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ABSTRACT

An ever-increasing amount of information on the Web today is
available only through search interfaces: the users have to type in a
set of keywords in a search form in order to access the pages from
certain Web sites. These pages are often referred to as the Hidden
Web or the Deep Web. Since there are no static links to the Hidden
Web pages, search engines cannot discover and index such pages
and thus do not return them in the results. However, according to
recent studies, the content provided by many Hidden Web sites is
often of very high quality and can be extremely valuable to many
users.

In this paper, we study how we can build an effective Hidden Web
crawler that can autonomously discover and download pages from
the Hidden Web. Since the only “entry point” to a Hidden Web site
is a query interface, the main challenge that a Hidden Web crawler
has to face is how to automatically generate meaningful queries to
issue to the site. Here, we provide a theoretical framework to in-
vestigate the query generation problem for the Hidden Web and we
propose effective policies for generating queries automatically. Our
policies proceed iteratively, issuing a different query in every itera-
tion. We experimentally evaluate the effectiveness of these policies
on 4 real Hidden Web sites and our results are very promising. For
instance, in one experiment, one of our policies downloaded more
than 90% of a Hidden Web site (that contains 14 million docu-
ments) after issuing fewer than 100 queries.

Categoriesand Subject Descriptors: H.3.7 [Information Systems]:

Digital Libraries; H.3.1 [Information Systems]: Content Analysis
and Indexing; H.3.3 [Information Systems]: Information Search
and Retrieval.

General Terms. Algorithms, Performance, Design.

Keywords: Hidden Web crawling, Deep Web crawler, keyword
queries, adaptive algorithm, query selection.

1. INTRODUCTION

Recent studies show that a significant fraction of Web content
cannot be reached by following links [7, 12]. In particular, a large
part of the Web is “hidden” behind search forms and is reachable
only when users type in a set of keywords, or queries, to the forms.
These pages are often referred to as the Hidden Web [17] or the
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Deep Web [7], because search engines typically cannot index the
pages and do not return them in their results (thus, the pages are
essentially “hidden” from a typical Web user).

According to many studies, the size of the Hidden Web increases
rapidly as more organizations put their valuable content online
through an easy-to-use Web interface [7]. In [12], Chang et al.
estimate that well over 100,000 Hidden-Web sites currently exist
on the Web. Moreover, the content provided by many Hidden-Web
sites is often of very high quality and can be extremely valuable
to many users [7]. For example, PubMed hosts many high-quality
papers on medical research that were selected from careful peer-
review processes, while the site of the US Patent and Trademarks
Office! makes existing patent documents available, helping poten-
tial inventors examine “prior art.”

In this paper, we study how we can build a Hidden-Web crawler?
that can automatically download pages from the Hidden Web, so
that search engines can index them. Conventional crawlers rely
on the hyperlinks on the Web to discover pages, so current search
engines cannot index the Hidden-Web pages (due to the lack of
links). We believe that an effective Hidden-Web crawler can have
a tremendous impact on how users search information on the Web:

e Tapping into unexplored information: The Hidden-Web
crawler will allow an average Web user to easily explore the
vast amount of information that is mostly “hidden” at present.
Since a majority of Web users rely on search engines to discover
pages, when pages are not indexed by search engines, they are
unlikely to be viewed by many Web users. Unless users go di-
rectly to Hidden-Web sites and issue queries there, they cannot
access the pages at the sites.

e Improving user experience: Even if a user is aware of a num-
ber of Hidden-Web sites, the user still has to waste a significant
amount of time and effort, visiting all of the potentially relevant
sites, querying each of them and exploring the result. By making
the Hidden-Web pages searchable at a central location, we can
significantly reduce the user’s wasted time and effort in search-
ing the Hidden Web.

e Reducing potential bias: Due to the heavy reliance of many Web
users on search engines for locating information, search engines
influence how the users perceive the Web [28]. Users do not
necessarily perceive what actually exists on the Web, but what
is indexed by search engines [28]. According to a recent arti-
cle [5], several organizations have recognized the importance of
bringing information of their Hidden Web sites onto the surface,
and committed considerable resources towards this effort. Our

1US Patent Office: ht t p: / / www. uspt 0. gov
2Crawlers are the programs that traverse the Web automatically and
download pages for search engines.
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Figure 1: A single-attribute search interface

Hidden-Web crawler attempts to automate this process for Hid-
den Web sites with textual content, thus minimizing the associ-
ated costs and effort required.

Given that the only “entry” to Hidden Web pages is through
querying a search form, there are two core challenges to imple-
menting an effective Hidden Web crawler: (a) The crawler has to
be able to understand and model a query interface, and (b) The
crawler has to come up with meaningful queries to issue to the
query interface. The first challenge was addressed by Raghavan
and Garcia-Molina in [29], where a method for learning search in-
terfaces was presented. Here, we present a solution to the second
challenge, i.e. how a crawler can automatically generate queries so
that it can discover and download the Hidden Web pages.

Clearly, when the search forms list all possible values for a query
(e.g., through a drop-down list), the solution is straightforward. We
exhaustively issue all possible queries, one query at a time. When
the query forms have a “free text” input, however, an infinite num-
ber of queries are possible, so we cannot exhaustively issue all pos-
sible queries. In this case, what queries should we pick? Can the
crawler automatically come up with meaningful queries without
understanding the semantics of the search form?

In this paper, we provide a theoretical framework to investigate
the Hidden-Web crawling problem and propose effective ways of
generating queries automatically. We also evaluate our proposed
solutions through experiments conducted on real Hidden-Web sites.
In summary, this paper makes the following contributions:

e \We present a formal framework to study the problem of Hidden-

Web crawling. (Section 2).

e We investigate a number of crawling policies for the Hidden
Web, including the optimal policy that can potentially download
the maximum number of pages through the minimum number of
interactions. Unfortunately, we show that the optimal policy is
NP-hard and cannot be implemented in practice (Section 2.2).

e \We propose a new adaptive policy that approximates the optimal
policy. Our adaptive policy examines the pages returned from
previous queries and adapts its query-selection policy automati-
cally based on them (Section 3).

e \We evaluate various crawling policies through experiments on
real Web sites. Our experiments will show the relative advan-
tages of various crawling policies and demonstrate their poten-
tial. The results from our experiments are very promising. In
one experiment, for example, our adaptive policy downloaded
more than 90% of the pages within PubMed (that contains 14
million documents) after it issued fewer than 100 queries.

