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Abstract—We consider the problem of uncovering commu-

nities in complex real-world networks whose nodes and their

respective associations originate in streams of data. Although

community detection has received much attention in centralized

settings, the prevalence of online social networks has resulted in

unprecedented volumes of data whose handling calls for novel

streaming approaches. Moreover, bursty production of network

interactions necessitates cloud-enabled techniques that can both

deal with diverse data rates and deploy more computing

resources on the fly for improved performance yields. We

propose a distributed streaming community detection approach

termed DICES, and implement it as a cloud application.

While seeking communities, the novelty of our approach is

at balancing the incoming load to a cluster of computing

nodes and adjusting the cluster processing capacity in an

elastic manner. We also provide fault tolerance by ensuring

that temporarily suspended or failed nodes are restored and

all edges of the network stream ultimately received their due

processing. Lastly, DICES is interactive regarding i) updating

the target communities, and ii) obtaining results on demand.

Our experimental results demonstrate that DICES does handle

the edges of real-world network streams at impressive rates,

allows for near-linear scaling, and outperforms previous non-

distributed approaches. While using ground-truth communities

for a wide range of large real-word networks, we also show

that DICES attains improved accuracy if compared to earlier

centralized algorithms.

Keywords-Graph streams, community detection, cloud.

I. INTRODUCTION

Network communities are groups of nodes that exhibit
high cohesion among themselves and remain loosely con-
nected to all other nodes in the network. In most cases,
nodes of a community exhibit similarities. For instance,
social network communities often group individuals that
share common interests and WWW communities comprise
websites that are similar as far as their content is concerned.
Uncovering the community structure of real-world networks
is a challenging problem that has received considerable
attention [1], [2], [3], [4], [5]. Pertinent applications appear
in emerging computational environments including social
computing, web analysis, IoT and computational biology [6],
[7], [8], [9], [10]. Understanding network communities does
lead to invaluable insights on the functioning of many
systems that are an integral part of everyday life. Networks
portraying such systems often reach massive volumes and
may evolve rapidly [11]. The sheer size of such networks
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Figure 1: Context of DICES

makes most community detection approaches prohibitive and
has motivated a) efforts focusing on expanding sets of 2
or 3 seed nodes to communities [12], [13], [14], [15], and
b) streaming approaches that detect communities as they are
formed [16], [17], [18].

Detecting communities in rapidly-evolving networks is
of paramount importance in many contexts. In network
streams portraying public on-line discussions, we can focus
on individuals sharing a common interest, for example in
sports, fashion or politics, and come with an extended group
of individuals who currently share this specific concern.
The latter allows for launching very accurate and successful
targeted advertising campaigns. We can also significantly
improve social network feeds by discovering in real-time
different groups a user belongs to. Moreover, in the case of
the World Wide Web, we can detect communities of websites
focusing on topics defined by a few web pages and study
these communities to gain insights on the evolution of the
Web.

Existing streaming algorithms [16], [17], [18] are by
design centralized and thus, bound by the processing power
and memory limitations of a single machine. To address
these limitations and manage varying or even extreme data
arrival rates, we develop an elastic, streaming, interactive,
and fault tolerant cloud application for community detection
we call DICES. Figure 1 depicts the overall functionality of
our approach. A network is made available as a stream of
edges (i.e., (8, 9), (2, 3), (5, 7)), that arrive at no particular



order and must be processed as they arrive. Furthermore, we
consider a set of communities, each one defined by a few of
seed nodes, that get expanded as we process the stream. Each
arriving edge is processed by one of the available computing
workers, and its adjacent nodes (e.g., 2 and 3 for the (2, 3)
edge) are appropriately added to all communities they belong
to; this is initially accomplished using the adopted seed
nodes.

The principle design choice of DICES is elasticity as
we intend on handling volume surges in the stream and
we occasionally have to augment the number of sought
communities. In this context, every network edge is emitted
to a single computing worker. Clearly, the number of such
workers can be adjusted at will as we enhance or trim
our processing capability. Our design also provides for the
seamless recovery from worker crashes or faults, and allows
users to i) dynamically update their sought communities, and
ii) retrieve results on demand.

