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Abstract information to decide which databases are the most promis-

ing for evaluating a given query, are the focus of this paper.
Large amounts of (often valuable) information are stored So far, database selection research has largely assumed
in web-accessible text databases. “Metasearchers” prothat databases are static. However, databases are rarely sta-
vide unified interfaces to query multiple such databases dic and the statistical summaries that describe their contents
once. For efficiency, metasearchers rely on succinct statistireed to be updated periodically to reflect content changes.
cal summaries of the database contents to select the best daefining schedules for updating database content summaries
tabases for each query. So far, database selection researeha challenging task, because the rate of change of the data-
has largely assumed that databases are static, so the assobase contents might vary drastically from database to data-
ated statistical summaries do not need to change over timbase. Furthermore, finding appropriate schedules is impor-
However, databases are rarely static and the statistical suntant so that content summaries are kept up to date but with-
maries that describe their contents need to be updated peut overloading databases unnecessarily to regenerate sum-
riodically to reflect content changes. In this paper, we firsimaries that are already (at least close to) up to date.
report the results of a study showing how the content sum- In this paper, we start by presenting an extensive study
maries of 152 real web databases evolved over a period ah how the content of 152 real web databases evolved over
52 weeks. Then, we show how to use “survival analysisa period of 52 weeks. Given that small changes in the da-
techniques in general, and Cox’s proportional hazards retabases might not necessarily be reflected in the (relatively
gression in particular, to model database changes over timeoarse) content summaries, we examined how these sum-
and predict when we should update each content summanyaries change over time. Our study shows that summaries
Finally, we exploit our change model to devise update schedrdeed change and that old summaries eventually become
ules that keep the summaries up to date by contacting databsolete, which then calls for a content summary update
bases only when needed, and then we evaluate the qualitysifategy. To model content changes, we resort to the field of
our schedules experimentally over real web databases.  statistics named “survival analysis.” Using the Cox propor-
tional hazards regression model [10], we show that database
characteristics can be used to predict the pattern of change of
1. Introduction the summaries. Finally, we exploit our change model to de-
velop summary update strategies that work well even under
A substantial amount of information on the web is storedt résource-constrained environment. Our strategies attempt
in databases and is not indexed by search engines sucht@scontact the databases only when needed, thus minimiz-
Google. One way to provide one-stop access to the inform429 the communication with the databases. To conclude the
tion in text databases is throughetasearchegswhich can ~ discussion, we report the results of an extensive experimen-
be used to query multiple databases simultaneouslyd@he @l evaluation over our 152 real web databases, showing the
tabase selectiostep of the metasearching process, in whictgfféctiveness of our update strategies.
the best databases to search for a given query are identified, !N Prief, the contributions of this paper are as follows:

is critical for efficiency, since a metasearcher typically pro- o |n Section 3, we report the results of our extensive ex-
vides access to a large number of databases. The state-of- perimental study on how the content summaries of 152

the-art database selection algorithms rely on aggregate sta- real web databases evolved over a period of 52 weeks.
tistics that characterize the database contents. These statis-

tics, which are known asontent summariei5] (or, alter- e In Section 4, we use suryival analysis techpiques to dis-
natively, asresource description§3]), usually include the Cﬁver datfagasebpropertles that help_pred|ct the rate of
frequencyof the words that appear in the database, plus per- change of database content summaries.

haps other simple statistics such as the number of documentse In Section 5, we show how to update content summaries
in the database. These summaries, which provide sufficient by exploiting our change model. The resulting strate-



Dy, with [ D1]=51,500 Da, with | D2|=5,730 and only provide access to their documents via querying; fur-
;gorithm f(w%gll)o ;gorithm fw, DQ; thermore, no protocol is widely adopted for web-accessible
cassini g cassini 3,260 databases_ to export metadata about their contents. Hence,
saturn 2 saturn 3,730 other solutions have been proposed to automate the construc-

tion of content summaries from hidden-web databases that
do not export such information.

Callan and Connell [4] presented an algorithm for build-
ing (approximate) content summaries of hidden-web text da-

, . tabases via document sampling. This algorithm first extracts
gies attempt to contact the databases only when strictly yocument sample (of about 300 documents) from a given

needed, thus avoiding wasting resources unnecessarilystahase) via single-word queries. The document sample
is then treated as a small database whose content summary

Finally, Section 6 discusses related work, while Section 75 Used to approximate that &f's. (Alternative query-based

provides further discussion and concludes the paper. techniques [17] use different querying strategies.) In this pa-
per, we use the document sampling and content summary

approximation strategy from [4], and we use the “hat” nota-
tion to refer to an approximate content summary:

Table 1. A fragment of the content summaries
of two databases.