2. FRAMEWORK

In this section, we present a formal framework for the study of
the Hidden-Web crawling problem. In Section 2.1, we describe our
assumptions on Hidden-Web sites and explain how users interact
with the sites. Based on this interaction model, we present a high-
level algorithm for a Hidden-Web crawler in Section 2.2. Finally in
Section 2.3, we formalize the Hidden-Web crawling problem.

2.1 Hidden-Web database model

There exists a variety of Hidden Web sources that provide infor-
mation on a multitude of topics. Depending on the type of infor-
mation, we may categorize a Hidden-Web site either as a textual
database or a structured database. A textual database is a site that
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Figure 2: A multi-attribute search interface

mainly contains plain-text documents, such as PubMed and Lexis-
Nexis (an online database of legal documents [1]). Since plain-
text documents do not usually have well-defined structure, most
textual databases provide a simple search interface where users
type a list of keywords in a single search box (Figure 1). In con-
trast, a structured database often contains multi-attribute relational
data (e.g., a book on the Amazon Web site may have the fields
title="Harry Potter’,author="J.K Rowing and
i sbn=' 0590353403’ ) and supports multi-attribute search in-
terfaces (Figure 2). In this paper, we will mainly focus on tex-
tual databases that support single-attribute keyword queries. We
discuss how we can extend our ideas for the textual databases to
multi-attribute structured databases in Section 6.1.
Typically, the users need to take the following steps in order to
access pages in a Hidden-Web database:
1. Step 1. First, the user issues a query, say “liver,” through the
search interface provided by the Web site (such as the one shown
in Figure 1).
2. Step 2. Shortly after the user issues the query, she is presented
with a result index page. That is, the Web site returns a list of
links to potentially relevant Web pages, as shown in Figure 3(a).

3. Step 3. From the list in the result index page, the user identifies
the pages that look “interesting” and follows the links. Clicking
on a link leads the user to the actual Web page, such as the one
shown in Figure 3(b), that the user wants to look at.

2.2 Ageneric Hidden Web crawling algorithm

Given that the only “entry” to the pages in a Hidden-Web site
is its search from, a Hidden-Web crawler should follow the three
steps described in the previous section. That is, the crawler has
to generate a query, issue it to the Web site, download the result
index page, and follow the links to download the actual pages. In
most cases, a crawler has limited time and network resources, so
the crawler repeats these steps until it uses up its resources.

In Figure 4 we show the generic algorithm for a Hidden-Web
crawler. For simplicity, we assume that the Hidden-Web crawler
issues single-term queries only.® The crawler first decides which
query term it is going to use (Step (2)), issues the query, and re-
trieves the result index page (Step (3)). Finally, based on the links
found on the result index page, it downloads the Hidden Web pages
from the site (Step (4)). This same process is repeated until all the
available resources are used up (Step (1)).

Given this algorithm, we can see that the most critical decision
that a crawler has to make is what query to issue next. If the
crawler can issue successful queries that will return many matching
pages, the crawler can finish its crawling early on using minimum
resources. In contrast, if the crawler issues completely irrelevant
queries that do not return any matching pages, it may waste all
of its resources simply issuing queries without ever retrieving ac-
tual pages. Therefore, how the crawler selects the next query can
greatly affect its effectiveness. In the next section, we formalize
this query selection problem.

3For most Web sites that assume “AND” for multi-keyword
queries, single-term queries return the maximum number of results.
Extending our work to multi-keyword queries is straightforward.
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(b) The first matching page for “liver”.

Figure 3: Pagesfrom the PubMed Web site.

ALGORITHM 2.1. Crawling aHidden Web site

Procedure
(1) while ( there are available resources ) do

/I select a term to send to the site

2) q; = SelectTerm()
// send query and acquire result index page
(3) R(q:) = QueryWebsite( g: )
// download the pages of interest
4) Download( R(g;:) )
(5) done

Figure 4: Algorithm for crawling a Hidden Web site.
S

Figure 5: A set-formalization of the optimal query selection
problem.

2.3 Problem formalization

Theoretically, the problem of query selection can be formalized
as follows: We assume that the crawler downloads pages from a
Web site that has a set of pages S (the rectangle in Figure 5). We
represent each Web page in .S as a point (dots in Figure 5). Every
potential query ¢; that we may issue can be viewed as a subset of S,
containing all the points (pages) that are returned when we issue g;
to the site. Each subset is associated with a weight that represents
the cost of issuing the query. Under this formalization, our goal is to
find which subsets (queries) cover the maximum number of points
(Web pages) with the minimum total weight (cost). This problem
is equivalent to the set-covering problem in graph theory [16].

There are two main difficulties that we need to address in this
formalization. First, in a practical situation, the crawler does not
know which Web pages will be returned by which queries, so the
subsets of S are not known in advance. Without knowing these
subsets the crawler cannot decide which queries to pick to maxi-
mize the coverage. Second, the set-covering problem is known to
be NP-Hard [16], so an efficient algorithm to solve this problem
optimally in polynomial time has yet to be found.

In this paper, we will present an approximation algorithm that
can find a near-optimal solution at a reasonable computational cost.
Our algorithm leverages the observation that although we do not
know which pages will be returned by each query ¢; that we issue,
we can predict how many pages will be returned. Based on this in-
formation our query selection algorithm can then select the “best”
queries that cover the content of the Web site. We present our pre-
diction method and our query selection algorithm in Section 3.

2.3.1 Performance Metric

Before we present our ideas for the query selection problem, we
briefly discuss some of our notation and the cost/performance met-
rics.

