
Answering Web Queries Using Structured Data Sources

Stelios Paparizos, Alexandros Ntoulas, John Shafer, Rakesh Agrawal
Microsoft Research, Search Labs

1065 La Avenida, Mountain View, CA 94043, USA
{steliosp, antoulas, jshafer, rakesha}@microsoft.com

ABSTRACT

In web search today, a user types a few keywords which are then
matched against a large collection of unstructured web pages. This
leaves a lot to be desired for when the best answer to a query is
contained in structured data stores and/or when the user includes
some structural semantics in the query.

In our work, we include information from structured data sources
into web results. Such sources can vary from fully relational DBs,
to flat tables and XML files. In addition, we take advantage of
information in such sources to automatically extract corresponding
semantics from the query and use them appropriately in improving
the overall relevance of results.

For this demonstration, we show how we effectively capture, an-
notate and translate web user queries such as ’popular digital cam-
era around $425’ returning results from a shopping-like DB.

Categories and Subject Descriptors: H.2.8 Database Applica-
tions General Terms: Performance.

1. INTRODUCTION
Web search has successfully evolved over the past few years,

from a carefully selected hierarchy of web page bookmarks, to a
huge collection of crawled documents requiring sophisticated algo-
rithms to identify the few most relevant results. Yet today’s promi-
nent solutions still leave a lot to be desired for certain classes of
queries representing real user needs.

Consider for example a query such as ‘popular digital camera
around $425’. If we consider this query as a matching of words
over unstructured text content, then only web pages containing these
words will be returned to the user. However, in this case, cameras
that are priced at, say, $410 or $430 will not be returned.

Performing such queries over free text is not necessarily straight-
forward, yet there are available appropriate structured data sources
that contain information such as the camera and price pairs. Ad-
ditionally, sorting the results based on IR-like textual relevance is
not the best approach in this particular scenario. Here, the user is
implying that he is interested in some notion of camera popularity.
In such case, we need to perform a deeper analysis of the query in
order to understand its semantics and return better results.

We should note that our camera example is not a rare hand-
picked query applicable only to one domain. On the contrary, sim-
ilar trends appear in other real user scenarios for a variety of do-
mains. For example, users are looking for ‘flights from san jose to
seattle for march 3rd’, ‘movies with Pacino and De Niro’, ‘indiana
jones 4 near san francisco’, ‘sauce recipes with tomato, basil but

Copyright is held by the author/owner(s).
SIGMOD’09, June 29–July 2, 2009, Providence, Rhode Island, USA.
ACM 978-1-60558-551-2/09/06.

not cilantro’, ‘used compact cars 3-5 years old’ and so forth. Such
user queries tend to produce poor results in today’s search engines.

In the past, there have been efforts of natural language process-
ing or keyword search over databases that tried to addressed similar
issues. But such approaches have problems due to some character-
istics inherent in web search. Web users do not issue full language
queries that can benefit from a linguistic analysis – for example,
quite often, no verb is present. In addition, web users are not used
in waiting long periods of time for results to appear – typical web
response is under half a second. Finally, web users are not users
sitting on one box with some partial knowledge of the underlying
data, they simply ask questions about anything. These characteris-
tics motivate and differentiate our work.

In this paper we present our approach, called Helix, that supports
semantically rich web queries, incorporates results from multiple
structured data sources and is efficient and easy to parallelize. We
start with defining basic concepts, in Section 2, and then summarize
our approach in Section 3. We give a walk-through of our proposed
demo, in Section 4, and close with related efforts, in Section 5.

2. TOKENS AND PATTERNS
We start our discussion on our approach with establishing our

basic primitives of Token, Token Classes and Patterns. Token is a
sequence of characters. Token Class (TC) is a set of tokens de-
scribed by a deterministic function. Pattern is a sequence of TCs.

Example Tokens are ‘blue’, ‘Michael Jordan’ and ‘eos350’. Note
that Tokens can contain white space characters. A Token Class

can be described by a set of Tokens, i.e. 〈basketballplayers〉 =
{‘Michael Jordan’, ‘Magic Johnson’, ‘Larry Bird’} or it can be de-
scribed by a regular expression, i.e. 〈 model〉 = ‘eos‘\d+, where
‘eos’ is the matching string, \d a digit and + denotes the matching
of at least one digit. Finally, a Pattern example is: pPlayerScored
= 〈basketballplayers〉 〈points〉.

Furthermore, we classify Token Classes into four categories. Uni-
versal: generic mechanism describes them deterministically, i.e.
number, date, time, location. DataDriven: generated from values
of a given database column. Inconsequential: do not affect query
meaning, i.e. for query ‘what is the weather in Seattle’, TC {‘what’,
‘is’, ‘the’} is inconsequential for this context. Modifiers: alter how
other Token Classes are processed.