2. Background

This section introduces the notation and necessary baclefinition 2: An approximate, sample-based content sum-
ground for this paper. We first define the notion of a “conmary (D) of a databaseD consists of:

tent summary” for a text database and briefly summarize _ .
how database selection algorithms exploit these summaries® An estimatgD| of the number of documents In, and
(see [18] for an expanded version of this discussion). Then, | For each wordw, an estimat@f(w, D) of f(w, D).

we review how to obtain database content summaries via |
querying. TheC(D) estimates are computed from a sample of the doc-

uments inD as described in [4].

Definition 1: Thecontent summarg’'(D) of a database)
consists of: Next, we present the results of our study that examined

how content summaries of 152 text databases changed over

e The actual number of documentsiin | D|, and a period of 52 weeks.

e For each wordw, the number oD documents (w, D)

thatincludew. 3. Studying Content Changes of Real Text Da-

For efficiency, a metasearcher should evaluate a query tabases
only on a relatively small number of databases that are rel-

evant to the query. The database selection component of & ope of the goals of this paper is to study how text database
metasearcher typically makes the selection decisions usinganges are reflected over time in the database content sum-
the information in the content summaries, as the followingnaries. First, we discuss our dataset in detail (Section 3.1).
example illustrates: Then, we report our study of the effect of database changes
on the content summaries (Section 3.2). The conclusions of
fthis study will be critical later in the paper, when we discuss
H?W to model content summary change patterns.

Example I Consider the querycassini saturnpnd two
databased); and D,. Based on the content summaries o
these databases (Table 1), a database selection algorith
may infer thatD, is a promising database for the query,
since each query word appears in mahy documents. In 3-1- Data for our Study
contrast,D; will probably be deemed not as relevant, since

it contains only up to a handful of documents with each query Our study and experiments involved 152 searchable data-
word. ases, whose contents were downloaded weekly from Octo-

ber 2002 through October 2003. These databases have previ-
Database selection algorithms work best when the corsusly been used in a study of the evolution of web pages [23].

tent summaries are accurate and up to date. The most desike databases were —roughly— the five top-ranked web sites
able scenario is when each database either (1) is crawlabie,a subset of the topical categories of the Google Directory,
so that we can (periodically) download its contents and gerwhich, in turn, reuses the hierarchical classification of web
erate content summaries, or (2) exports these content susites from the Open Directory Project. (Please refer to [23]
maries directly and reliably (e.g., using a protocol such afor more details on the rationale behind the choice of these

STARTS [14]). Unfortunately, the so-calléddden-welda-  web sites.) From these web sites, we picked only those sites
tabases [16], which abound on the web, are not crawlabkhat provided a search interface over their contents, which
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Table 3. Category distribution in our dataset.
Figure 1. The recall of content summary
O(D,t) with respect to the “current” content
summary C(D), as a function of time ¢ and av-
eraged over each database D in the dataset.

are needed to generate sample-based content summaries,
Also, since we wanted to study content changes, we only se-
lected databases with crawlable content, so that every week
we can retrieve the full database contents using a crawler.
A complete list of the sites included in our experiments
is available ahttp://webarchive.cs.ucla.edu/ . Ta- metrics and the results for the 152 web databases next.
ble 2 shows the breakdown of web sites in the set by high- For our discussion, we refer to the “current” and complete
level DNS domain, where thmisccategory represents a va- content summary of a databa®easC (D), while O(D, t) is
riety of relatively small domains (e.gmil, uk, dk, andjp).  the complete summary db as oft weeks into the past. The
Similarly, Table 3 shows the breakdown of web sites by topO (D, t) summary can be considered as an (old) approxima-
ical category, as assigned by the Google Directory. In thifon of the (current)C'(D) summary, simulating the realistic
case, thamisccategory represents various small topical catscenario where we extract a summary for a datatizased
egories (e.g., world, shopping, and games). keep it unchanged farweeks. In the following definitions,
We downloaded the contents of the 152 web sites everly/, is the set of words that appear (D, t), while W,
week over one year, up to a maximum of 200,000 pages pé&r the set of words that appear @Y D). Valuesf,(w, D)
site at a timé. Each weekly snapshot consisted of three tand f.(w, D) denote the document frequency of wardn
five million pages, or around 65 GB before compression, fo© (D, t) andC(D), respectively.
a total over one year of almost 3.3 TB of history data. Recall: An important property of the content summary of
We treat each web site as a database, and created —eactiatabase is its coverage of the current database vocabu-
week— the complete content summaryD) of each data- lary. An up-to-date and complete content summary always
baseD by downloading and processing all of its documentshas perfect recall, but an old summary might not, since it
This data allowed us to study how the complete content sunmight not include, for example, words that appear only in
maries of the databases evolved over time. In addition, weew database documents. Theweighted recall (ur)of
also studied the evolution over time approximatecontent  O(D, t) with respect taC'(D) is the fraction of words in the
summaries. For this, we used query-based sampling (searrent summary that are also present in the old summary:
Section 2) to create every week an approximate content sumr = ‘Wwﬂ This metric gives equal weight to all words