Our experimental results show that we can process on
the average every edge of a streaming network in as little
as 74µs while using just 8 workers. In this respect, we
can handle almost 50 million edges per hour which is
more than twice the amount of tweets posted per hour in
Twitter.1 More importantly, we can vastly increase the
processing capacity by adding nodes, as we achieve hori-
zontal scalability that is close to linear. Last but not least,
using numerous real-world networks that are accompanied
with ground-truth communities, we show that DICES offers
significant improvements with regard to detecting accuracy.
In summary, we make the following contributions:

• We propose DICES, a novel distributed community
detection algorithm for network streams. To the best
of our knowledge this is the first streaming community
detection algorithm that distributes execution in an
elastic manner.

• We implement DICES as a cloud application and
show that we handle streams of real-world networks
at impressive rates. Adding processing nodes results in
near-linear scaling and allows for greatly outperforming
earlier approaches that do not scale out.

• We ascertain the accuracy of our algorithm and demon-
strate significant improvements over earlier efforts.

Our paper is organized as follows: we first introduce the
frameworks our approach builds on in Section II. Then, we
formulate our problem and discuss our approach for graph
stream community detection in Section III. In Section IV,
we extensively evaluate our approach and its variations with
regard to accuracy, execution time, and space requirements.
Section V reviews related work and finally, Section VI offers
our concluding remarks.

1http://www.internetlivestats.com/twitter-statistics/

II. PRELIMINARIES

We build our approach atop the Apache Storm, a pop-
ular streaming processing framework and Redis, a main-
memory key-value store. In this section, we briefly outline
both these frameworks.

A. Apache Storm

A number of distributed stream processing platforms
have become available such as Apache Storm, Samza, and
Apache Flink. In the context of this work, we employ
Storm due to its broad use in production environments.2
Storm offers a set of building blocks that help realize
distributed platforms to process large volumes of streaming
data in a highly scalable manner [19]. Storm’s fundamental
data unit is called tuple. Tuples are dynamically typed
and comprise a list of fields. An unbound sequence of
tuples forms a stream which is the main abstraction of the
framework. A Storm-based application creates a topology
that processes such a stream, using spouts and bolts:
• Spouts: serve as the source of tuples in a topology.
Spouts listen to data from external sources and emit them
into streams. When the processing of a tuple successfully
completes, the spout receives an Ack. In light of an error,
the spout re-emits the tuple again and ensures that all tuples
have been processed at least once.
• Bolts: are responsible for transforming the stream into the
desired result. Bolts are often assigned with a simple task
and the coordination of many such bolts allows for the build-
ing of complex transformations. Bolts may also generate new
streams by emitting a new tuple after processing the one just
received. Bolts can also persist information by dispatching
it to a database. To acquire tuples, bolts subscribe to streams
produced by spouts or other bolts. When subscribing to a
stream, bolts may define the grouping that determines how
the tuples are exchanged; the following are some of the
groupings available in Storm:
� Shuffle grouping determines that each tuple is randomly

sent to only one of the bolts that have subscribed to the
stream.

� All grouping broadcasts a copy of each tuple to all bolts
that listen to the stream.

� Fields grouping uses a particular field of the tuple to
guarantee that a given set of values is always directed
to the same bolt.

� Custom grouping may also be defined and employed so
that we can freely determine the bolts that will receive
each tuple by combining the above techniques.
Storm users may combine spouts and bolts to create

complex flows (topologies) in which every node transforms
information and forwards it to another node. Topologies
may locally run on a machine, mostly for developing and

2http://storm.apache.org/Powered-By.html



debugging purposes, or they can be submitted into a run-
ning Storm cluster, for flexible use of cloud computing
resources [20].

B. Redis
Redis is an effective in-memory key-value data store

used in production settings. It provides ultra-fast read/write
operations as it keeps by default all its data in memory [21].
Subsequently, Redis is suitable for applications calling
for near-real-time access while processing fast-moving data
streams. Redis has become popular due to the variety
of complex data types it offers, including Lists, Hashes,
Bitmaps, and HyperLogLogs [22]. In this work, we are
predominantly interested in the following data types:
• Strings: are the most versatile data type as it offers
numerous Redis commands and serves multiple purposes.
For instance, we can use a String to realize a counter variable
in our application issuing a Redis INCR command.
• Sets: are unordered collections of distinct Redis Strings
implemented through a hash-table. Sets offer constant time
operations for insertion, removal, and lookup and are valu-
able in scenarios that require maintenance of membership
information.
• Sorted Sets: are collections of distinct Strings sorted
according to the score each one is associated with. They
are implemented using a skip list and a ziplist, and they are
more expensive than Sets, as adding, removing, or updating
an item run in logarithmic time. However, they come handy
when we need to differentiate between items when it comes
to their ranking.
Redis uses only one CPU-core as it is single-threaded.

