.
29 /76

i

Attach- and Detach-ing a segment: shmat () /shmdt ()
void *shmat (int shmid, const void *shmaddr, int shmflg)
b attaches the shared memory segment identified by shmid to

the address space of the calling process.

» If shmaddr is NULL, the OS chooses a suitable (unused)
address at which to attach the segment (frequent choice).

> Otherwise, shmaddr must be a page-aligned address at which
the attach occurs.

int shmdt (const void *shmaddr)

> detaches the shared memory segment located at the address
specified by shmaddr from the address space of the calling
process.

30/76

The system call shmctl1 ()

int shmctl(int shmid, int cmd, struct shmid_ds *buf)

b performs the control operation specified by cmd on the shared
memory segment whose identifier is given in shmid.

P The buf argument is a pointer to a shmid_ds structure:

struct shmid_ds {

struct ipc_perm shm_perm; /* Ouwnership and permissions */
size_t shm_segsz; /* Size of segment (bytes) */
time_t shm_atime; /% Last attach time */

time_t shm_dtime; /* Last detach time */

time_t shm_ctime; /* Last change time */

pid_t shm_cpid; /* PID of creator */

pid_t shm_1pid; /* PID of last shmat (2)/shmdt (2) */
shmatt_t shm_nattch; /* No. of current attaches */

31/76

The system call shmetl ()

Usual values for cmd are:

b IPC_STAT: copy information from the kernel data structure
associated with shmid into the shmid_ds structure pointed to
by buf.

> IPC_SET: write the value of some member of the shmid ds
structure pointed to by buf to the kernel data structure
associated with this shared memory segment, updating also its
shm_ctime member.

b TIPC_RMID: mark the segment to be destroyed. The segment
will be destroyed after the last process detaches it (i.e.,
shm_nattch is zero).

32/76

Use Cases of Calls

e Only one process creates the segment:

e Every (interested) process attaches the segment:

e Every process detaches the segment:

e Only one process has to remove the segment:

33/76

Creating and accessing shared memory (shareMeml.c)

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int main(int argc, char **argv){
int id=0, err=0;
int *mem;

id = shmget (IPC_PRIVATE,10,0666); /* Make shared memory segment */
if (id == -1) perror ("Creation");

else printf("Allocated. %d\n",(int)id);

mem = (int *) shmat(id, (void*)0, 0); /* Attach the segment */

if (x(int *) mem == -1) perror("Attachment.");

else printf("Attached. Mem contents %d\n",*mem);

mem=1; / Give 4t initial value */
printf ("Start other process. >"); getchar();

printf ("mem is now %d\n", *mem); /* Print out new wvalue */

err = shmctl(id, IPC_RMID, 0); /* Remove segment */

if (err == -1) perror ("Removal.");
else printf ("Removed. %d\n", (int) (err));
return 0;

34/76

Creating and accessing shared memory (shareMem2. c)

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int main(int argc, char x*argv) {
int id, err;
int *mem;

if (argc <= 1) { printf("Need shared memory id. \n"); exit(1); }

sscanf (argv[1], "%d", &id); /* Get id from command line. */
printf ("Id is %d\n", id);

mem = (int *) shmat(id, (void*) 0,0); /* Attach the segment */
if ((int) mem == -1) perror ("Attachment.");
else printf("Attached. Mem contents %d\n",*mem);

mem=2; / Give it a different value */
printf ("Changed mem is now %d\n", *mem);

err = shmdt ((void *) mem); /* Detach segment */
if (err == -1) perror ("Detachment.");

else printf ("Detachment %d\n", err);

return 0;

35/76

Running the two programs:

e Starting off with executing "shareMem1":

e Executing "shareMem?2":

antoulas@sazerac:”/SharedSegments$./shareMem2 1769489
Id is 1769489

Attached. Mem contents 1

Changed mem is now 2

Detachment O

antoulas@sazerac:”/SharedSegments$

e Providing the final input to "shareMem1":

36/76

Semaphores

» Fundamental mechanism that facilitates synchronization and
coordinated accessing of resources placed in shared memory.

> A semaphore is an integer whose value is never allowed to fall
below zero.