Given a query g;, we use P(g;) to denote the fraction of pages
that we will get back if we issue query g; to the site. For example, if
a Web site has 10,000 pages in total, and if 3,000 pages are returned
for the query ¢; = “medicine”, then P(g;) = 0.3. We use P(q1 A
g2) to represent the fraction of pages that are returned from both
¢1 and g2 (i.e., the intersection of P(q1) and P(g2)). Similarly, we
use P(q1 V g2) to represent the fraction of pages that are returned
from either g1 or g2 (i.e., the union of P(q1) and P(q2)).

We also use Cost(q;) to represent the cost of issuing the query
¢;. Depending on the scenario, the cost can be measured either in
time, network bandwidth, the number of interactions with the site,
or it can be a function of all of these. As we will see later, our
proposed algorithms are independent of the exact cost function.

In the most common case, the query cost consists of a number
of factors, including the cost for submitting the query to the site,
retrieving the result index page (Figure 3(a)) and downloading the
actual pages (Figure 3(b)). We assume that submitting a query in-
curs a fixed cost of ¢4. The cost for downloading the result index
page is proportional to the number of matching documents to the
query, while the cost ¢4 for downloading a matching document is
also fixed. Then the overall cost of query g; is

Cost(qi) = cq + crP(q:) + caP(q:)- ()
In certain cases, some of the documents from ¢; may have already

been downloaded from previous queries. In this case, the crawler
may skip downloading these documents and the cost of ¢; can be

Cost(qi) = cq + crP(qi) + caPrew(q:)- @)

Here, we use P,..(g;) to represent the fraction of the new docu-
ments from ¢; that have not been retrieved from previous queries.
Later in Section 3.1 we will study how we can estimate P(g;) and
Prew(gs) to estimate the cost of g;.

Since our algorithms are independent of the exact cost function,
we will assume a generic cost function Cost(g; ) in this paper. When
we need a concrete cost function, however, we will use Equation 2.

Given the notation, we can formalize the goal of a Hidden-Web
crawler as follows:



PROBLEM 1. Find the set of queries g1, . . .

Plg V- Vqn)

, gn that maximizes

under the constraint
> " Cost(q;) < t.
i=1

Here, t is the maximum download resource that the crawler has.

3. KEYWORD SELECTION

How should a crawler select the queries to issue? Given that the
goal is to download the maximum number of unique documents
from a textual database, we may consider one of the following op-
tions:

e Random: We select random keywords from, say, an English dic-
tionary and issue them to the database. The hope is that a random
query will return a reasonable number of matching documents.

e Generic-frequency: We analyze a generic document corpus col-
lected elsewhere (say, from the Web) and obtain the generic fre-
quency distribution of each keyword. Based on this generic dis-
tribution, we start with the most frequent keyword, issue it to the
Hidden-Web database and retrieve the result. We then continue
to the second-most frequent keyword and repeat this process un-
til we exhaust all download resources. The hope is that the fre-
quent keywords in a generic corpus will also be frequent in the
Hidden-Web database, returning many matching documents.

e Adaptive: We analyze the documents returned from the previous
queries issued to the Hidden-Web database and estimate which
keyword is most likely to return the most documents. Based on
this analysis, we issue the most “promising” query, and repeat
the process.

Among these three general policies, we may consider the ran-
dom policy as the base comparison point since it is expected to
perform the worst. Between the generic-frequency and the adap-
tive policies, both policies may show similar performance if the
crawled database has a generic document collection without a spe-
cialized topic. The adaptive policy, however, may perform signifi-
cantly better than the generic-frequency policy if the database has a
very specialized collection that is different from the generic corpus.
We will experimentally compare these three policies in Section 4.

While the first two policies (random and generic-frequency poli-
cies) are easy to implement, we need to understand how we can an-
alyze the downloaded pages to identify the most “promising” query
in order to implement the adaptive policy. We address this issue in
the rest of this section.

3.1 Estimating the number of matching pages

In order to identify the most promising query, we need to esti-
mate how many new documents we will download if we issue the
query g; as the next query. That is, assuming that we have issued
queries i, . . . , gi—1 We need to estimate P(q, V- - -Vg;—1Vq;), for
every potential next query g; and compare this value. In estimating
this number, we note that we can rewrite P(q1 V -+ V ¢i—1 V ;)
as:

P((q1 V-V gi-1)Va)

=Pl@V--Vgi-1)+P(g)—Pq1 V- Vagi-1) Agi)

=P(@ V- Vagi-1)+ Pla)
=Pl V- Va-1)P(gla V- Vai-1) 3

In the above formula, note that we can precisely measure P (g1 V
-~V gi—1)and P(q; | g1 V ---V qi—1) by analyzing previously-
downloaded pages: We know P(q1 V --- V ¢i—1), the union of

all pages downloaded from g1, .. ., ¢;—1, Since we have already is-
sued ¢1, ..., qi—1 and downloaded the matching pages.* We can
also measure P(q; | g1 V -+ V gi—1), the probability that g; ap-
pears in the pages from g1, . . ., g;—1, by counting how many times
q; appears in the pages from ¢, . . ., g;—1. Therefore, we only need
to estimate P(q;) to evaluate P(q1 V - - -V ¢;). We may consider a
number of different ways to estimate P(q;), including the follow-
ing:
1. Independence estimator: We assume that the appearance of the
term ¢, is independent of the terms ¢1,...,¢;—1. That is, we
assume that P(q;) = P(qilq1 V-~V gi—1).

2. Zipf estimator: In [19], Ipeirotis et al. proposed a method to
estimate how many times a particular term occurs in the entire
corpus based on a subset of documents from the corpus. Their
method exploits the fact that the frequency of terms inside text
collections follows a power law distribution [30, 25]. That is,
if we rank all terms based on their occurrence frequency (with
the most frequent term having a rank of 1, second most frequent
a rank of 2 etc.), then the frequency f of a term inside the text
collection is given by:

f=ar+3)7" (4)
where r is the rank of the term and «, 3, and -y are constants that
depend on the text collection.

