
The awk Pattern Scanning and Processing Language

▶ scans text files line-by-line and searches for patterns.

▶ works in a way similar to sed but it is more versatile.

▶ Sample runs:

>>> awk ’length >52 {print $0}’ filein

>>> % length is the # of char in a line

>>>

>>> awk ’NF %2==0 {print $1}’ filein

>>> % NF = number of fields

>>>

>>> awk ’$1=log($1); print ’ filein

>>> % replaces the 1st argu with..

>>>

22 / 47

awk Pattern Morphing and Processing

>>> awk ’{print $3 $2}’ filein

>>> awk ’$1 != prev {print $0; prev=$1}’ filein

>>> % print all lines for which the

>>> % argu is diff from the 1st argu

>>> % of the previous line

>>>

>>> awk ’$2~/A|B|C/ {print $0}’ filein

>>> % prints all lines with A or B

>>> % or C in the 2nd argu

>>>

▶ General invocation options:
1. awk -f filewithawkcommands inputfile

2. awk ’{awk-commands}’ inputfile

23 / 47

awk basic file-instruction layout

BEGIN {declarations; action(s);}
pattern1 { action(s); }
pattern2 { action(s); }
pattern3 { action(s); }
.....
patternn { action(s); }
END { action(s); }

▶ Either pattern or action may be left out.
▶ If no action exists, simply the input matching line is placed on

the output.

24 / 47

Records and Fields

▶ Input is divided into “records” – ended by a terminator
character whose default value is \n.

▶ FILENAME: the name of the current input file.

▶ Each record is divided into “fields” separated by white-space
blanks OR tabs.

▶ Fields are referred to as $1, $2, $3,

▶ The entire string (record) is denoted as $0

▶ NR: is the number of current record.

▶ NF: number of fields in the line

▶ FS: field separator (default ” ”)

▶ RS: record separator (default \n)

25 / 47

Printing in awk

1. {print}
⇒ print the entire input file to output.

2. {print $2, $1}
⇒ print field2 and field1 from input file.

3. { print NR, NF, $0 }
⇒ print the number of the current record, the number of its

fields, and the entire record.

4. { print $1 > "foo"; print $2 > "bar" }
⇒ print fields into multiple output files; >> can be also used.

5. { print $1 > $2 }
⇒ the name of field2 is used as a file (for output).

6. { printf("%8.2f %-20s \n",$1, $2); }
⇒ pretty-printing with C-like notation.

26 / 47

Patterns in awk

▶ patterns in front of actions act as selectors.

▶ awk file: special keywords BEGIN and END provide the means
to gain control before and after the processing of awk:

BEGIN { FS=":" }

{ print $2 }

END { print NR }

▶ Output:
gympie :~/ Samples$ cat awkfile1

alex:delis

mike:hatzopoulos

dimitris:achlioptas

elias:koutsoupias

alex:eleftheriadis

gympie :~/ Samples$ awk -f awk1 awkfile1

delis

hatzopoulos

achlioptas

koutsoupias

eleftheriadis

5

gympie :~/ Samples$

27 / 47

Regular Expressions (some initial material)

▶ /smith/

⇒ find all lines that contains the string “smith”

▶ /[Aa]ho|[Ww]einberger|[Kk]ernigham/
⇒ find all lines containing the strings “Aho” or “Weinberger”
or “Kernighham” (starting either with lower or upper case).

⋄ | : alternative
⋄ + : one or more
⋄ ? zero or one
⋄ [a-zA-Z0-9] : matches any of the letters or digits

▶ /\/.*\// : ⇒ matches any set of characters enclosed
between two slashes.

▶ $1∼/[jJ]ohny/ or $1!∼/[jJ]ohny/
⇒ matches (or not!) all records whose first field in Johny or
johny.

28 / 47

Relational Expressions: <, <=, ==, ! =, >=, >

▶ ’$2 > $1 + 100’

⇒ selects lines whose records comply with the condition.

▶ ’NF%2 == 0’

⇒ project lines with even number of records.

▶ ’$1 >= "kitsos"’

⇒ display all lines whose first parameter is alphanumerically
greater or equal to "kitsos".

▶ ’$1 > $2’

⇒ similarly as above but arithmetic comparison.

29 / 47

Combinations of Patterns:

▶ || (OR), && (AND) and ! (not).

▶ Expressions evaluated left-to-right

▶ Example: ($1 >= "s") && ($1 < "t")

&& ($1 !="smith")

Pattern Ranges:

▶ ’/start/,/stop/’ : prints all lines that contain string
start or stop.

30 / 47

Built-in Functions

▶ {print (length($0)),$0 } OR {print length,$0}

▶ sqrt, log (base e), exp, int, cos(x), sin(x),

srand(x), atan2(y,x)

▶ substr(s,m,n): produces the string s that starts at position
m and is at most n characters.