> Two operations can be atomically performed on a semaphore:
- increment the semaphore value by one (UP or V() ala
Dijkstra).
- decrement a semaphore value by one (DOWN or P() ala
Dijkstra).
If the value of semaphore is currently zero, then the invoking
process will block until the value becomes greater than zero.

37/76

System-V Semaphores

> In general, (System-V) system calls create sets of semaphores:

- The kernel warrants atomic operations on these sets.

- Should we have more than one resources to protect, we can
“lock” all of them simultaneously.

38/76

Creating a

#include
#include
#include

set of Semaphores

<sys/types.h>
<sys/ipc.h>
<sys/sem.h>

int semget(key_t key, int nsems, int semflg)

P returns the semaphore set identifier associated with the
argument key.

> A new set of nsems semaphores is created if key has the
value IPC_PRIVATE OR if no existing semaphore set is
associated with key and IPC_CREAT is specified in semflg.

> semflg helps set the access right for the semaphore set.

> |If semflg specifies both IPC_CREAT and IPC_EXCL and a
semaphore set already exists for key, then semget () fails
with errno set to EEXIST.

39/76

Structure of a Semaphore Set

index 0 index 1 index 2 index 3 index 4

semval=2 semval=2 semval=3 semval=1 semval=4

nsems=5 /

Associated with each (single) semaphore in the set are the
following values:

>
>
>

semval: the semaphore value, always a positive number.
sempid: pid of the process that last “acted” on semaphore.

semcnt: number of processes waiting for the semaphore to
reach value greater that its current one.

semzcnt: number of processes waiting for the semaphore to
reach value zero.

40/76

Operating on a Set of Semaphores

int semop(int semid, struct sembuf *sops, unsigned nsops)

> performs operations on selected semaphores in the set
indicated by semid.

b each of the nsops elements in the array pointed to by sops
specifies an operation to be performed on a single semaphore
on the set.

41/76

Operating on a Set of Semaphores

> The elements of the struct sembuf have as follows:

struct sembuf{
unsigned short sem_num; /* semaphore number */
short sem_op; /* semaphore operation */
short sem_flg; /* operation flags */
};

> In the above:
- sem_num identifies the ID of the specific semaphore on the set
on which sem_op operates.

- The value of sem_op is set to:

P < 0 for locking
» > 0 for unlocking

- sem_flg often set to 0.

42/76

The semctl () system call

int semctl(int semid, int semnum, int cmd,
[union semun arg])

b performs the control operation specified by cmd on the
semnum-th semaphore of the set identified by semid.

P The 4th parameter above —if it exists— has the following

layout:
union semun {
int val; /* Value for SETVAL */
struct semid_ds *buf; /* Buffer for IPC_STAT, IPC_SET */

unsigned short *array; /* Array for GETALL, SETALL */
struct seminfo *__buf; /* Buffer for IPC_INFO (Linuz-specific) */
};

43/76

The semid_ds structure

> The semaphore data structure semid_ds, is as follows:

struct semid_ds {
struct ipc_perm sem_perm; /* Ownership and permissions */

time_t sem_otime; /* Last semop time */

time_t sem_ctime; /* Last change time */
unsigned short sem_nsems; /* No. of semaphores in set */
};

44/76

Eic

Values for the cmd parameter:

IPC_STAT: copy information from the kernel data structure
associated with semid into the semid_ds structure pointed to by
arg.buf.

IPC_SET: write the value of some member of the semid_ds structure
pointed to by arg.buf to the kernel data structure associated with
this semaphore set; its sem_ctime member gets updated as well.

IPC_SETALL: Set semval for all semaphores of the set using
arg.array, updating also the sem_ctime member of the semid_ds
structure associated with the set.

IPC_GETALL: Return to semval the current values of all semaphores
of the set arg.array.

IPC_RMID: remove the semaphore set while awakening all processes
blocked by the respective semop ().

