Advanced Threads & Monitor-Style Programming

Spring 2025

1/24

H

First: Much of What You Know About Threads Is Wrong]!

// Initially =z == 0 and y ==
// Thread 1 Thread 2

AL if (y == 1 && x == 0) exit();
y = 1;

P Can the above exit be called? How?

2/24

Threads Semantics

> You should stop thinking of threads as just executing
interleaved

> The interleaving model is called sequential consistency. It is
not supported in practice.

> Instructions can be reordered!
> By the compiler, by the processor, by the memory subsystem

> Important to always use synchronization (mutexes) to get
predictable behavior

3/24

i

Spinning in High-Level Code Is (Almost) Always Wrong!

» The compiler (or hardware) is free to completely ignore this
code

> If another thread does ready = true, this thread may never see
it

> Use of mutexes and condition variables inserts the right
instructions to push data to main memory

4/24

Monitor-Style Programming

> Mutexes and condition variables are the basis of a concurrent
programming model called monitor-style programming

> With these two constructs, we can implement any kind of
critical section

> Critical section: code with controlled concurrent access

> some logic for concurrency (which threads can run)
> some logic for exclusion (which threads cannot run)

> Consider abstract operations lock, unlock, signal, broadcast,
wait
> map to pthread_mutex_lock, pthread_mutex_unlock,
pthread_cond_signal, etc.

> We otherwise ignore thread creation, initialization boilerplate

5/24

i

Monitor-Style Programming Example: Readers/Writers

> Build a critical section that any number of reader threads or a
single writer thread can enter, as long as there is no writer
thread in it.

> Concurrency logic: multiple reader threads can enter

> Exclusion logic: any writer thread excludes all other threads

6/24

Monitor-Style Programming Example: Readers/Writers

Mutex mutex;
Condition read
int readers
bool writer =

// READER:
lock (mutex) ;
while (writer)

wait (read_cond,

readers++;
unlock (mutex) ;

_cond,
0;
false;

// read data

lock (mutex) ;

readers --;

if (readers ==
signal (write

unlock (mutex) ;

0)
_cond) ;

mutex) ;

write_cond;

// WRITER:

lock (mutex) ;

while (readers>0 ||writer)
wait (write_cond, mutex) ;

writer = true;

unlock (mutex) ;
// write data
lock (mutex) ;
writer = false;
broadcast (read_cond) ;
signal (write_cond) ;
unlock (mutex) ;

7/24

Monitor-Style Programming Example: Recursive Lock

Mutex mutex;

Condition held;

int count = 0;

thread_id holder = NULL;

acquire () {
lock (mutex) ;
while (count > O && holder != self())
wait (held, mutex) ;
count ++;
holder = self();
unlock (mutex) ;
}
release () {
lock (mutex) ;
count --;
if (count == 0)
signal (held) ;
unlock (mutex) ;

}

8/24

General Pattern: Any Critical Section

» Usage: CS_enter(); ... [critical section] ... CS_exit();

[shared data,
CS_enter () {
lock (m) ;

while (![condition])

wait (c, m);
[change shared data to reflect in_CS]
[broadcast/signal as needed]
unlock (m) ;

X

including Mutex m, Condition c]

CS_exit () {
lock (m) ;
[change shared data to reflect out_of_CS]
[broadcast/signal as needed]
unlock (m) ;
}

9/24

Why Signal /Broadcast on CS _enter()?

» Any change to shared data may make a condition (on which
some thread waits) false

> Example: critical section with red and green threads, up to 3
can enter, red have priority

> red have priority = no green can enter, if red is waiting

10/24

Red-+Green, Up to 3, Red Have Priority

Mutex mutex;
Condition red_cond, green_cond;
int red_waiting = 0, green = 0, red = 0;

green_acquire () {
lock (mutex) ;

while (green+red == 3 || red_waiting != 0)
wait (green_cond, mutex) ;
green++;

unlock (mutex) ;

}

green_release () {
lock (mutex) ;
green--;
signal (green_cond) ;
signal (red_cond) ;
unlock (mutex) ;

11/24

Red-+Green, Up to 3, Red Have Priority

red_acquire () {
lock (mutex) ;
red_waiting++;
while (green+red == 3)

wait (red_cond, mutex) ;

red_waiting--;
red++;
broadcast (green_cond) ;
unlock (mutex) ;

}

red_release () {
lock (mutex) ;
red--;
signal (green_cond) ;
signal (red_cond) ;
unlock (mutex) ;

12/24

Why Use while Around wait?