Example of this classification, for ’popular digital camera around
$425’, ’digital camera’ maps to a 〈product〉 DataDriven TC, ’$425’
to a 〈price〉 Universal TC, ’popular’ and ’around’ are Modifiers.

3. HELIX APPROACH
We built a system named Helix that utilizes Tokens, Token Classes

and Patterns to effectively handle web queries over structured data.
It uses an online component that is responsible for query annotation
and handling and an offline that mines Patterns from query logs.

1127

3.1 Online Query Processing
Patterns, Token Classes and Tokens are given as input to the

online phase and are utilized to do query annotation, routing and
translation on the user queries as they were entered.

Query Annotation is achieved by first tokenizing each query
and then performing segmentation using pattern matching.

Tokenization: The goal is to associate query words with Tokens

in a meaningful way. To this end, all Tokens are combined into one
large dictionary structure allowing fast lookups – a trie representa-
tion is used. We match words to the max possible Token size going
left to right in a single pass.

Segmentation (or Pattern Matching): The goal is to break the
query into meaningful pieces, annotating them with TCs. For each
candidate Pattern, we map Tokens using an LR(1) parsing process
– single lookahead, matching maximum sub-pattern left to right.
This process is parallelized and all Patterns are kept in memory.

Note that due to the multiplicity of the TCs, a single Pattern cap-
tures a large number of queries during query annotation. The major
advantages in using Patterns are the compact representation, small
memory footprint and fast query analysis that we obtain. For exam-
ple, 〈brand〉〈productClass〉 captures ‘canon digital camera’, ‘sony
digital camera’, ‘panasonic HDTV’, ‘HP printer’ and so forth.

Routing aims to forward the query to data sources that can gen-
erate meaningful results. Since web search engines receive millions
of queries daily, it would not be computationally efficient to simply
send all queries to all data sources and perform a keyword match.
So routing acts as a very selective filtering step that enhances over-
all performance. To achieve this, we maintain for each DataDriven
TCs the corresponding DB. After the pattern match, we do a single
lookup and route the query. Essentially pattern matching provides
the routing capability ‘for free’, as no additional steps are required.

Translation takes place on the machine where the data lives and
converts the user query to a system friendly evaluation expression.
One way to perform the translation is to implement SQL rules for
each of the Patterns used in the annotation. However, this is a
cumbersome process as a few TCs can result in a big number of
Patterns– factorial in the number of TCs. Instead, we have simpli-
fied the process using only a limited set of mappings into very few
operations that we deemed necessary for our purposes. These op-
erations are: i) Select(column), accesses column from specific data
store, ii) Filter(column, operand, value), removes rows not satisfy-
ing the operand & value condition on the column entries and iii)
iSort(column), indicates a sort intention on column.

Given such operations we can create mappings to perform generic
translation rules for all patterns. DataDriven TCs map to a Select
on a corresponding column, and so do Universal TCs. All we re-
quire is an operator entered mapping for every Modifier TC to a
corresponding Filter, iSort or Select operation. This way, ‘popu-
lar digital camera around $425’ could be captured by a sequence
of {Select(productClass), Filter(productClass, =, ‘digital camera’),
Filter(price, >, 375), Filter(price, <, 475), iSort(numOfReviews)}.

At a high-level, one can make the observation that only very few
set of mappings from TCs to operations are necessary to capture a
significantly large number of patterns as most patterns would have
repeated combinations of the same TCs. Such mappings can be
entered manually for a given domain.

3.2 Offline Pattern Mining
A key element of our approach is the use of Patterns, TCs and To-

kens to perform the online query processing. One important ques-
tion, however, is how we can obtain all the Patterns for a given
domain. For this, we have developed a solution that takes as in-
put the DataDriven and Universal Token Classes (TCs) and mines

Input: Set of queries and DataDriven & Universal TCs
Output: A set of patterns

Procedure
(1) Tokenize queries using input TCs.
(2) Parse remaining unknown words in query.

Create singleton Token Classes by clustering multiple words
based on their inter-query co-occurrence frequency.

(3) Create primitive patterns by rewriting each query using TCs.
(4) Break each primitive pattern into elementary sub-patterns.

Use input TCs and special begin/end TCs as stop points.
(5) Consider merging unknown tokens into single TC.
(6) Use structural similarity amongst patterns to identify

intra-query clusters.
(7) Merge TCs according to frequency-based similarity

(e.g. Jaccard distance of candidate TCs)

Figure 1: Outline for Pattern Mining

Patterns by analyzing millions of samples coming from query logs.
We provide an outline of our algorithm in Figure 1.