4576

A server program using Semaphores

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/sem.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SHMKEY (key_t)4321
#define SEMKEY (key_t)9876
#define SHMSIZE 256
#define PERMS 0600

union semnum{
int val;
struct semid_ds *buff;
unsigned short *array; 15

main () {
int shmid, semid; char line[128], *shmem;
struct sembuf oper [1]1={0,1,0};
union semnum arg;

if ((shmid = shmget (SHMKEY, SHMSIZE, PERMS | IPC_CREAT)) < 0) {
perror ("shmget"); exit(1); }

printf ("Creating shared memory with ID: %d\n",shmid);

/* create a semaphore */

if ((semid = semget (SEMKEY, 1, PERMS| IPC_CREAT)) <0) {
perror ("semget"); exit(1); }

printf ("Creating a semaphore with ID: %d \n",semid);

arg.val=0;

46 /76

A server program using Semaphores (continued)

/* initialize semaphore for locking */
if (semctl(semid, 0, SETVAL, arg) <0) {
perror ("semctl");
exit (1);

printf ("Initializing semaphore to lock\n");

if ((shmem = shmat(shmid, (char *)0, 0)) == (char *) -1) {
perror ("shmem") ;
exit (1);
}

printf ("Attaching shared memory segment \nEnter a string: ");

fgets(line, sizeof (line), stdin);
line[strlen(line)-1]1=’\0";

/* Write message in shared memory */
strcpy (shmem, line);

printf ("Writing to shared memory region: %s\n", line);

/* Make shared memory available for reading */
if (semop(semid, &oper[0], 1) < 0) {
perror ("semop") ;
exit (1);
}
shmdt (shmem) ;
printf ("Releasing shared memory region\n");

¥

47/76

A client program using semaphore

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/sem.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SHMKEY (key_t)4321
#define SEMKEY (key_t)9876
#define SHMSIZE 256
#define PERMS 0600

main () {
int shmid, semid;
char *shmem;
struct sembuf oper[1]1={0,-1,0};

if ((shmid = shmget (SHMKEY, SHMSIZE, PERMS)) < 0) {
perror ("shmget"); exit(1); }
printf ("Accessing shared memory with ID: %d\n",shmid);

/* accessing a semaphore */

if ((semid = semget (SEMKEY, 1, PERMS)) <0) {
perror ("semget"); exit(1); }

printf ("Accessing semaphore with ID: %d \n",semid);

48/76

A client program using semaphore (continued)

if ((shmem = shmat(shmid, (char *) 0, 0)) == (char *) -1) {
perror ("shmat"); exit(1); }
printf ("Attaching shared memory segment\n");

printf ("Asking for access to shared memory region \n");
if (semop(semid, &oper[0], 1) <0) {

perror ("semop"); exit(1); }
printf ("Reading from shared memory region: %s\n", shmem);

/* detach shared memeory */
shmdt (shmem) ;

/* destroy shared memory */
if (shmctl(shmid, IPC_RMID, (struct shmid_ds *)0) <0) {
perror ("semctl"); exit(1); }
printf ("Releasing shared segment with identifier %d\n", shmid);

/% destroy semaphore set */
if (semctl(semid, 0, IPC_RMID, 0) <0) {
perror ("semctl"); exit(1); }
printf ("Releasing semaphore with identifier %d\n", semid);

¥

49/76

Running the server and the client

The server:

The client:

antoulas@sazerac:”/SysProMaterial/Set008/src/V-Sems$./sem-client
Accessing shared memory with ID: 22511641

Accessing semaphore with ID: 327688

Attaching shared memory segment

Asking for access to shared memory region

50 /76

Running the programs

©® Server:

® Client:

antoulas@sazerac:”/src/V-Sems$./sem-client

Accessing shared memory with ID: 22511641

Accessing semaphore with ID: 327688

Attaching shared memory segment

Asking for access to shared memory region

Reading from shared memory region: THIS IS A TEST ONLY A TEST
Releasing shared segment with identifier 22511641

Releasing semaphore with identifier 327688
antoulas@sazerac:”/src/V-Sems$

51/76

Access to Critical Section

#include <stdio.h> /* Ezample code using semaphores and shared memory */
#include <stdlib.h>

#include <sys/types.h>

#include <sys/shm.h>

#include <sys/sem.h>

#include <sys/ipc.h>

/% Union semun */
union semun {

int val; /* wvalue for SETVAL */
struct semid_ds *buf; /* buffer for IPC_STAT, IPC_SET */
unsigned short *array; /* array for GETALL, SETALL */