[Wel

maryC(D) of each databasb.? and takes values from 0 to 1, with a value of 1 meaning that
the old content summary contains all the words that appear
3.2. Measuring Content Summary Change in the current content summary, and a value of 0 denoting no

overlap between the summaries. An alternative recall met-
We now turn to measuring how the database content surfic, Which gives higher weight to more frequent terms, is
maries —both the complete and approximate versions— evolVee wejghted recall (wrjof O(D, t) with respect toC'(D):
over time. For this, we resort to a number of metrics of conqyy = M We will use analogous definitions

. . . . . 1 c 7D
tent summary similarity from the literature. We discuss thesgy unweigﬁ%évé ;r(;é vv)eighted recall for a sample-based con-

1only four web sites were affected by this efficiency-motivated page-tent summ_ar)O(D, t) of databaseD obtained: weeks into
download limitation:hti.umich.edu  , eonline.com ,pbs.org ,and the past with respect to the current content sumndaii)
intelihealth.com : _ _ _ for the same database.

To r_educe the_ effect of sampling randomness in our experiments, we Figure 1 focuses on complete content summaries and
create five approximate content summaries of each database each week, jn . _
turn derived from five document samples, and report the various metrics #nOWs the weighted and unweighted recallzafreek-old

our study as averages over these five summaries. summaries with respect to the “current” summary, as a func-
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Figure 2. The weighted recall of “old” sample- Figure 3. The unweighted recall of “old”
based content summaries with respect to the sample-based content summaries with re-
“current” ones, as a function of the time T be- spect to the “current” ones, as a function of
tween updates and averaged over each data- thetime T between updates and averaged over
base D in the dataset, for different scheduling each database D in the dataset, for different
policies ( 7 = 0.5). scheduling policies ( 7 = 0.5).

tion of ¢ and averaged over every possible choice of “current®! (€ database vocabulary, and is not observed in the com-
summary. In Figure 1 (as well as in all subsequent figureszs,lete summarles, perhaps beca}use they are larger and are not
we report our results with a 95% confidence interval. Presubstantially affected by arelatively small number of words.
dictably, both the weighted and unweighted recall values dé-"€€ision: Another important property of the content sum-
crease as increases. For example, on average, 1-week-olffi2"y Of @ database is the precision of the summary vocab-
summaries have unweighted recall of 91%, while older, 2541ary. - Up-to-date content summaries contain only words
week-old summaries have unweighted recall of about 80943t appear in the database, while older summaries might
The weighted recall figures are higher, as expected, but stllf¢lude obsolete words that appeared only in deleted doc-
significantly less than 1: this indicates that the newly introUments. Theinweighted precision (umf O(D, ¢) with re-
duced words have low frequencies, but constitute a substafPeCt 10C (D) is the fraction of words in the old content
tial fraction of the database vocabulary as well. summary that still appear in the current summaryD):

— ‘W00W0| 1 i 1 H T
The curves labeled “Naive” in Figures 2 and 3 show thé? = v, - 1Nis metric, likeunweighted recajigives

corresponding results for approximate, sample-based cofdual weight to aI_I words and takes values from 0 to 1, with
tent summaries. (Please ignore the other curves for now; vfevalue of 1 meaning that the old content summary only con-
will explain their meaning in Section 5.) As expected, the relains words that are still in the current content summary, gnd
call values for the sample-based summaries are substantiafly’@lué of 0 denoting no overlap between the summaries.
smaller than the ones for the complete summaries. Also, tH& alternative precision metric, which —just aeighted re-
recall values of the sample-based summaries do not changl! d0es— gives higher weight to more frequent terms, is the
much over time, because the sample-based summaries Sygighted preC|S|0'n( (V‘g))()’f O(D, ) with respect taC'(D):

not too accurate to start with, and do not suffer a significarwp = '”’EW"V;W;UJ(‘;%) . We use analogous definitions of
drop in recall over time. This shows that the inherent incomunweighteaeaﬁd wéighted precision for a sample-based con-
pleteness of the sample-based summaries “prevails” over thent summar;O( D, t) of a databaséd with respect to the
incompleteness introduced by time. correct content summagy (D).