However, multiple Redis-servers may form a cluster that
automatically shards data across different Redis instances.
A cluster requires at least 3 master servers. Each such
server owns a portion of a total of 214 hash slots. Every
key corresponds to a hash slot through a MOD operation
on the integer that results after applying the CRC-16 hash
function to the key [23]. By distributing keys to multiple
Redis instances as described above, a cluster can scale
horizontally.

III. DETECTING COMMUNITIES IN NETWORK STREAMS
OVER THE CLOUD

A. Problem formulation
The salient element of a network stream is an

edge, defined as an unordered pair of nodes, i.e., edge
e = (u, v). A streaming sequence of unordered edges
S = he1, e2, . . .i naturally defines an undirected, unweighted
graph G = (V,E), where V = {v1, v2, . . .} is a set of nodes
and E = {e1, e2, . . . } ✓ V ⇥ V is a set of undirected edges.
Our goal is to discover communities whose initial members
are user-defined as sets of 2 or 3 seed-nodes. At the same
time, we may seek to uncover multiple communities: every
seed-set Ki ⇢ V helps initially designate the ith community

Ci we seek to uncover. Provided a stream S and a set of
seed-sets K = {K1,K2, . . . ,Ks}, we are to generate the
respective communities C = {C1, C2, . . . , Cs}. To attain
this, we expand each seed-set by adding nodes adjacent to
the members of the set, while aiming to produce groups of
nodes tightly connected to each other. For each such group,
we simultaneously attempt to maintain limited ties with the
rest of the network’s nodes. To this end, we build on the
remarkably effective community detection techniques of our
recent centralized COEUS algorithm [18].

Due to the lack of a universal definition of what a network
community is, we base our evaluation on publicly available
networks with ground-truth communities that enable us to
compare our approach with earlier efforts.

B. DICES’ Design Principles
DICES is designed to address several challenges arising

in the context of streaming community detection over a
cloud infrastructure. First and foremost, our approach needs
to be scalable with regards to the rate with which edges
arrive through the network stream as well as the total
number of communities we seek. Moreover, we are targeting
long running cloud applications that need to provide fault
tolerance. Finally, we wish DICES to be interactive.

1) Scalability: To address the first challenge, we focus
on isolating the processing that has to be carried out for
every edge at hand. We employ a distributed key-value
store such as Redis–cluster to hold our data (Figure 2),
and provide a scalable solution by distributing the execution
that takes place for each edge of the network stream across
multiple nodes. As Figure 2 depicts, a spout receiving the
network stream from an external data-source communicates
with several processing bolts. Each edge is sent to a single
bolt that is selected at random. This allows for near-uniform
load distribution across the processing nodes as every worker
node (bolt) is expected to receive and process approximately
an equal number of edges. When the edge arrival rate
increases considerably, we can scale DICES horizontally by
adding more processing bolts. If we are to also expand the
number of communities under detection, the processing time
of each edge is respectively expected to increase. Again, by
offering more bolts, DICES allows for horizontal scaling.

2) Fault tolerance: Cloud applications occasionally have
to deal with events of failure. In this context, we need to
make sure that: i) all edges get ultimately processed, and
ii) failing nodes are restored. To address the first issue, we
assign a message ID to every edge that is emitted by the
spout. This ID allows for specific edge tracking and we
use it to ascertain that all edges are ultimately processed,
regardless of failures that might occur in the cloud workers.
As far as the second issue above, we design DICES so
that all data reside in a high–availability distributed key-
value store and are accessible by all functional elements of
our framework (Figure 2). We also configure our processing
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Figure 2: DICES’s architecture: all spouts and bolts have
access to a Redis cluster.

bolts so that, upon initialization, they only need to acquire
the communities currently sought. Here, neither communica-
tion with sibling bolts, nor any synchronization of the bolts
with a “master” node is required. If a processing bolt “dies”,
DICES attempts to restart the failed bolt on the worker
node it was running on. If the worker has died, then DICES
commences the bolt on one of the already available workers.
Hence, there is no data loss, and the overall processing
capacity is immediately restored.

3) Interactivity: The insights we gain while uncovering
communities in a continually evolving network, often bring
about the requirement to update the set of communities that
we seek on the fly. DICES stores all pertinent information
related to the communities in the Redis-cluster of Figure 2.
Subsequently, the members of all communities as well as a
representative score depicting their “involvement” in their
own community are available on demand. Moreover, the
pruning bolt of Figure 2 produces logs of the state of
communities periodically. In this manner, DICES records
information that allows for tracking the evolution of each
community while the stream undergoes processing.

