Shared Memory

> A shared memory region is a portion of physical memory that

is shared by multiple processes.

memory map of Process A

0

0x30000

0x50000

shared memory

region

memory map of process B

0

0x50000

0x70000

> In this region, structures can be set up by processes and

others may read/write on them.

» Synchronization among processes using the segment (if

required) is achieved with the help of semaphores.
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Creating a shared segment with shmget ()

#include <sys/ipc.h>
#include <sys/shm.h>

int shmget(key_t key, size_t size, int shmflg)

P returns the identifier of the shared memory segment
associated with the value of the argument key.

> the returned size of the segment is equal to size rounded up
to a multiple of PAGE_SIZE.

P shmflg helps designate the access rights for the segment
(IPC_CREAT and IPC_EXCL are used in a way similar to that of
message queues).

P If shmflg specifies both IPC_CREAT and IPC_EXCL and a shared
memory segment already exists for key, then shmget () fails with
errno set to EEXIST.
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Attach- and Detach-ing a segment: shmat () /shmdt ()
void *shmat (int shmid, const void *shmaddr, int shmflg)
b attaches the shared memory segment identified by shmid to

the address space of the calling process.

» If shmaddr is NULL, the OS chooses a suitable (unused)
address at which to attach the segment (frequent choice).

> Otherwise, shmaddr must be a page-aligned address at which
the attach occurs.

int shmdt (const void *shmaddr)

> detaches the shared memory segment located at the address
specified by shmaddr from the address space of the calling
process.
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The system call shmctl1 ()

int shmctl(int shmid, int cmd, struct shmid_ds *buf)

b performs the control operation specified by cmd on the shared
memory segment whose identifier is given in shmid.

P The buf argument is a pointer to a shmid_ds structure:

struct shmid_ds {

struct ipc_perm shm_perm; /* Ouwnership and permissions */
size_t shm_segsz; /* Size of segment (bytes) */
time_t shm_atime; /% Last attach time */

time_t shm_dtime; /* Last detach time */

time_t shm_ctime; /* Last change time */

pid_t shm_cpid; /* PID of creator */

pid_t shm_1pid; /* PID of last shmat (2)/shmdt (2) */
shmatt_t shm_nattch; /* No. of current attaches */
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The system call shmetl ()

Usual values for cmd are:

b IPC_STAT: copy information from the kernel data structure
associated with shmid into the shmid_ds structure pointed to
by buf.

> IPC_SET: write the value of some member of the shmid ds
structure pointed to by buf to the kernel data structure
associated with this shared memory segment, updating also its
shm_ctime member.

b TIPC_RMID: mark the segment to be destroyed. The segment
will be destroyed after the last process detaches it (i.e.,
shm_nattch is zero).
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Use Cases of Calls

e Only one process creates the segment:

e Every (interested) process attaches the segment:

e Every process detaches the segment:

e Only one process has to remove the segment:
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Creating and accessing shared memory (shareMeml.c)

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int main(int argc, char **argv){
int id=0, err=0;
int *mem;

id = shmget (IPC_PRIVATE,10,0666); /* Make shared memory segment */
if (id == -1) perror ("Creation");

else printf("Allocated. %d\n",(int)id);

mem = (int *) shmat(id, (void*)0, 0); /* Attach the segment */

if (x(int *) mem == -1) perror("Attachment.");

else printf("Attached. Mem contents %d\n",*mem);

*mem=1; /* Give 4t initial value */
printf ("Start other process. >"); getchar();

printf ("mem is now %d\n", *mem); /* Print out new wvalue */

err = shmctl(id, IPC_RMID, 0); /* Remove segment */

if (err == -1) perror ("Removal.");
else printf ("Removed. %d\n", (int) (err));
return 0;
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Creating and accessing shared memory (shareMem2. c)

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int main(int argc, char x*argv) {
int id, err;
int *mem;

if (argc <= 1) { printf("Need shared memory id. \n"); exit(1); }

sscanf (argv[1], "%d", &id); /* Get id from command line. */
printf ("Id is %d\n", id);

mem = (int *) shmat(id, (void*) 0,0); /* Attach the segment */
if ((int) mem == -1) perror ("Attachment.");
else printf("Attached. Mem contents %d\n",*mem);

*mem=2; /* Give it a different value */
printf ("Changed mem is now %d\n", *mem);

err = shmdt ((void *) mem); /* Detach segment */
if (err == -1) perror ("Detachment.");

else printf ("Detachment %d\n", err);

return 0;
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Running the two programs:

e Starting off with executing "shareMem1":

e Executing "shareMem?2":

antoulas@sazerac:”/SharedSegments$ ./shareMem2 1769489
Id is 1769489

Attached. Mem contents 1

Changed mem is now 2

Detachment O

antoulas@sazerac:”/SharedSegments$

e Providing the final input to "shareMem1":
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Semaphores

» Fundamental mechanism that facilitates synchronization and
coordinated accessing of resources placed in shared memory.