Their main idea is (1) to estimate the three parameters, «, 3 and

~, based on the subset of documents that we have downloaded

from previous queries, and (2) use the estimated parameters to
predict f given the ranking r of a term within the subset. For

a more detailed description on how we can use this method to

estimate P(q;), we refer the reader to the extended version of

this paper [27].

After we estimate P(g;) and P(gilq1 V - -+ V gi—1) values, we
can calculate P(¢q1 V --- V ¢;). In Section 3.3, we explain how
we can efficiently compute P(gi|q1 V - - - V ¢i—1) by maintaining a
succinct summary table. In the next section, we first examine how
we can use this value to decide which query we should issue next
to the Hidden Web site.

3.2 Query selection algorithm

The goal of the Hidden-Web crawler is to download the maxi-
mum number of unique documents from a database using its lim-
ited download resources. Given this goal, the Hidden-Web crawler
has to take two factors into account. (1) the number of new doc-
uments that can be obtained from the query ¢; and (2) the cost of
issuing the query g;. For example, if two queries, g; and g;, incur
the same cost, but ¢; returns more new pages than ¢;, ¢; is more
desirable than ¢;. Similarly, if g; and g; return the same number
of new documents, but ¢; incurs less cost then ¢;, g; is more de-
sirable. Based on this observation, the Hidden-Web crawler may
use the following efficiency metric to quantify the desirability of
the query g;:

Pnew (Q'L)
Cost(q;)

Here, Pphc. (g:) represents the amount of new documents returned
for ¢; (the pages that have not been returned for previous queries).
Cost(g;) represents the cost of issuing the query g;.

Intuitively, the efficiency of ¢; measures how many new docu-
ments are retrieved per unit cost, and can be used as an indicator of

Efficiency(q:) =

“For exact estimation, we need to know the total number of pages in
the site. However, in order to compare only relative values among
queries, this information is not actually needed.



ALGORITHM 3.1. Greedy SelectTerm()
Parameters:

T': The list of potential query keywords
Procedure

(1) Foreach t; inT do

(2)  Estimate Efficiency(t) = I;"oﬁ;g((f:;

(3) done

(4) return ¢, with maximum Efficiency(¢x)

Figure6: Algorithm for selecting the next query term.

how well our resources are spent when issuing ¢;. Thus, the Hid-
den Web crawler can estimate the efficiency of every candidate g;,
and select the one with the highest value. By using its resources
more efficiently, the crawler may eventually download the maxi-
mum number of unique documents. In Figure 6, we show the query
selection function that uses the concept of efficiency. In principle,
this algorithm takes a greedy approach and tries to maximize the
“potential gain” in every step.

We can estimate the efficiency of every query using the estima-
tion method described in Section 3.1. That is, the size of the new
documents from the query g;, Pnew(q:), is

Pnew(Qi)
=P(@1V---Vg-1Vg)—Pl@aV---Vag-1)
=P(qg)—P@aV---Vag-1)P(glaa V- Vqi-1)

from Equation 3, where P(g;) can be estimated using one of the
methods described in section 3. We can also estimate Cost(g; ) sim-
ilarly. For example, if Cost(g; ) is

COSt(Qz) = Cq + CT‘P(qz) + Cdpnew (qz)

(Equation 2), we can estimate Cost(q;) by estimating P(g;) and
Pncw (qz)

3.3 Efficient calculation of query statistics

In estimating the efficiency of queries, we found that we need to
measure P(q;|q1V---Vg:—1) for every potential query ¢;. This cal-
culation can be very time-consuming if we repeat it from scratch for
every query g; in every iteration of our algorithm. In this section,
we explain how we can compute P(g;|q1 V - - - V ¢;—1) efficiently
by maintaining a small table that we call a query statistics table.

The main idea for the query statistics table is that P(g;|q1 V- - -V
gi—1) can be measured by counting how many times the keyword
q; appears within the documents downloaded from ¢, ..., q;—1.
We record these counts in a table, as shown in Figure 7(a). The
left column of the table contains all potential query terms and the
right column contains the number of previously-downloaded docu-
ments containing the respective term. For example, the table in Fig-
ure 7(a) shows that we have downloaded 50 documents so far, and
the term model appears in 10 of these documents. Given this num-
ber, we can compute that P(model|gy V - -+ V gi—1) = % =0.2.

\We note that the query statistics table needs to be updated when-
ever we issue a new query ¢; and download more documents. This
update can be done efficiently as we illustrate in the following ex-
ample.

ExAMPLE 1. After examining the query statistics table of Fig-
ure 7(a), we have decided to use the term ““computer’ as our next
query ¢;. From the new query ¢; = “computer,” we downloaded
20 more new pages. Out of these, 12 contain the keyword “model”

[ Term &, | N(te) | | Term¢, | N(tx) |

model 10 model 12
computer 38 computer 20
digital 50 disk 18

Total pages: 50 New pages: 20
(a) After gi,...,qi—1 (b) New from ¢; = computer

o

[Termt, | N(tw) |
model 10+12 =22
computer | 38+20 = 58
disk 0+18=18
digital 50+0 =50
Total pages: 50 + 20 = 70
(c) After q1,...,q:

Figure 7. Updating the query statisticstable.
S
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Figure 8: A Web sitethat does not return all theresults.

and 18 the keyword “disk”” The table in Figure 7(b) shows the
frequency of each term in the newly-downloaded pages.

We can update the old table (Figure 7(a)) to include this new
information by simply adding corresponding entries in Figures 7(a)
and (b). The result is shown on Figure 7(c). For example, keyword
“model” exists in 10 + 12 = 22 pages within the pages retrieved
fromgqi, . .., g;. According to this new table, P(model|q1V- - -Vq;)
is now 22 = 0.3.