If we want to update the set of communities sought
through either introducing new seeds all together or modify
existing ones, we use the spout of Figure 2. The spout allows
for ingesting input data from various external sources, such
as an HDFS directory or a Kafka broker. Thus, we can feed
DICES at anytime with a renewed set of communities that
in turn gets broadcasted to all processing bolts.

C. DICES’ Cloud Components
In this section we outline the operations performed by

all DICES cloud components and how they co-operate to
address the task of distributed community detection over
streams. We report where appropriate all techniques adopted
from the centralized COEUS algorithm, along with all the
improvements and adjustments made in the context of our
work.

1) Spout: This component is responsible for ingesting the
application input, i.e., the network stream and the commu-
nity seed-sets. The spout also initializes the communities in
our distributed key-value store.

• Community Initialization: The spout keeps the community
IDs and the seeds of each community in the Redis-cluster
using Sets. This allows processing bolts to access the com-
munities during their initialization. Additionally, for each
community received, the spout creates a Sorted Set. The
latter is initially populated with the seeds of the community
associated with the maximum score of 1.0; this signifies
that seeds remain in this community forever. Moreover,
for every seed-node the spout creates a Set including the
communities this node is part of. This Set serves as an
inverted index for rapid access to all communities a node
belongs to. This is a critical feature as it helps notably reduce
the overall computations required. Finally, upon receipt a
renewed set of communities, the spout broadcasts this set to
all processing bolts. We use Storm’s all grouping to
ensure that the bolts are up-to-date.
• Stream Ingestion: The spout is also responsible for dis-
persing the network stream to the processing bolts. We
configure the spout to randomly dispatch every edge of the
stream to a single bolt. We associate every edge with an
ID and await for the corresponding acknowledgment which
essentially ascertains the successful DICES processing of
the edge. If such acknowledgment is not received before a
time-out period elapses, the edge is emitted again.

2) Processing bolt: In our cloud topology, processing
bolts do most of the work. Here we outline the actions taken
when processing bolts enter their initialization and running
phases.
• Initialization phase: during this stage, a processing bolt
retrieves from the distributed key-value store all the commu-
nities that are currently under detection. Every community
is labeled with a natural number that serves as its identifier.
Thus, initializing the sought communities is simply a task
of fetching the current set of community identifiers. Having
acquired this set, a processing bolt can handle any incoming
edge(s). This initialization phase is particularly useful when
new processing bolts join an existing topology. In the case
of a newly deployed topology, processing bolts do receive
the seeding communities directly from the spout.
• Running phase: at this time, a processing bolt can receive
edges as they become available from the spout. Upon
receiving an edge, a processing bolt evaluates whether its
adjacent nodes should be included in any communities and
updates the data of the application accordingly. Additionally,
a processing bolt may also handle messages that feature a
renewed set of sought communities. Algorithm 1 depicts
the actions taken when a processing bolt receives a tuple.
The bolt first checks whether the input message features
exactly one field (Line 2). If so, the tuple signifies a renewed
community set and the bolt uses this set to update its local
structure holding the communities (Line 4).

If the number of fields is greater than one (Line 5),
the input message comprises the adjacent nodes of an
edge (Lines 7-8). We commence processing an edge by



Algorithm 1: Processing bolt: execute(tuple)
input : A tuple emitted from the spout.

1 begin

2 if tuple.length == 1 then

3 // renewed set of communities
4 communities tuple[0];

5 else

6 // handling of an edge
7 u tuple[0];
8 v  tuple[1];
9 degrees[u] degrees[u]+1;

10 degrees[v] degrees[v]+1;
11 foreach C 2 {nc[u] [ nc[v]} do

12 if u 2 C then

13 cDegrees[C][v]+= cDegrees[C][u]
degrees[u] ;

14 communities[C].put(v, cDegrees[C][v]
degrees[v] );

15 nc[v].add(C);

16 if v 2 C then

17 cDegrees[C][u]+= cDegrees[C][v]
degrees[v] ;

18 communities[C].put(u, cDegrees[C][u]
degrees[u] );

19 nc[u].add(C);

20 emit(1);

incrementing the degrees of its adjacent nodes (Lines 9-10).
We use the label of the node as the key of a Redis String
and issue an INCR operation. Then, the bolt retrieves from
the key-value store the union of communities that the two
nodes belong into. In [18], memory limitations enforce going
through the entire set of communities sought for every edge.
In contrast, in DICES we elect to use a Redis cluster
that allows for horizontal scaling and so, we can handle
the growth of the inverted index maintained for quickly
accessing the communities of each node. In this manner,
we significantly reduce the overall number of computations
made in [18], as most nodes are associated with little or no
communities under investigation.