» Defensive programming: if we return from wait by mistake (or
spuriously), we still check

> Other threads may have changed the condition since the time
we were signalled

Recall producer-consumer example (code snippets):

// Consumer
lock (mutex) ;
while (empty(buffer))
wait (empty_cond, mutex) ;
get_request (buffer) ;
unlock (mutex) ;

// Producer

lock (mutex) ;
put_request (buffer);
broadcast (empty_cond) ;
unlock (mutex) ;

13/24

Monitor-Style Programming Errors

> Most problems with concurrent programming are simple
oversights that are easy to introduce due to partial program
knowledge and are near-impossible to debug!

> People forget to access shared variables in locks, to signal
when a condition changes, etc.

14 /24

The Golden Rules of Monitor-Style Programming

» Associate (in your mind+comments) every piece of shared
data in your program with a mutex that protects it. Use it
consistently.

» For every boolean-condition/predicate (in the program text)
use a separate condition variable.

> Every time the boolean condition may have changed,
broadcast on the condition variable.

> Only call signal when you are certain that any and only one
waiting thread can enter the critical section.

> Globally order locks, acquire in order in all threads.

15 /24

Example Exercise

> Critical section with red and green threads, up to 3 can enter,
not all having the same color.

16 /24

Why Multi-Threaded Programming Is Hard

P The most common concurrent programming bug is a race

P Technically, race = unsynchronized accesses to the same
shared data by two threads, with either access being a write.

P But that's not the real problem. We can avoid all races
automatically:

> just rewrite the program to have a lock per memory word
> acquire it before reading/writing
> release afterwards

> Is this enough?

17/24

Race/No-Race Example for Consumer Pattern

// Race
lock (mutex) ;
while (empty(buffer))
wait (empty_cond, mutex);
unlock (mutex) ;
get_request (buffer) ;

// No Race
lock (mutex) ;
while (empty(buffer))
wait (empty_cond, mutex);
unlock (mutex) ;
lock (mutex) ;
get_request (buffer) ;
unlock (mutex) ;

> Equally bad! We turned a race into an atomicity violation

P The problem is that some actions need to be
consistent/atomic

18 /24

Other Concurrency Errors

> We already saw races and atomicity violations

> We also get logical ordering violations and deadlocks

> Logical Ordering Violation: logical error, where something is
read before it is set to the right value

» much like an atomicity violation

> Deadlock: typically a cycle in the lock holding order

> E.g., thread A locks ml, B locks m2, A tries to lock m2, B
tries to lock ml

19/24

Why Multi-Threaded Programming Is Hard (II)

> No safe approach:

> Coarse-grained locking: few, central locks (e.g., one per
program or per data structure)

> problem: lack of parallelism, higher chance of deadlock

> Fine-grained locking: locks protecting small amounts of data
(e.g., each node of a data structure)

> problem: higher chance of races, atomicity violations

20/24

Eic

The real problem: holding locks is a global property

affects entire program, cannot be hidden behind an abstract
interface

results in lack of modularity: callers cannot ignore what locks
their callees acquire or what locations they access

necessary for race avoidance, but also for global ordering to
avoid deadlock
part of a method's protocol which lock needs to be held when
called, which locks it acquires
Condition variables are also non-local: every time some value
changes, we need to know which condition var may depend on
it to signal it!
Everything exacerbated by aliasing (pointers)
are two locks the same?
are two data locations the same?
End result: lack of composability, cannot build safe services

out of other safe services
21/24

Example of Difficulties: Account Library

typedef struct account {
int balance = 0;
Mutex account_mutex;

} account_type;

void withdraw(account_type *acc, int amount) {...}
void synch_withdraw(account_type *acc, int amount) {
lock (acc->account_mutex) ;
withdraw (acc, amount) ;
unlock (acc->account_mutex) ;

}

void deposit(account_type *acc, int amount) { ... }
void synch_deposit(account_type *acc, int amount) {
lock (acc->account_mutex) ;
deposit (acc, amount);
unlock (acc->account_mutex) ;

}

22/24

Example of Difficulties (cont'd)

// Client code
void move (account_type *accl,
account_type *acc2, int amount) {
synch_withdraw(accl, amount);
synch_deposit (acc2, amount) ;

}

> Problem: atomicity violation

> state of accounts can be observed between withdrawal and
deposit

> how can move be made atomic?

P cannot just use a “move” lock: other code won't respect it

23/24

One More Try

> Used account library can expose unsynchronized functions
withdraw/deposit

// Client
void atomic_move (account_type *accl,
account_type *acc2, int amount) {
lock(accl->account_mutex) ;
lock (acc2->account_mutex) ;
withdraw(accl, amount) ;
deposit (acc2, amount);
unlock (acc2->account_mutex) ;
unlock (accl->account_mutex) ;

> Problem: deadlock

> move(s,t,...) parallel with move(t,s,...)
> move(s,s,...): self-deadlock

24 /24