3.4 Crawling sites that limit the number of
results

In certain cases, when a query matches a large number of pages,
the Hidden Web site returns only a portion of those pages. For ex-
ample, the Open Directory Project [2] allows the users to see only
up to 10, 000 results after they issue a query. Obviously, this kind
of limitation has an immediate effect on our Hidden Web crawler.
First, since we can only retrieve up to a specific number of pages
per query, our crawler will need to issue more queries (and po-
tentially will use up more resources) in order to download all the
pages. Second, the query selection method that we presented in
Section 3.2 assumes that for every potential query ¢;, we can find
P(gi|lg1 V - -+ V ¢i—1). Thatis, for every query ¢; we can find the
fraction of documents in the whole text database that contains ¢;
with at least one of ¢1, . .., ¢i—1. However, if the text database re-
turned only a portion of the results for any of the 1, ..., ¢;—1 then
the value P(gi|q1 V - - - V ¢;—1) is not accurate and may affect our
decision for the next query ¢;, and potentially the performance of
our crawler. Since we cannot retrieve more results per query than
the maximum number the Web site allows, our crawler has no other
choice besides submitting more queries. However, there is a way
to estimate the correct value for P(gi|q1 V - -+ V gi—1) in the case
where the Web site returns only a portion of the results.



Again, assume that the Hidden Web site we are currently crawl-
ing is represented as the rectangle on Figure 8 and its pages as
points in the figure. Assume that we have already issued queries
qi, . -.,qi—1 Which returned a number of results less than the max-
imum number than the site allows, and therefore we have down-
loaded all the pages for these queries (big circle in Figure 8). That
is, at this point, our estimation for P(g;|q1 V- - -V ¢;—1) is accurate.
Now assume that we submit query g; to the Web site, but due to a
limitation in the number of results that we get back, we retrieve the
set g; (small circle in Figure 8) instead of the set ¢; (dashed circle
in Figure 8). Now we need to update our query statistics table so
that it has accurate information for the next step. That is, although
we got the set ¢; back, for every potential query ¢;+1 we need to
find P(qi+1\(J1 V.-V QL)

P(givilga V-V @)
1

=——— [P(qit1 A Ve Vgio1))+
P(q1\/"'\/(b’) [ (q+1 (ql q 1))

P(qis1 ANqi) — P(gis1 Ags A V- -+ V gi—1))] (5)

In the previous equation, we can find P(q1 V- - -V ¢;) by estimat-
ing P(g;) with the method shown in Section 3. Additionally, we
can calculate P(gi+1 A (g1 V- Vgi—1)) and P(gi+1 Agi A (g1 V
.-+ V qi—1)) by directly examining the documents that we have
downloaded from queries gi,...,q;—1. The term P(qi+1 A ¢:)
however is unknown and we need to estimate it. Assuming that ¢}
is a random sample of ¢;, then:

Plgit1 Ngi) _ Plgs) ®)

P(giv1 Na;)  Plq;)
From Equation 6 we can calculate P(g;11 A ¢;) and after we
replace this value to Equation 5 we can find P(qi+1]q1 V- -V ¢).

4. EXPERIMENTAL EVALUATION

In this section we experimentally evaluate the performance of
the various algorithms for Hidden Web crawling presented in this
paper. Our goal is to validate our theoretical analysis through real-
world experiments, by crawling popular Hidden Web sites of tex-
tual databases. Since the number of documents that are discovered
and downloaded from a textual database depends on the selection
of the words that will be issued as queries® to the search interface
of each site, we compare the various selection policies that were
described in section 3, namely the random, generic-frequency, and
adaptive algorithms.

The adaptive algorithm learns new keywords and terms from the
documents that it downloads, and its selection process is driven by
a cost model as described in Section 3.2. To keep our experiment
and its analysis simple at this point, we will assume that the cost for
every query is constant. That is, our goal is to maximize the number
of downloaded pages by issuing the least number of queries. Later,
in Section 4.4 we will present a comparison of our policies based
on a more elaborate cost model. In addition, we use the indepen-
dence estimator (Section 3.1) to estimate P(g;) from downloaded
pages. Although the independence estimator is a simple estimator,
our experiments will show that it can work very well in practice.®

For the generic-frequency policy, we compute the frequency dis-
tribution of words that appear in a 5.5-million-Web-page corpus

SThroughout our experiments, once an algorithm has submitted a
query to a database, we exclude the query from subsequent submis-
sions to the same database from the same algorithm.

®We defer the reporting of results based on the Zipf estimation to a
future work.

downloaded from 154 Web sites of various topics [26]. Keywords
are selected based on their decreasing frequency with which they
appear in this document set, with the most frequent one being se-
lected first, followed by the second-most frequent keyword, etc.”

Regarding the random policy, we use the same set of words col-
lected from the Web corpus, but in this case, instead of selecting
keywords based on their relative frequency, we choose them ran-
domly (uniform distribution). In order to further investigate how
the quality of the potential query-term list affects the random-based
algorithm, we construct two sets: one with the 16,000 most fre-
quent words of the term collection used in the generic-frequency
policy (hereafter, the random policy with the set of 16,000 words
will be referred to as random-16K), and another set with the 1 mil-
lion most frequent words of the same collection as above (hereafter,
referred to as random-1M). The former set has frequent words that
appear in a large number of documents (at least 10, 000 in our col-
lection), and therefore can be considered of “high-quality” terms.
The latter set though contains a much larger collection of words,
among which some might be bogus, and meaningless.

The experiments were conducted by employing each one of the
aforementioned algorithms (adaptive, generic-frequency, random-
16K, and random-1M) to crawl and download contents from three
Hidden Web sites: The PubMed Medical Library,® Amazon,® and
the Open Directory Project[2]. According to the information on
PubMed’s Web site, its collection contains approximately 14 mil-
lion abstracts of biomedical articles. We consider these abstracts
as the “documents” in the site, and in each iteration of the adaptive
policy, we use these abstracts as input to the algorithm. Thus our
goal is to “discover” as many unique abstracts as possible by repeat-
edly querying the Web query interface provided by PubMed. The
Hidden Web crawling on the PubMed Web site can be considered
as topic-specific, due to the fact that all abstracts within PubMed
are related to the fields of medicine and biology.