For every community in this union (Line 11), the bolt
increments the community degrees of the nodes appropriately
(Lines 13, 17). The community degree is a metric we
have adopted from [18] and serves as an estimation of
the probability that a node belongs to a particular com-
munity. We employ the most effective variation examined
in [18] that increments the community degree of node v by
cDegrees[C][u]

degrees[u] , where u is a neighbor of v. Again, we employ
Redis Strings and use a concatenation of the community
ID and the node label –delimited with a special character– as
the key. Note here that, due to its distributed design, DICES
does maintain the actual values for both the degrees and

Algorithm 2: Pruning bolt: execute(tuple)
input : A tuple emitted from the processing bolts.

1 begin

2 processedElements processedElements+1;
3 if processedElements mod W == 0 then

4 foreach C 2 communities do

5 C  prune(C);
6 log to file(sort(C));

community degrees of each node, whereas COEUS used
approximations. This allows for increased effectiveness as
we show in our experimentation.

Next, the bolt updates the community participation mem-
berships: the node associated with a score is added to the
community (Lines 14 & 18 - Sorted Set) as well as the
community identifier is added to the communities of the
node (Lines 15 & 19 - Set). In this, we use the score:
cDegrees[C][v]

degrees[v] . Finally, the bolt emits a tuple with a value
of 1 to signal that an edge has been processed appropriately
(Line 20).

3) Pruning bolt: The pruning bolt eases the task of com-
putation by removing irrelevant nodes from communities
under formulation. Every time a window of W encountered
edges elapses, we keep only the top-100 nodes exhibiting
the highest score in each community. We use this threshold
as related studies have shown that quality communities do
not surpass 100 nodes [24]. Moreover, we set the window
W of DICES to 10,000 edges; we derived this value through
extensive exploratory testing and found that it consistently
works well as far as both efficiency and accuracy are
concerned.

Algorithm 2 outlines the operation of a pruning bolt:
every time an edge is successfully processed by a processing
bolt, the pruning bolt is signaled with a tuple. When the
window W elapses (Line 3), we purge all nodes ranked
below the top-100 (Line 5) for every sought community
(Line 4). To accomplish this, we first retrieve all these nodes
by issuing a Redis ZREVRANGE3 operation. For each of the
retrieved nodes, we remove the community from their set of
communities. Then, we issue a Redis ZREMRANGEBYRANK4

operation to remove the irrelevant nodes from the com-
munity. After purging the nodes ranked below the top-
100, the community memberships are recorded to a file-
log (Line 6). This allows for tracking the evolution of the
communities as the stream undergoes processing. The actual
size of a community is usually smaller than 100 nodes.
Thus, to determine the size of each community, we adopt
the dropTail technique of [18].

3https://redis.io/commands/zrevrange
4https://redis.io/commands/zremrangebyrank



Table I: Real-world networks of our dataset reaching up to
1.8 billion edges.

Network Type Nodes Edges
Average

Degree

Amazon Co-purchasing 334,863 925,872 2.76

DBLP Co-authorship 317,080 1,049,866 3.31

Youtube Social 1,134,890 2,987,624 2.63

LiveJournal Social 3,997,962 34,681,189 8.67

Orkut Social 3,072,441 117,185,083 38.14

Friendster Social 65,608,366 1,806,067,135 27.53

D. Scalability Analysis

Proposition 1. The number of messages exchanged in
DICES for edge processing depends solely on |E|.

Proof: For every edge e 2 E the DICES spout emits
one message to a processing bolt and the latter emits one
message to the pruning bolt. Both messages are acknowl-
edged. No other communication occurs in DICES; thus, the
number of total messages is a function of |E| only.

For a graph G = (V,E), the total execution time of
DICES is formulated as tp

p + ts + tm, where p denotes the
number of workers, tp is the execution time for the parallel
workload, ts designates the execution time for the serial
workload, and tm outlines the communication cost incurred
by the exchange of messages. The DICES serial workload
comprises the actions of the pruning bolt and is constant for
a given graph G. From Proposition 1, tm is also constant
for G. The parallel workload tp grows with p due to the
initialization cost of each worker. However, since the total
edge processing cost is independent of p, we can reduce tp

p
by adding workers, as long as p < |E|.