We follow a bottom-up approach starting with the assumption
that we operate on a given structured data source. Based on the
data, we can identify the DataDriven (TCs) by simply selecting all
entries on a DB column and removing duplicate values. Universal
TCs are already available within the system as they are generic TCs
applicable across domains (i.e. number, date, location). Using the
DataDriven and Universal TCs we can process a number of queries,
annotating only the known Tokens and creating new TCs for the un-
known Tokens, essentially converting everything into primitive Pat-

terns. Subsequent steps use both structural and frequency-based
similarity functions to group Patterns while merging TCs by cal-
culating the union of their Tokens. The end result is a series of
Patterns rich in structural variations containing both given TCs as
well as newly-learned ones. The overall process can be general-
ized, allowing us to learn Patterns from a limited number of query
samples, and subsequently use them to capture a significantly larger
number of queries during the online processing.

4. THE DEMONSTRATION
For our demonstration we will present both offline and online

components of Helix. As the basis, we will use a structured data
source containing information on consumer products described by
a schema of products(productName, productClass, reviewRating,
numOfReviews) – such data can be found publicly available in
[10]). From this table we create the DataDriven TC 〈productClass〉
containing the set of duplicate free values of the corresponding DB
column, an example instance is 〈productClass〉 = {‘digital camera’,
‘HDTV’, ‘handbag’, ‘evening dress’}. We also use the Universal
TC 〈price〉 described by the regular expression ′$′\d + (′.′\d+)?.

First, the off-line pattern generation process takes place, as de-
scribed in Section 3.2. For simplicity we look at a small fraction of
the overall process, using as input the limited set of queries shown
in Figure 2(a) and the two aforementioned TCs 〈productClass〉,
〈price〉. The first step is to tokenize the queries using the input TCs
and assign new TCs to the unknown words like ‘near’, ‘for’, ‘pop-
ular’. The produced primitive Patterns are shown in Figure 2(b).
Next, we group Patterns by using structural and frequency sim-
ilarity functions producing the compressed representation shown
in Figure 2(d). The unknown-word TCs got merged during this
process into 〈tcFAN〉 and 〈tcPMP〉, as shown in Figure 2(c). The
number of Patterns is reduced producing a more compact represen-
tation, whereas at the same time, the merged Token Classes (TCs)
allow for an increase in online query coverage.

Having learned the Patterns, all we need are a few translation
rules before we can proceed with online processing as described

1128

digital camera for $200
handbag around $400
popular HDTV near $2000
most popular evening dress

(a) Sample queries

〈productClass〉 〈tcFor〉 〈price〉
〈productClass〉 〈tcAround〉 〈price〉
〈tcPop〉 〈productClass〉 〈tcNear〉 〈price〉
〈tcMostPop〉 〈productClass〉

(b) Primitive Patterns

〈tcFAN〉 = {〈tcFor〉 ∪ 〈tcAround〉 ∪ 〈tcNear〉}
〈tcPMP〉 = {〈tcPop〉 ∪ 〈tcMostPop〉}

(c) Merged Token Classes

〈productClass〉 〈tcFAN〉 〈price〉
〈tcPMP〉 〈productClass〉 〈tcFAN〉 〈price〉
〈tcPMP〉 〈productClass〉

(d) Compressed Patterns

Figure 2: Mining Patterns from Queries, an Example.

in Section 3.1. The following 3 rules are manually entered: 1)
〈tcPMP〉→ iSort(products:numOfReviews), 2) 〈tcFAN〉 〈price〉→
Filter(products:price, <, 1.15*tokenOf(〈price〉)) AND Filter(prod-
ucts:price, >, 0.85*tokenOf(〈price〉)), 3)〈productClass〉 → Filter(
products:productClass, =, tokenOf(〈productClass〉)).

We use all this information to execute the online query pro-
cessing component as described in Section 3.2. We consider the
web user query ’popular digital camera around $425’. First, tok-
enization occurs mapping ‘popular’ to 〈tcPMP〉, ‘digital camera’ to
〈productClass〉, ‘around’ to 〈tcFAN〉 and ‘$425’ to 〈price〉. Then
pattern matching associates the query to 〈tcPMP〉 〈productClass〉
〈tcFAN〉 〈price〉. As determined from this match the query is routed
where the products data store resides. Translation of the anno-
tated query takes place following the given rules, resulting to the
set of operations in {Select(products:productClass), Filter(prod-
ucts: productClass, =, ‘digital camera’), Filter(products:price, <,
1.15*$425), Filter(products:price, >, 0.85*$425), iSort(products:
numOfReviews)}.