In the case of the Amazon Web site, we are interested in down-
loading all the hidden pages that contain information on books.
The querying to Amazon is performed through the Software De-
veloper’s Kit that Amazon provides for interfacing to its Web site,
and which returns results in XML form. The generic “keyword”
field is used for searching, and as input to the adaptive policy we
extract the product description and the text of customer reviews
when present in the XML reply. Since Amazon does not provide
any information on how many books it has in its catalogue, we use
random sampling on the 10-digit ISBN number of the books to es-
timate the size of the collection. Out of the 10, 000 random ISBN
numbers queried, 46 are found in the Amazon catalogue, therefore
the size of its book collection is estimated to be oo - 10" = 4.6
million books. It’s also worth noting here that Amazon poses an
upper limit on the number of results (books in our case) returned
by each query, which is set to 32, 000.

As for the third Hidden Web site, the Open Directory Project
(hereafter also referred to as dmoz), the site maintains the links to
3.8 million sites together with a brief summary of each listed site.
The links are searchable through a keyword-search interface. \We
consider each indexed link together with its brief summary as the
document of the dmoz site, and we provide the short summaries
to the adaptive algorithm to drive the selection of new keywords
for querying. On the dmoz Web site, we perform two Hidden Web
crawls: the first is on its generic collection of 3.8-million indexed

"We did not manually exclude stop words (e.g., the, is, of, etc.)
from the keyword list. As it turns out, all Web sites except PubMed
return matching documents for the stop words, such as “the.”

8PubMed Medical Library: ht t p: / / www. pubned. or g
9Amazon Inc.: ht t p: / / www. anmazon. com
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Figure 10: Coverage of paliciesfor Amazon

sites, regardless of the category that they fall into. The other crawl
is performed specifically on the Arts section of dmoz (http://
dnoz. or g/ Art s), which comprises of approximately 429, 000
indexed sites that are relevant to Arts, making this crawl topic-
specific, as in PubMed. Like Amazon, dmoz also enforces an upper
limit on the number of returned results, which is 10, 000 links with
their summaries.

4.1 Comparison of policies

The first question that we seek to answer is the evolution of the
coverage metric as we submit queries to the sites. That is, what
fraction of the collection of documents stored in the Hidden Web
site can we download as we continuously query for new words se-
lected using the policies described above? More formally, we are
interested in the value of P(¢1 V -+ -V ¢;—1 V ¢;), after we submit
qi,---,qi queries, and as 4 increases.

In Figures 9, 10, 11, and 12 we present the coverage metric for
each policy, as a function of the query number, for the Web sites
of PubMed, Amazon, general dmoz and the art-specific dmoz, re-
spectively. On the y-axis the fraction of the total documents down-
loaded from the website is plotted, while the x-axis represents the
query number. A first observation from these graphs is that in gen-
eral, the generic-frequency and the adaptive policies perform much
better than the random-based algorithms. In all of the figures, the
graphs for the random-1M and the random-16K are significantly
below those of other policies.

Between the generic-frequency and the adaptive policies, we can
see that the latter outperforms the former when the site is topic spe-
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cific. For example, for the PubMed site (Figure 9), the adaptive
algorithm issues only 83 queries to download almost 80% of the
documents stored in PubMed, but the generic-frequency algorithm
requires 106 queries for the same coverage,. For the dmoz/Arts
crawl (Figure 12), the difference is even more substantial: the adap-
tive policy is able to download 99.98% of the total sites indexed in
the Directory by issuing 471 queries, while the frequency-based al-
gorithm is much less effective using the same number of queries,
and discovers only 72% of the total number of indexed sites. The
adaptive algorithm, by examining the contents of the pages that it
downloads at each iteration, is able to identify the topic of the site as
expressed by the words that appear most frequently in the result-set.
Consequently, it is able to select words for subsequent queries that
are more relevant to the site, than those preferred by the generic-
frequency policy, which are drawn from a large, generic collection.
Table 1 shows a sample of 10 keywords out of 211 chosen and sub-
mitted to the PubMed Web site by the adaptive algorithm, but not
by the other policies. For each keyword, we present the number of
the iteration, along with the number of results that it returned. As
one can see from the table, these keywords are highly relevant to
the topics of medicine and biology of the Public Medical Library,
and match against numerous articles stored in its Web site.

In both cases examined in Figures 9, and 12, the random-based
policies perform much worse than the adaptive algorithm, and the
generic-frequency. It is worthy noting however, that the random-
based policy with the small, carefully selected set of 16, 000 “qual-
ity” words manages to download a considerable fraction of 42.5%



Iteration | Keyword | Number of Results

23 department 2,719,031
34 patients 1,934,428
53 clinical 1,198,322
67 treatment 4,034, 565
69 medical 1,368,200
70 hospital 503, 307

146 disease 1,520,908
172 protein 2,620,938

Table1: Sampleof keywordsqueried to PubM ed exclusively by
the adaptive policy

from the PubMed Web site after 200 queries, while the coverage
for the Arts section of dmoz reaches 22.7%, after 471 queried key-
words. On the other hand, the random-based approach that makes
use of the vast collection of 1 million words, among which a large
number is bogus keywords, fails to download even a mere 1% of the
total collection, after submitting the same number of query words.

For the generic collections of Amazon and the dmoz sites, shown
in Figures 10 and 11 respectively, we get mixed results: The generic-
frequency policy shows slightly better performance than the adap-
tive policy for the Amazon site (Figure 10), and the adaptive method
clearly outperforms the generic-frequency for the general dmoz site
(Figure 11). A closer look at the log files of the two Hidden Web
crawlers reveals the main reason: Amazon was functioning in a
very flaky way when the adaptive crawler visited it, resulting in
a large number of lost results. Thus, we suspect that the slightly
poor performance of the adaptive policy is due to this experimen-
tal variance. We are currently running another experiment to ver-
ify whether this is indeed the case. Aside from this experimental
variance, the Amazon result indicates that if the collection and the
words that a Hidden Web site contains are generic enough, then the
generic-frequency approach may be a good candidate algorithm for
effective crawling.