};

void free_resources(int shm_id, int sem_id) {
/* Delete the shared memory segment */
shmctl (shm_id , IPC_RMID ,NULL) ;
/* Delete the semaphore */
semctl (sem_id ,0, IPC_RMID,O0) ;

}
int sem_P(int sem_id) { /* Semaphore P - down operation, using semop */
struct sembuf sem_d;
sem_d.sem_num = 0;
sem_d.sem_op = -1;
sem_d.sem_flg = 0;
if (semop(sem_id,&sem_d,1) == -1) {
perror ("# Semaphore down (P) operation "); return -1; }
return O;
}

52/76

Access to Critical Section

/* Semaphore V - up operation, using semop */
int sem_V(int sem_id) {
struct sembuf sem_d;

sem_d.sem_num = 0;
sem_d.sem_op = 1;
sem_d.sem_flg = 0;
if (semop(sem_id,&sem_d,1) == -1) {
perror ("# Semaphore up (V) operation "); return -1; }
return O;
}
/* Semaphore Init - set a semaphore’s walue to wal */

int sem_Init(int sem_id, int val) {
union semun arg;

arg.val = val;
if (semctl(sem_id,0,SETVAL,arg) == -1) {

perror ("# Semaphore setting value "); return -1; }
return O;

53/76

Access to Critical Section

int main () {
int shm_id; int sem_id; int t = 0; int *sh; int pid;

/* Create a new shared memory segment */
shm_id = shmget (IPC_PRIVATE,sizeof (int),IPC_CREAT | 0660);
if (shm_id == -1) {

perror ("Shared memory creation"); exit(EXIT_FAILURE); }

/* Create a new semaphore id */

sem_id = semget (IPC_PRIVATE,1,IPC_CREAT | 0660);

if (sem_id == -1)
perror ("Semaphore creation ");
shmctl (shm_id , IPC_RMID, (struct shmid_ds #*)NULL);
exit (EXIT_FAILURE);

}

/% Set the value of the semaphore to 1 */
if (sem_Init(sem_id, 1) == -1) {
free_resources (shm_id,sem_id);
exit (EXIT_FAILURE);
¥

sh = (int *)shmat(shm_id,NULL,0); /* Attach the shared memory segment */
if (sh == NULL) {

perror ("Shared memory attach ");

free_resources (shm_id,sem_id);

exit (EXIT_FAILURE);

¥
/* Setting shared memory to 0 */
*sh = 0;

54/76

Access to Critical Section

/% New process */

if ((pid = fork()) == -1) {
perror ("fork");
free_resources (shm_id,sem_id);
exit (EXIT_FAILURE) ;

¥

if (pid == 0) {
/% Child process #*/
printf ("# I am the child process with process id: %d\n", getpid());
} else {
/* Parent process */
printf ("# I am the parent process with process id: %d\n", getpid());
sleep (2);
}

printf (" (%d): trying to access the critical section\n", getpid());
sem_P (sem_id) ;

printf (" (%d): accessed the critical section\n", getpid());

(xsh) ++;
printf (" (%d): value of shared memory is now: %d\n", getpid(), *sh);

printf (" (%d): getting out of the critical section\n", getpid());
sem_V(sem_id) ;

printf (" (%d): got out of the critical section\n", getpid());

55/76

Access to Critical Section

/% Child process */
if (!pid)
exit (EXIT_SUCCESS) ;

/* Wait for child process */
wait (NULL) ;

/* Clear recourses */
free_resources (shm_id,sem_id);
return O;

— outcome of execution:

antoulas@sazerac:”/src/V-Sems$./access-criticalsection
I am the parent process with process id: 9256
I am the child process with process id: 9257
(9257) : trying to access the critical section
(9257) : accessed the critical section

(9257) : value of shared memory is now: 1
(9257) : getting out of the critical section
(9257) : got out of the critical section

(9256) : trying to access the critical section
(9256) : accessed the critical section

(9256) : value of shared memory is now: 2
(9256) : getting out of the critical section
(9256) : got out of the critical section
antoulas@sazerac:”/src/V-Sems$

56 /76