IV. EXPERIMENTAL EVALUATION

We proceed by evaluating the performance of DICES on
a range of networks from various domains. Our experiments
measure the impact of the novel techniques of our algorithm
and feature comparisons against state-of-the-art community
detection approaches that use the entire graph. We first
discuss the specifications of our experimental setting. Then,
we evaluate DICES by answering the following questions:

• how fast can DICES process the edges of a network
stream?

• how does DICES scale?
• how do the network characteristics affect DICES pro-

cessing time?
• how does the accuracy of DICES compare to the state-

of-the-art?

A. Experimental settings

Our dataset comprises the six publicly available networks
with ground-truth communities listed in Table I,5 reaching
up to 1.8 billion edges. We have adopted the experimental
setting of [18] and use the top-5000 ground-truth communi-
ties of each network with regards to their quality [25], after
enforcing a community size between 20 and 100.

DICES is easily submitted as a topology to any existing
Storm cluster. Our implementation as well as reproducible
execution tests are publicly available.6 We performed our
experiments using docker containers that were deployed
on a Dell PowerEdge R630 server with two Intel®Xeon®

E5-2630 v3, 2.40 GHz with 8 cores (16 in total) and
256GB of RAM. We setup a Storm cluster using the official
dockerfile7 to create a Zookeeper container, a Nimbus
container, 8 Supervisor containers, and a UI container.
Each container is provided with a total of 8GB of RAM.
Unless otherwise specified, we set the maximum allowed
spout pending messages to be 15,000, and the total number
of Storm workers to be equal to the number of processing
bolts plus 2 – one for the spout and one for the pruning
bolt. A single Redis instance causes an I/O bottleneck
when using multiple processing bolts. Therefore, we setup
a Redis cluster with a total of 3 master nodes and use
this cluster as our distributed key-value store in all our
experiments.

Our evaluation assumes that 3 random nodes of each
ground-truth community are provided to each algorithm as
an input seed-set. To measure the accuracy of each algorithm
we use the average F1-score achieved for the communities
of each network. All results reported are averages of multiple
(10) executions (for various random seed-sets and permuta-
tions of the order of edges) and are accompanied with their
respective 95% confidence intervals.

B. Performance, Scaling, and Fault Tolerance

We begin with an investigation on the execution time
of finite network streams derived from the networks of
our dataset. Figure 3 shows the processing time required
for each edge per network for settings with 2, 4, and 8
processing bolts. The results shown are averages of multiple
(10) executions. We can clearly see that we can reduce the
processing time required for each edge by adding bolts to
our topology. More specifically, for the amazon and dblp
networks DICES scales almost linearly from 2 to 8 worker
nodes, as the processing time of the latter setting is about
31% of the processing time of the former setting. For
the other 4 networks in the dataset, we observe that our
processing capacity is more than quadrupled when going
from to 2 to 8 worker nodes, i.e., the processing time with 8

5https://snap.stanford.edu/data/#communities
6https://github.com/panagiotisl/DiCeS/
7https://hub.docker.com/ /storm/
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Figure 3: Processing time of an edge (in µs) for the
networks of our dataset in settings of 2, 4, and 8 processing
bolts. DICES scales horizontally, i.e., the processing time is
reduced as we add worker nodes.

nodes is below 25% of the processing time with 2 nodes. Our
architectural design does not justify sublinear scaling, thus,
this result is due to other settings involved in the execution
environment. Additionally, we observe that when using 4
processing bolts, the execution time ranges between 56-69%
of that of 2 bolts. That is, scaling seems to be worse than
what we observe when going from 2 to 8 bolts. This is also
attributed to execution environment settings rather than our
algorithm; below, we examine this very issue.