As in the case of topic-specific Hidden Web sites, the random-
based policies also exhibit poor performance compared to the other
two algorithms when crawling generic sites: for the Amazon Web
site, random-16K succeeds in downloading almost 36.7% after is-
suing 775 queries, alas for the generic collection of dmoz, the frac-
tion of the collection of links downloaded is 13.5% after the 770th
query. Finally, as expected, random-1M is even worse than random-
16K, downloading only 14.5% of Amazon and 0.3% of the generic
dmoz.

In summary, the adaptive algorithm performs remarkably well in
all cases: it is able to discover and download most of the documents
stored in Hidden Web sites by issuing the least number of queries.
When the collection refers to a specific topic, it is able to identify
the keywords most relevant to the topic of the site and consequently
ask for terms that is most likely that will return a large number of
results . On the other hand, the generic-frequency policy proves to
be quite effective too, though less than the adaptive: it is able to re-
trieve relatively fast a large portion of the collection, and when the
site is not topic-specific, its effectiveness can reach that of adap-
tive (e.g. Amazon). Finally, the random policy performs poorly in
general, and should not be preferred.

4.2 Impact of the initial query

An interesting issue that deserves further examination is whether
the initial choice of the keyword used as the first query issued by
the adaptive algorithm affects its effectiveness in subsequent itera-
tions. The choice of this keyword is not done by the selection of the
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Figure 13: Convergence of the adaptive algorithm using differ-
ent initial queriesfor crawling the PubMed Web site

adaptive algorithm itself and has to be manually set, since its query
statistics tables have not been populated yet. Thus, the selection is
generally arbitrary, so for purposes of fully automating the whole
process, some additional investigation seems necessary.

For this reason, we initiated three adaptive Hidden Web crawlers
targeting the PubMed Web site with different seed-words: the word
“data”, which returns 1,344,999 results, the word “information”
that reports 308,474 documents, and the word “return” that re-
trieves 29, 707 pages, out of 14 million. These keywords repre-
sent varying degrees of term popularity in PubMed, with the first
one being of high popularity, the second of medium, and the third
of low. We also show results for the keyword “pubmed”, used in
the experiments for coverage of Section 4.1, and which returns 695
articles. As we can see from Figure 13, after a small number of
queries, all four crawlers roughly download the same fraction of
the collection, regardless of their starting point: Their coverages
are roughly equivalent from the 25th query. Eventually, all four
crawlers use the same set of terms for their queries, regardless of
the initial query. In the specific experiment, from the 36th query on-
ward, all four crawlers use the same terms for their queries in each
iteration, or the same terms are used off by one or two query num-
bers. Our result confirms the observation of [11] that the choice of
the initial query has minimal effect on the final performance. We
can explain this intuitively as follows: Our algorithm approximates
the optimal set of queries to use for a particular Web site. Once
the algorithm has issued a significant number of queries, it has an
accurate estimation of the content of the Web site, regardless of
the initial query. Since this estimation is similar for all runs of the
algorithm, the crawlers will use roughly the same queries.

4.3 Impact of the limitin the number of results

While the Amazon and dmoz sites have the respective limit of
32,000 and 10,000 in their result sizes, these limits may be larger
than those imposed by other Hidden Web sites. In order to inves-
tigate how a “tighter” limit in the result size affects the perfor-
mance of our algorithms, we performed two additional crawls to
the generic-dmoz site: we ran the generic-frequency and adaptive
policies but we retrieved only up to the top 1,000 results for ev-
ery query. In Figure 14 we plot the coverage for the two policies
as a function of the number of queries. As one might expect, by
comparing the new result in Figure 14 to that of Figure 11 where
the result limit was 10,000, we conclude that the tighter limit re-
quires a higher number of queries to achieve the same coverage.
For example, when the result limit was 10,000, the adaptive pol-
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icy could download 70% of the site after issuing 630 queries, while
it had to issue 2,600 queries to download 70% of the site when
the limit was 1,000. On the other hand, our new result shows that
even with a tight result limit, it is still possible to download most
of a Hidden Web site after issuing a reasonable number of queries.
The adaptive policy could download more than 85% of the site af-
ter issuing 3,500 queries when the limit was 1,000. Finally, our
result shows that our adaptive policy consistently outperforms the
generic-frequency policy regardless of the result limit. In both Fig-
ure 14 and Figure 11, our adaptive policy shows significantly larger
coverage than the generic-frequency policy for the same number of
queries.

4.4 Incorporating the document download
cost

For brevity of presentation, the performance evaluation results
provided so far assumed a simplified cost-model where every query
involved a constant cost. In this section we present results regarding
the performance of the adaptive and generic-frequency algorithms
using Equation 2 to drive our query selection process. As we dis-
cussed in Section 2.3.1, this query cost model includes the cost for
submitting the query to the site, retrieving the result index page,
and also downloading the actual pages. For these costs, we exam-
ined the size of every result in the index page and the sizes of the
documents, and we chose ¢, = 100, ¢, = 100, and ¢4 = 10000,
as values for the parameters of Equation 2, and for the particular
experiment that we ran on the PubMed website. The values that
we selected imply that the cost for issuing one query and retrieving
one result from the result index page are roughly the same, while
the cost for downloading an actual page is 100 times larger. We
believe that these values are reasonable for the PubMed Web site.

Figure 15 shows the coverage of the adaptive and generic-
frequency algorithms as a function of the resource units used dur-
ing the download process. The horizontal axis is the amount of
resources used, and the vertical axis is the coverage. As it is evi-
dent from the graph, the adaptive policy makes more efficient use of
the available resources, as it is able to download more articles than
the generic-frequency, using the same amount of resource units.
However, the difference in coverage is less dramatic in this case,
compared to the graph of Figure 9. The smaller difference is due
to the fact that under the current cost metric, the download cost of
documents constitutes a significant portion of the cost. Therefore,
when both policies downloaded the same number of documents,
the saving of the adaptive policy is not as dramatic as before. That
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Figure 15: Coverage of PubMed after incorporating the docu-
ment download cost

is, the savings in the query cost and the result index download cost
is only a relatively small portion of the overall cost. Still, we ob-
serve noticeable savings from the adaptive policy. At the total cost
of 8000, for example, the coverage of the adaptive policy is roughly
0.5 while the coverage of the frequency policy is only 0.3.