> A semaphore is an integer whose value is never allowed to fall
below zero.

> Two operations can be atomically performed on a semaphore:
- increment the semaphore value by one (UP or V() ala
Dijkstra).
- decrement a semaphore value by one (DOWN or P() ala
Dijkstra).
If the value of semaphore is currently zero, then the invoking
process will block until the value becomes greater than zero.
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System-V Semaphores

> In general, (System-V) system calls create sets of semaphores:

- The kernel warrants atomic operations on these sets.

- Should we have more than one resources to protect, we can
“lock” all of them simultaneously.
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Creating a

#include
#include
#include

set of Semaphores

<sys/types.h>
<sys/ipc.h>
<sys/sem.h>

int semget(key_t key, int nsems, int semflg)

P returns the semaphore set identifier associated with the
argument key.

> A new set of nsems semaphores is created if key has the
value IPC_PRIVATE OR if no existing semaphore set is
associated with key and IPC_CREAT is specified in semflg.

> semflg helps set the access right for the semaphore set.

> |If semflg specifies both IPC_CREAT and IPC_EXCL and a
semaphore set already exists for key, then semget () fails
with errno set to EEXIST.
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Structure of a Semaphore Set

index 0 index 1 index 2 index 3 index 4

semval=2 semval=2 semval=3 semval=1 semval=4

nsems=5 /

Associated with each (single) semaphore in the set are the
following values:

>
>
>

semval: the semaphore value, always a positive number.
sempid: pid of the process that last “acted” on semaphore.

semcnt: number of processes waiting for the semaphore to
reach value greater that its current one.

semzcnt: number of processes waiting for the semaphore to
reach value zero.
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Operating on a Set of Semaphores

int semop(int semid, struct sembuf *sops, unsigned nsops)

> performs operations on selected semaphores in the set
indicated by semid.

b each of the nsops elements in the array pointed to by sops
specifies an operation to be performed on a single semaphore
on the set.
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Operating on a Set of Semaphores

> The elements of the struct sembuf have as follows:

struct sembuf{
unsigned short sem_num; /* semaphore number */
short sem_op; /* semaphore operation */
short sem_flg; /* operation flags */
};

> In the above:
- sem_num identifies the ID of the specific semaphore on the set
on which sem_op operates.

- The value of sem_op is set to:

P < 0 for locking
» > 0 for unlocking

- sem_flg often set to 0.
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The semctl () system call

int semctl(int semid, int semnum, int cmd,
[union semun arg])

b performs the control operation specified by cmd on the
semnum-th semaphore of the set identified by semid.

P The 4th parameter above —if it exists— has the following

layout:
union semun {
int val; /* Value for SETVAL */
struct semid_ds *buf; /* Buffer for IPC_STAT, IPC_SET */

unsigned short *array; /* Array for GETALL, SETALL */
struct seminfo *__buf; /* Buffer for IPC_INFO (Linuz-specific) */
};
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The semid_ds structure

> The semaphore data structure semid_ds, is as follows:

struct semid_ds {
struct ipc_perm sem_perm; /* Ownership and permissions */

time_t sem_otime; /* Last semop time */

time_t sem_ctime; /* Last change time */
unsigned short sem_nsems; /* No. of semaphores in set */
};
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Eic

Values for the cmd parameter:

IPC_STAT: copy information from the kernel data structure
associated with semid into the semid_ds structure pointed to by
arg.buf.

IPC_SET: write the value of some member of the semid_ds structure
pointed to by arg.buf to the kernel data structure associated with
this semaphore set; its sem_ctime member gets updated as well.

IPC_SETALL: Set semval for all semaphores of the set using
arg.array, updating also the sem_ctime member of the semid_ds
structure associated with the set.

IPC_GETALL: Return to semval the current values of all semaphores
of the set arg.array.