Note that although for clarity we only use Filter and iSort opera-
tions here, our underlying engine is more sophisticated. Instead of
a simple sort, there is a ranking function that combines weighted
scores for price proximity to $425 in combination with number of
reviews for a given camera.

The returned results are seen in Figure 3. We return some in-
formation about the camera model, the price and a review rating.
Each product links to the corresponding detailed page. Although
only three results are shown here, we provide the users with the
capability to see multiple results on the same page with a simple
click of a button, yet still showing everything within the familiar
web search ecosystem.

As part of our live demonstration we will allow users to enter any
web query they want using the familiar web query box interface.
As the structured data source, we will connect with a shopping-like
database (as in [10]). For the user queries, if data exists, our system
will return results from the structured data store and integrate them
with the results returned from a major web search engine. Pattern
matching will occur with a large pre-generated lists of patterns, yet
we will also allow users to give sample queries and built patterns
locally as in Figure 2.

5. RELATED WORK
There has been previous work in the area of keyword search

over structured and semi-structured data. The approaches in [2,
4, 8] present systems that allow users to issue keyword queries
to DBMSs. In [2] the authors investigate different approaches in
searching by joining tuples through the use of a keyword index
(called symbol table) that points to the rows or columns containing
a given keyword. In [4] the database tuples are modeled as a graph
and keyword search is performed by locating Steiner trees in the

Figure 3: Results for ‘popular digital camera around $425’

graph. The work in [8] focuses on returning the top-k matches for
a keyword query instead of computing all matches.

In [3] the authors discuss natural language interfaces that were
aiming in proving alternate access to relational data bases via a user
friendly text to SQL approach. More recently, there has been sim-
ilar work that enabled text-based search ([5, 9]) over XML semi-
structured data. In a separate line of work, [1] presents different
storage schemes that facilitate keyword search for RDF/XML data
with the column-oriented approach showing as the most promising.

For the cases where we need to deal with unstructured data [7]
presents ways of incrementally extracting structured information
from text and storing it in an DBMS for later querying. Simi-
larly, [6] discusses the problem of identifying the most prominent
entities within a set of Web pages and searching over them.

Our work differs from previous ones in that we focus on web
queries and their correlation with structured data. In this setting,
keyword search is not enough, as semantic knowledge of words is
very important. On the other hand a linguistic analysis is problem-
atic as web queries rarely look like full sentences. We attack this
problem with a clever use of patterns mined via query logs.

6. CONCLUSION
We have presented a system, called HELIX, that incorporates

responses from structured data for web queries by analyzing and
translating them using Patterns. Such Patterns are generated off-
line via query log mining and are continuously updated. Patterns

give us a power to understand query semantics beyond that of key-
word search without the complexity and fragility of NLP.

7. REFERENCES
[1] D. J. Abadi, A. Marcus, S. R. Madden, and K.J.Hollenbach.

Scalable semantic web data management using vertical
partitioning. In Proc. VLDB Conf., 2007.

[2] S. Agrawal, S. Chaudhuri, and G. Das. Dbxplorer: A system
for keyword-based search over relational databases. ICDE’02

[3] I. Androutsopoulos, G. D. Ritchie, and P. Thanisch. Natural
language interfaces to databases - an introduction. Natural

Language Engineering, 1(1):29–81, 1995.

[4] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and
S. Sudarshan. Keyword searching and browsing in databases
using banks. In Proc. ICDE Conf., 2002.

[5] C. Botev, J. Shanmugasundaram, and S. A. Yahia. A
texquery-based xml full-text search engine. In SIGMOD’04.

[6] T. Cheng, X. Yan, K. Chen, and C. Chang. Entityrank:
Searching entities directly and holistically. In VLDB, 2007.

[7] E. Chu, A. Baid, T. Chen, A. Doan, and J. F. Naughton. A
relational approach to incrementally extracting and querying
structure in unstructured data. In Proc. VLDB Conf., 2007.

[8] V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient
ir-style keyword search over relational databases. VLDB’03.

[9] Y. Li, H. Yang, and H. V. Jagadish. Nalix: an interactive
natural language interface for querying xml. SIGMOD’05.

[10] MSN Shopping. Public XML data api.
http://shopping.msn.com/xml/v1/getresults.aspx?text=camera.

1129

	Introduction
	Tokens and patterns
	Helix Approach
	Online Query Processing
	Offline Pattern Mining

	The demonstration
	Related Work
	Conclusion
	References