5. RELATED WORK

In a recent study, Raghavan and Garcia-Molina [29] present an
architectural model for a Hidden Web crawler. The main focus of
this work is to learn Hidden-Web query interfaces, not to gener-
ate queries automatically. The potential queries are either provided
manually by users or collected from the query interfaces. In con-
trast, our main focus is to generate queries automatically without
any human intervention.

The idea of automatically issuing queries to a database and ex-
amining the results has been previously used in different contexts.
For example, in [10, 11], Callan and Connel try to acquire an accu-
rate language model by collecting a uniform random sample from
the database. In [22] Lawrence and Giles issue random queries to
a number of Web Search Engines in order to estimate the fraction
of the Web that has been indexed by each of them. In a similar
fashion, Bharat and Broder [8] issue random queries to a set of
Search Engines in order to estimate the relative size and overlap of
their indexes. In [6], Barbosa and Freire experimentally evaluate
methods for building multi-keyword queries that can return a large
fraction of a document collection. Our work differs from the previ-
ous studies in two ways. First, it provides a theoretical framework
for analyzing the process of generating queries for a database and
examining the results, which can help us better understand the ef-
fectiveness of the methods presented in the previous work. Second,
we apply our framework to the problem of Hidden Web crawling
and demonstrate the efficiency of our algorithms.

Cope et al. [15] propose a method to automatically detect whether
a particular Web page contains a search form. This work is com-
plementary to ours; once we detect search interfaces on the Web
using the method in [15], we may use our proposed algorithms to
download pages automatically from those Web sites.

Reference [4] reports methods to estimate what fraction of a
text database can be eventually acquired by issuing queries to the
database. In [3] the authors study query-based techniques that can
extract relational data from large text databases. Again, these works
study orthogonal issues and are complementary to our work.

In order to make documents in multiple textual databases search-
able at a central place, a number of “harvesting” approaches have



been proposed (e.g., OAI [21], DP9 [24]). These approaches essen-
tially assume cooperative document databases that willingly share
some of their metadata and/or documents to help a third-party search
engine to index the documents. Our approach assumes uncoop-
erative databases that do not share their data publicly and whose
documents are accessible only through search interfaces.

There exists a large body of work studying how to identify the
most relevant database given a user query [20, 19, 14, 23, 18]. This
body of work is often referred to as meta-searching or database
selection problem over the Hidden Web. For example, [19] sug-
gests the use of focused probing to classify databases into a topical
category, so that given a query, a relevant database can be selected
based on its topical category. Our vision is different from this body
of work in that we intend to download and index the Hidden pages
at a central location in advance, so that users can access all the
information at their convenience from one single location.

6. CONCLUSION AND FUTURE WORK

Traditional crawlers normally follow links on the Web to dis-
cover and download pages. Therefore they cannot get to the Hidden
Web pages which are only accessible through query interfaces. In
this paper, we studied how we can build a Hidden Web crawler that
can automatically query a Hidden Web site and download pages
from it. We proposed three different query generation policies for
the Hidden Web: a policy that picks queries at random from a list
of keywords, a policy that picks queries based on their frequency
in a generic text collection, and a policy which adaptively picks a
good query based on the content of the pages downloaded from the
Hidden Web site. Experimental evaluation on 4 real Hidden Web
sites shows that our policies have a great potential. In particular, in
certain cases the adaptive policy can download more than 90% of
a Hidden Web site after issuing approximately 100 queries. Given
these results, we believe that our work provides a potential mech-
anism to improve the search-engine coverage of the Web and the
user experience of Web search.

6.1 Future Work

We briefly discuss some future-research avenues.

Multi-attribute Databases  We are currently investigating how
to extend our ideas to structured multi-attribute databases. While
generating queries for multi-attribute databases is clearly a more
difficult problem, we may exploit the following observation to ad-
dress this problem: When a site supports multi-attribute queries,
the site often returns pages that contain values for each of the query
attributes. For example, when an online bookstore supports queries
ontitle, author andi sbn, the pages returned from a query
typically contain the title, author and ISBN of corresponding books.
Thus, if we can analyze the returned pages and extract the values
for each field (e.g, title = ‘Harry Potter’, author =
*J. K. Rowing’, etc), we can apply the same idea that we
used for the textual database: estimate the frequency of each at-
tribute value and pick the most promising one. The main challenge
is to automatically segment the returned pages so that we can iden-
tify the sections of the pages that present the values corresponding
to each attribute. Since many Web sites follow limited formatting
styles in presenting multiple attributes — for example, most book

titles are preceded by the label “Title:” — we believe we may learn
page-segmentation rules automatically from a small set of training
examples.

Other Practical Issues In addition to the automatic query gen-
eration problem, there are many practical issues to be addressed
to build a fully automatic Hidden-Web crawler. For example, in
this paper we assumed that the crawler already knows all query in-
terfaces for Hidden-Web sites. But how can the crawler discover

the query interfaces? The method proposed in [15] may be a good
starting point. In addition, some Hidden-Web sites return their re-
sults in batches of, say, 20 pages, so the user has to click on a
“next” button in order to see more results. In this case, a fully au-
tomatic Hidden-Web crawler should know that the first result index
page contains only a partial result and “press” the next button auto-
matically. Finally, some Hidden Web sites may contain an infinite
number of Hidden Web pages which do not contribute much sig-
nificant content (e.g. a calendar with links for every day). In this
case the Hidden-Web crawler should be able to detect that the site
does not have much more new content and stop downloading pages
from the site. Page similarity detection algorithms may be useful
for this purpose [9, 13].
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