One key execution setting causing the aforementioned
issues is the number of maximum allowed pending tuples.
Times of Figure 3 are produced under a setting in which
no more than 15,000 tuples remain simultaneously pending.
However, the optimal value of this setting varies, depending
on the network and the total number of bolts utilized.
Figure 4 shows the processing time required–per–edge for
the network of youtube when the number of maximum
allowed pending tuples are: 5,000, 10,000, 15,000, and
20,000. Results shown are averages of multiple executions.
We observe that there is indeed an impact on the processing
time for all 3 settings of bolts, i.e., 2, 4, and 8. When using 2
bolts the processing time ranges between 620� 635µs. The
difference is rather evident when employing 4 bolts, as the
processing time then ranges between 303� 418µs. Finally,
when using eight processing bolts, we observe that time
ranges between 151�165µs. The results of Figure 4 explain
why DICES scaling is not perfectly balanced. Nonetheless,

Figure 4: Processing time required per edge for the network
of youtube for various settings of total worker nodes, and
values of maximum allowed pending tuples.

we clearly observe in both Figures 3 and 4 that DICES
offers near-linear scaling.

In the event of a worker failure, DICES initializes a new
worker and re-emits the edges that were not acknowledged.
Figure 5 shows the processing time required per 10,000
edges for the youtube network using 4 processing bolts when
failures occur. In particular, we manually “kill” a worker
node when DICES has processed 300,000, 600,000, and
900,000 edges. The resulting spikes in the performance of
Figure 5 occur due to a total of 46,361 failed edges that
need to be re-emitted, as well as the fact that only 3 bolts
are processing edges until a new bolt replaces the one we
“killed”. We clearly see that DICES always recovers its
processing speed in just a few seconds.

C. Impact of average degree and number of communities

Our next experiment investigates how the network’s av-
erage degree and the number of communities we wish
to uncover impact the average processing time per edge
of DICES. We create 2 synthetic networks of 1 mil-
lion nodes each, using the Lancichinetti-Fortunato-Radicchi
(LFR) benchmark [26].8 The latter produces networks as
well as their community structure. The 2 networks are gener-
ated to exhibit an average degree of 10 and 20, respectively.
For each synthetic network we randomly select 4,000 of the
generated communities to use in this experiment.

Figure 6 shows that for a given average degree of the
network, increasing the number of communities we seek
from 2,000 to 4,000, results in increased processing time–
per–edge. However, we observe that the increase of DICES
is not as significant as it is with COEUS. Thank to its

8We use a mixing parameter of 0.1, a maximum degree of 100, and
communities with 20� 100 member nodes.
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Figure 5: Impact of failed workers on processing time.
We observe spikes in the performance each time a worker
fails, i.e., when DICES has processed 300,000, 600,000,
and 900,000 edges. However, DICES always recovers its
processing speed in just a few seconds.

inverted index, DICES does not waste time examining com-
munities that are irrelevant to a particular edge, as CoEuS
does. Therefore, the increase is proportional to the nodes’
involvement in the communities we seek, instead of the total
number of communities. Moreover, DICES is able to scale
out and adjust to a possible increased demand in the number
of communities we wish to uncover. By using 8 bolts, the
average DICES processing time is significantly lower than
that of COEUS.

Figure 6 also shows that for a given number of commu-
nities we wish to uncover, the processing time is slightly
reduced for DICES and is relatively stable with COEUS
when the average degree increases from 10 to 20. This
highlights the impact of our pruning step to the processing
time–per–edge. In particular, each community we process is
periodically cut down to 100 member nodes. Consequently,
increasing the average degree results to more edges with
adjacent nodes that are not involved in any community.
Therefore, the average processing time per edge is reduced.
The improved performance of DICES is again due to the
use of our inverted index.

D. F1–score comparison of DICES with the central-
ized streaming COEUS algorithm, and the non-streaming
LEMON algorithm.

We have demonstrated the merits of our architecture in
terms of scalability. We now focus on the effectiveness of
our algorithm in accurately uncovering communities. Fig-
ure 7 compares DICES against COEUS [18]. We initialize
both approaches with 3 random seeds of each ground-truth
community of our dataset and calculate the average F1–score
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Figure 6: Impact of average degree and number of commu-
nities on the average processing time per edge (in µs).

achieved for all ground-truth communities of each network.
The reported results are averages of multiple executions
for random seed selections and random edgelist orderings.
We remind the reader that COEUS exhibits impressive
accuracy that is equivalent or better than state-of-the-art
non-streaming seed-set expansion approaches [13], [12],
[27], [9] that exploit the whole network and consequently
cannot handle large-scale networks. We include results for
LEMON [13] to make this more evident.