▶ index(s1,s2): return the position in which s2 starts in the
string s1.

▶ x=sprintf("%8.3f %10d \n", $1, $2);

⇒ sets string x to values produced by $1 and $2.

31 / 47

Variables, Expressions and Assignments

• awk uses int/char variables based on context.

▶ x=1

▶ x=’smith’

▶ x="3"+"4" (x is set to 7)

▶ variable are set in the BEGIN section of the code but by
default, are initialized anywhere to NULL (or implicitly to zero)
{ s1 += $1 ; s2 += $2 }
END { print s1, s2 }
if $1 and $2 are floats, s1, s2, also function as floats.

32 / 47

Regular Expressions and Metacharacters

▶ Regular-expression Metacharacters are:
\, ∧, $, [,], |, (,), *, +, ?

▶ A basic regular expression (BRE) is:
▶ a non-metacharacter matches itself such as A.
▶ an escape character that matches a special symbol: \t (tab),

\b (backspace), \n (newline) etc.
▶ a quoted metacharacter (matching itself): * matches the

star symbol.
▶ ∧ matches the beginning of a string.
▶ $ matches the end of a string.
▶ . matches any single character.
▶ a character class [ABC] matches a single A, B, or C.
▶ character classes abbreviations [A-Za-z] matches any single

character.
▶ a complementary class of characters [∧0-9] matches any

character except a digit
(what would the pattern /∧[∧0-9]/ match?)

33 / 47

More Complex Regular Expressions using BREs

⋄ Operators that can combine BREs (see below A, B, r) into
larger regular expressions:

A|B matches A or B (alternation)

AB A followed by B (concatenation)

A* zero or more As (closure)

A+ at least one A or more (positive closure)

A? matches the null string or A (zero or one)

(r) matches the same string as r (parentheses)

34 / 47

Examples:
▶ /∧[0-9]+$/

matches any input lines that consists of only digits.

▶ /∧[+-]?[0-9]+[.]?[0-9]*$/

matches a decimal number with an optional sign and optional
fraction.

▶ /∧[A-Za-z]|∧[A-Za-z][0-9]$/
a letter or a letter followed by a digit.

▶ /∧[A-Za-z][0-9]?$/

a letter or a letter followed by a digit.

▶ /\/.*\//
matches any set of characters enclosed between two slashes

▶ $1∼/[jJ]ohny/
matches all records whose first field is Johny or johny

▶ $1!∼/[jJ]ohny/
matches all records whose first field is not Johny or johny.

35 / 47

Dealing with Field Values

gympie :~/ Samples$ cat awk2

{ if ($2 > 1000)

$2 = "too big";

print;

}

gympie :~/ Samples$

gympie :~/ Samples$ awk -f awk2 test5

ddd 100

eee too big

rrr 99

fff 899

f11 too big

f2 992

gympie :~/ Samples$

36 / 47

Splitting a string into its Elements using an array
• The function split() helps separate a string into a number of token

(each token being part of the resulting array).

BEGIN{ sep= ";" }

{ n = split ($0 , myarray , sep); }

END {

print "the string is:"$0;

print "the number of tokens is="n;

print "The tokens are:"

for (i=1;i<=n;i++)

print myarray[i];

}

gympie :~/ Samples$ cat data3

alexis;delis;apostolos;nikolaos

gympie :~/ Samples$ awk -f awk3 data3

the string is:alexis;delis;apostolos;nikolaos

the number of tokens is=4

The tokens are:

alexis

delis

apostolos

nikolaos

gympie :~/ Samples$

37 / 47

Arrays

▶ Feature: Arrays are not declared - they are simply used!

▶ ’X[NR]=$0’ assigns current line to the NR element of array X

▶ Arrays can be used to collect statistics:

gympie :~/ Samples$ more awk4

/apple/ {X["apple"]++}

/orange/ {X["orange"]++}

/grape/ {X["grape"]++}

END {

print "Apple Occurrences = " X["apple"];

print "Orange Occurrences = " X["orange"];

print "Grape Occurrences = " X["grape"];

}

gympie :~/ Samples$

gympie :~/ Samples$ awk -f awk4 text5

Apple Occurrences = 8

Orange Occurrences = 5

Grape Occurrences = 4

gympie :~/ Samples$

38 / 47

Control Flow Statements
▶ { statements }

▶ if (expression) statement

▶ if (expression) statement1 else statement2

▶ while (expression) statement

▶ for (expression1; expression2; expression3)

statement

▶ for (var in array) statement

▶ do statement while (expression)