IPC_RMID: remove the semaphore set while awakening all processes
blocked by the respective semop ().

4576



A server program using Semaphores

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/sem.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SHMKEY (key_t)4321
#define SEMKEY (key_t)9876
#define SHMSIZE 256
#define PERMS 0600

union semnum{
int val;
struct semid_ds *buff;
unsigned short *array; 15

main () {
int shmid, semid; char line[128], *shmem;
struct sembuf oper [1]1={0,1,0};
union semnum arg;

if ((shmid = shmget (SHMKEY, SHMSIZE, PERMS | IPC_CREAT)) < 0) {
perror ("shmget"); exit(1); }

printf ("Creating shared memory with ID: %d\n",shmid);

/* create a semaphore */

if ((semid = semget (SEMKEY, 1, PERMS| IPC_CREAT)) <0) {
perror ("semget"); exit(1); }

printf ("Creating a semaphore with ID: %d \n",semid);

arg.val=0;
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A server program using Semaphores (continued)

/* initialize semaphore for locking */
if (semctl(semid, 0, SETVAL, arg) <0) {
perror ("semctl");
exit (1);

printf ("Initializing semaphore to lock\n");

if ( (shmem = shmat(shmid, (char *)0, 0)) == (char *) -1) {
perror ("shmem") ;
exit (1);
}

printf ("Attaching shared memory segment \nEnter a string: ");

fgets(line, sizeof (line), stdin);
line[strlen(line)-1]1=’\0";

/* Write message in shared memory */
strcpy (shmem, line);

printf ("Writing to shared memory region: %s\n", line);

/* Make shared memory available for reading */
if ( semop(semid, &oper[0], 1) < 0 ) {
perror ("semop") ;
exit (1);
}
shmdt (shmem) ;
printf ("Releasing shared memory region\n");

¥
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A client program using semaphore

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/sem.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SHMKEY (key_t)4321
#define SEMKEY (key_t)9876
#define SHMSIZE 256
#define PERMS 0600

main () {
int shmid, semid;
char *shmem;
struct sembuf oper[1]1={0,-1,0};

if ((shmid = shmget (SHMKEY, SHMSIZE, PERMS )) < 0) {
perror ("shmget"); exit(1); }
printf ("Accessing shared memory with ID: %d\n",shmid);

/* accessing a semaphore */

if ((semid = semget (SEMKEY, 1, PERMS )) <0) {
perror ("semget"); exit(1); }

printf ("Accessing semaphore with ID: %d \n",semid);
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A client program using semaphore (continued)

if ( (shmem = shmat(shmid, (char *) 0, 0)) == (char *) -1 ) {
perror ("shmat"); exit(1); }
printf ("Attaching shared memory segment\n");

printf ("Asking for access to shared memory region \n");
if (semop(semid, &oper[0], 1) <0) {

perror ("semop"); exit(1); }
printf ("Reading from shared memory region: %s\n", shmem);

/* detach shared memeory */
shmdt (shmem) ;

/* destroy shared memory */
if (shmctl(shmid, IPC_RMID, (struct shmid_ds *)0 ) <0) {
perror ("semctl"); exit(1); }
printf ("Releasing shared segment with identifier %d\n", shmid);

/% destroy semaphore set */
if (semctl(semid, 0, IPC_RMID, 0) <0 ) {
perror ("semctl"); exit(1); }
printf ("Releasing semaphore with identifier %d\n", semid);

¥
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Running the server and the client

The server:

The client:

antoulas@sazerac:”/SysProMaterial/Set008/src/V-Sems$ ./sem-client
Accessing shared memory with ID: 22511641

Accessing semaphore with ID: 327688

Attaching shared memory segment

Asking for access to shared memory region
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Running the programs

©® Server:

® Client:

antoulas@sazerac:”/src/V-Sems$ ./sem-client

Accessing shared memory with ID: 22511641

Accessing semaphore with ID: 327688

Attaching shared memory segment

Asking for access to shared memory region

Reading from shared memory region: THIS IS A TEST ONLY A TEST
Releasing shared segment with identifier 22511641

Releasing semaphore with identifier 327688
antoulas@sazerac:”/src/V-Sems$
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Access to Critical Section

#include <stdio.h> /* Ezample code using semaphores and shared memory */
#include <stdlib.h>