Figure 7 shows that the performance of the two ap-
proaches is equivalent for the 3 smaller networks of
our dataset, namely amazon, dblp, and youtube. However,
DICES outperforms COEUS for the 3 larger ones, i.e.,
livejournal, orkut, and friendster, offering significantly im-
proved F1–scores. The improvement is mostly attributed to
the different accuracy the two approaches have with regards
to maintaining the nodes’ degrees and community degrees.
DICES uses a Redis cluster and is aware of the exact
values. In contrast, COEUS employs COUNT-MIN sketches
due to memory constraints. The sketches are configured to
provide 99% confidence that ✏ < 10�5. The estimation error
is proportional to ✏ as well as the total aggregate number
of edges seen. By definition cDegrees[C][u]  degrees[u];
hence, the inaccuracy of the sketches progressively produces
smaller values for cDegrees[C][u]

degrees[u] .
For the livejournal network, using the exact values with

DICES results in improved performance with regards to F1–
score. For the orkut and friendster networks, we initially
found out that the approximations produced by the COUNT-
MIN sketches of COEUS actually help achieving greater F1–
scores. These networks exhibit large average degrees and
the communities discovered quickly surpass 100 nodes. The
decaying values produced by the sketches favor the nodes
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Figure 7: F1–score comparison.

that were added early on, as they are close to the seeds,
and result in pruning more irrelevant nodes. We noticed that
improving the accuracy of the sketches actually results in
worse F1–scores for the two largest networks of our dataset.
This effect can of course be easily reproduced with DICES,
by adding a similar decay factor that is proportional to the
total aggregate number of edges seen. In fact with DICES,
we can achieve a more balanced decay than with COEUS
as there is no ✏. This allows improved control over this
parameter and helps us achieve larger F1–scores for both
networks with DICES.9 We plan to investigate this effect
further in the future, as this work is focused on the execution
in the cloud.

V. RELATED WORK

COEUS [18] processes a network stream in a centralized
machine and expands seed-sets to communities by adding
nodes adjacent to community members. Two novel tech-
niques are introduced for i) estimating the involvement of a
node in each community, and ii) determining the size of each
community. Experimental results show that COEUS achieves
accuracy comparable to state-of-the-art non-streaming ap-
proaches while being impressively efficient. Our work builds
on techniques of COEUS to provide the first cloud applica-
tion for detecting communities in network streams and to
achieve further improvements with regard to accuracy.

Yun et al. [16] consider settings in which the size of the
network is so large that maintaining the respective graph is
prohibitive. They study the problem of clustering the nodes

9For both networks we add a decay factor of total aggregate value
150,000 .

of a graph to communities in a streaming setting where
rows of the adjacency matrix of the graph are revealed
sequentially. They propose an online algorithm with space
complexity that grows sub-linearly with the size of the
network. Our setting does not assume that complete rows
of the adjacency matrix are revealed to us. Instead, we
consider that edges involving any node of the network may
arrive at any moment. Moreover, our approach is unaware
of the size of the graph, which grows with time. An edge
streaming setting is considered in [17]. All nodes of a graph
are assigned to non-overlapping communities using only
two integers per node that hold: i) the node’s degree, and
ii) the current community index assigned to the node. The
work is based on the observation that if we pick uniformly
at random an edge of the graph, this edge is more likely
to link nodes of the same community, than nodes from
distinct communities. This is expected to be true as nodes
tend to be more connected within a community than across
communities, thus, if we process edges in a random order
we expect many intra-community edges to arrive before
the inter-community edges. However, this requires that we
already hold the graph in its entirety and we can select its
edges one by one uniformly at random. We operate on the
more practical assumption that the edges of the graph arrive
at no particular order.

VI. CONCLUSIONS

We propose and implement DICES, a streaming commu-
nity detection virtual infrastructure for large-scale networks
that evolve rapidly. DICES addresses various limitations
imposed by the execution setting of our earlier COEUS
algorithm [18]. DICES distributes the load to worker nodes
in the cloud and easily adapts to workload changes by
adjusting the number nodes. In the event of a failure,
DICES resubmits network edges that were not processed
and restarts nodes that “died”. Equally critical is the fact that
we provide interactivity in terms of dynamically updating the
communities under investigation and requesting the current
state of the communities on demand. We investigate the
performance of our framework using both real-world and
synthetic networks. Our findings show that we can process
almost 50 million edges per hour using only 8 worker
nodes. We can easily increase our processing capacity as
DICES is shown to scale almost linearly. In this regard,
we handily outperform prior approaches that do not scale
out while trying to address the problem of community
detection. Finally, the increased memory resources of our
distributed setting realize further improvements with regard
to accuracy in detecting the communities existing in 6 real-
world networks.
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