▶ break // immediately leave innermost enclosing while, for or do

▶ continue //start next iteration of innermost

enclosing while, for or do

▶ next //start next iteration of main input loop

▶ exit

▶ exit expression //return expression value as program status

39 / 47

Example with while

gympie :~/ Samples$ cat awk5

{ i=1

while (i <= NF) {

print $i;

i++;

}

}

gympie :~/ Samples$

gympie :~/ Samples$ cat data4

mitsos kitsos mpellos

alexis mitsos apostolos nikolaos

aggeliki ourania eleftheria mitsos

gympie :~/ Samples$ awk -f awk5 data4

mitsos

kitsos

mpellos

alexis

mitsos

apostolos

nikolaos

aggeliki

ourania

eleftheria

mitsos

gympie :~/ Samples$

40 / 47

Similar effect with for-loop

gympie :~/ Samples$ cat awk6

{ for (i=1; i<=NF; i++)

print $i;

}

gympie :~/ Samples$

gympie :~/ Samples$ awk -f awk6 data4

mitsos

kitsos

mpellos

alexis

mitsos

apostolos

nikolaos

aggeliki

ourania

eleftheria

mitsos

gympie :~/ Samples$

41 / 47

Population Table
Asia Indonesia 230 376

Asia Japan 160 154

Asia India 1024 1267

Asia PRChina 1532 3705

Asia Russia 175 6567

Europe Germany 81 178

Europe UKingdom 65 120

N.America Mexico 130 743

N.America Canada 41 3852

S.America Brazil 150 3286

S.America Chile 8 112

gympie :~/ Samples$ more awkgeo

BEGIN{

printf("%10s %12s %8s %10s\n","COUNTRY","AREA","POP","CONTINENT");

printf("--\n")

;

}

{

printf("%10s %12s %8d %-12s\n",$2, $4, $3, $1);

area = area + $4;

pop = pop + $3;

}

END {

printf("--\n")

;

printf("%10s in %12d km^2 %8d mil people live \n\n", "TOTAL:",area , po

p);

}

gympie :~/ Samples$

42 / 47

Outcome

gympie :~/ Samples$ awk -f awkgeo continents

COUNTRY AREA POP CONTINENT

--

Indonesia 376 230 Asia

Japan 154 160 Asia

India 1267 1024 Asia

PRChina 3705 1532 Asia

Russia 6567 175 Asia

Germany 178 81 Europe

UKingdom 120 65 Europe

Mexico 743 130 N.America

Canada 3852 41 N.America

Brazil 3286 150 S.America

Chile 112 8 S.America

--

TOTAL: in 20360 km^2 3596 mil people live

gympie :~/ Samples$

43 / 47

Computing and Graphing Deciles - User-defined Functions

input: numbers from 0 to 100 - one at a line

output: decile population graphed

{ x[int($1/10)]++ ; }

END {

for (i=0; i<10; i++)

printf("%2d - %2d: %3d %s\n",

10*i, 10*i+9, x[i], rep(x[i],"*"));

printf("100: %3d %s\n",x[10], rep(x[10],"*"));

}

#returns string of n s’s

function rep(n,s) {

t= "";

while (n-- > 0)

t = t s

return t

}

44 / 47

Outcome (deciles)

gympie :~/src -set003$ awk -f awk.deciles data6

0 - 9: 3 ***

10 - 19: 3 ***

20 - 29: 5 *****

30 - 39: 6 ******

40 - 49: 12 ************

50 - 59: 14 **************

60 - 69: 14 **************

70 - 79: 12 ************

80 - 89: 6 ******

90 - 99: 5 *****

100: 2 **

gympie :~/src -set003$

45 / 47

User-defined Functions

▶ Function definitions may occur anywhere a pattern-action
statement can.

▶ Functions often are listed at the end of an awk script and are
separated by either newlines or semicolons.

▶ They contain a return expression statement that returns
control along with the value of the expression.

▶ Example:

function mymax(a, b) {

return a > b ? a : b

}

▶ Recursive invocation:

{ print mymax($1 , mymax($2 ,$3)) }

46 / 47

Built-in String Functions

Function Name Description
gsub(r,s) substitute s for r globally in $0;

return number of substitutions made
gsub(r,s,t) substitute s for r globally in string t;

return number of substitutions made
index(s,t) return first position of t in s; otherwise zero
length(s) return number of characters in s

match(s,r) test whether s contains a substring matched by r;
return index or 0.

split(s,a) split s into array a on FS; return number of fields
split(s,a,fs) as above – fs is the defined field seperator
sprintf(ftm,exprlst) format an expression list
sub(r,s) substitute s for the leftmost longest substring of $0

matched by r; return number of subs made.
sub(r,s,t) substitute s for the leftmost longest substring of t

matched by r; return number of subs made.
substr(s,p) return suffix of s starting at position p

47 / 47