#include <sys/types.h>

#include <sys/shm.h>

#include <sys/sem.h>

#include <sys/ipc.h>

/% Union semun */
union semun {

int val; /* wvalue for SETVAL */
struct semid_ds *buf; /* buffer for IPC_STAT, IPC_SET */
unsigned short *array; /* array for GETALL, SETALL */

};

void free_resources(int shm_id, int sem_id) {
/* Delete the shared memory segment */
shmctl (shm_id , IPC_RMID ,NULL) ;
/* Delete the semaphore */
semctl (sem_id ,0, IPC_RMID,O0) ;

}
int sem_P(int sem_id) { /* Semaphore P - down operation, using semop */
struct sembuf sem_d;
sem_d.sem_num = 0;
sem_d.sem_op = -1;
sem_d.sem_flg = 0;
if (semop(sem_id,&sem_d,1) == -1) {
perror ("# Semaphore down (P) operation "); return -1; }
return O;
}
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Access to Critical Section

/* Semaphore V - up operation, using semop */
int sem_V(int sem_id) {
struct sembuf sem_d;

sem_d.sem_num = 0;
sem_d.sem_op = 1;
sem_d.sem_flg = 0;
if (semop(sem_id,&sem_d,1) == -1) {
perror ("# Semaphore up (V) operation "); return -1; }
return O;
}
/* Semaphore Init - set a semaphore’s walue to wal */

int sem_Init(int sem_id, int val) {
union semun arg;

arg.val = val;
if (semctl(sem_id,0,SETVAL,arg) == -1) {

perror ("# Semaphore setting value "); return -1; }
return O;
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Access to Critical Section

int main () {
int shm_id; int sem_id; int t = 0; int *sh; int pid;

/* Create a new shared memory segment */
shm_id = shmget (IPC_PRIVATE,sizeof (int),IPC_CREAT | 0660);
if (shm_id == -1) {

perror ("Shared memory creation"); exit(EXIT_FAILURE); }

/* Create a new semaphore id */

sem_id = semget (IPC_PRIVATE,1,IPC_CREAT | 0660);

if (sem_id == -1)
perror ("Semaphore creation ");
shmctl (shm_id , IPC_RMID, (struct shmid_ds #*)NULL);
exit (EXIT_FAILURE);

}

/% Set the value of the semaphore to 1 */
if (sem_Init(sem_id, 1) == -1) {
free_resources (shm_id,sem_id);
exit (EXIT_FAILURE);
¥

sh = (int *)shmat(shm_id,NULL,0); /* Attach the shared memory segment */
if (sh == NULL) {

perror ("Shared memory attach ");

free_resources (shm_id,sem_id);

exit (EXIT_FAILURE);

¥
/* Setting shared memory to 0 */
*sh = 0;
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Access to Critical Section

/% New process */

if ((pid = fork()) == -1) {
perror ("fork");
free_resources (shm_id,sem_id);
exit (EXIT_FAILURE) ;

¥

if (pid == 0) {
/% Child process #*/
printf ("# I am the child process with process id: %d\n", getpid());
} else {
/* Parent process */
printf ("# I am the parent process with process id: %d\n", getpid());
sleep (2);
}

printf (" (%d): trying to access the critical section\n", getpid());
sem_P (sem_id) ;

printf (" (%d): accessed the critical section\n", getpid());

(xsh) ++;
printf (" (%d): value of shared memory is now: %d\n", getpid(), *sh);

printf (" (%d): getting out of the critical section\n", getpid());
sem_V(sem_id) ;

printf (" (%d): got out of the critical section\n", getpid());
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Access to Critical Section

/% Child process */
if (!pid)
exit (EXIT_SUCCESS) ;

/* Wait for child process */
wait (NULL) ;

/* Clear recourses */
free_resources (shm_id,sem_id);
return O;

— outcome of execution:

antoulas@sazerac:”/src/V-Sems$ ./access-criticalsection
# I am the parent process with process id: 9256
# I am the child process with process id: 9257
(9257) : trying to access the critical section
(9257) : accessed the critical section

(9257) : value of shared memory is now: 1
(9257) : getting out of the critical section
(9257) : got out of the critical section

(9256) : trying to access the critical section
(9256) : accessed the critical section

(9256) : value of shared memory is now: 2
(9256) : getting out of the critical section
(9256) : got out of the critical section
antoulas@sazerac:”/src/V-Sems$
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