Another interesting observation is that recall figures ini- Figure 4 focuses on complete content summaries and
tially decrease (slightly) for approximately 20 weeks, thershows the weighted and unweighted precisionakek-old
remain stable, and then, surprisingly, increase, so that a 5dmmaries with respect to the “current” summary, as a func-
week old content summary has higher recall than a 20-wedlon oft and averaged over every possible choice of “current”
old one, for example. This unexpected result is due to an irsummary. Predictably, both the weighted and unweighted
teresting periodicity: some events (e.g., “Christmas,” “Halprecision values decrease @acreases. For example, on
loween”) appear at the same time every year, allowing sun&verage, a 48-week-old summary has unweighted precision
maries that are close to being one year old to have higher ref 70%, showing that 30% of the words in the old content
call than their younger counterparts. This effect is only visisummary do not appear in the database anymore.
ble in the sample-based summaries that cover only a fraction The curves labeled “Naive” in Figures 5 and 6 show the
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summary C(D), as a function of time ¢ and
averaged over each database D inthe dataset. Figure 5. The weighted precision of “old”

sample-based content summaries with re-
spect to the “current” ones, as a function of
thetime T between updates and averaged over

corresponding results for approximate, sample-based con- each database D in the dataset, for different
tent summaries. (Again, please ignore the other curves for scheduling policies ( = = 0.5).

now; we will explain their meaning in Section 5.) As ex-

pected, the precision values decrease over time, and do so

much faster than their corresponding recall values (Figures2 ] )

and 3). For example, almost 20% of the words in a 15_Weel{;j|str|butlor? chqnge; substantially over time. The curve la-
old sample-based content summary are absent from the dafg/ed “Naive” in Figure 8 shows the KL divergence for
base. For the precision results, the periodicity that appearé@MPle-based content summaries of increasing age. (Again,
in the recall figures is not visible: the sample-based contefl€@se ignore the other curves for now; we will explain their
summaries contain many more “obsolete” words that do ngP€aning in Section 5.) The KL divergence of the old sum-
appear in the database anymore. Hence, a small number'Bfies increases with time, |nd|ca_t|ng that approxmate con-
words that appear periodically cannot improve the results, t€ntsummaries become obsolete just as their complete coun-

Kullback-Leibler Divergence: Precision and recall mea- terparts do.

sure the accuracy and completeness of the content sufonclusion: We studied how content summaries of text da-
maries baseanly on the presence of words in the Sum_tabases evolve over time. We observed that the quality of

maries. However, these metrics do not capture the accﬁ9nterlt summaries (both complete and sample-based) de-

racy of the frequency of each word as reported in the Cor,}garlorates as they become increasingly older. Therefore, it

tent summary. For this, théullback-Leibler divergenci9] Is imperative to have a policy for periodically updating the
of O(D, 1) with respec,t toC(D) (KL for short) calculates summaries to reflect the current contents of the databases.

We turn now to this important issue and show how we can

the “similarity” of the word frequencies in the old content ) . - )
use “survival analysis” for this purpose.

summaryO(D,t) against the “current” word frequencies in

. < (w|D
C(D): KL = 3, cw,ow, Pe(w] D) - log L2453 where

pe(w|D) = B felw.D) is the probability of ob-

w! EWoNWe fe(w’,D)

servingw in C(D), andp,(w|D) = & fo(w,D)

w! EWoNWe fo(w’,D)

is the probability of observingy in O(D,t). The KL di- In the previous section, we established the need for up-
vergence metric takes values from 0 to infinity, with 0 indi-dating database content summaries as the underlying text
cating that the two content summaries being compared agytabases change. Unfortunately, updating a content sum-
equal. Intuitively, KL divergence measures how many bitsnary involves a non-trivial overhead: as discussed, the con-
are necessary to encode the difference between the two dignt summaries of hidden-web text databases are constructed
tributions. by querying the databases, while the summaries of crawlable
Figure 7 focuses on complete content summaries arghtabases are constructed by downloading and processing all
shows that the KL divergence of old content summariethe database documents. Therefore, in order to avoid over-
O(D,t) increases as increases. This confirms the previ- loading the databases unnecessarily, it is important to sched-
ously observed results and shows that the word frequenayte updates carefully. In this section, we present our “sur-

4. Predicting Content Summary Change Fre-
quency
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Figure 6. The unweighted precision of “old” averaged over each database D in the dataset.

sample-based content summaries with re-
spect to the “current” ones, as a function of
thetime T between updates and averaged over
each database D in the dataset, for different
scheduling policies ( 7 = 0.5).

time (h(t) = Myt?~1). We could use the exponential func-
tion to model the database survival time. This choice is re-
inforced by recent findings that indicate that the exponential
function is a good model to describe changes in wWebu-
mentq1, 6]. However, we will see in Section 4.3 that the ex-
vival analysis” modeling approach for decidimdnento up- ~ ponential distribution does not accurately describe changes
date content summaries. First, Sections 4.1 and 4.2 revid@ databasesummaries, and we will use the Weibull distri-
the necessary background on survival analysis and the Céxtion instead.

regression model from the literature [21]. Then, Section 4.3 As described so far, the survival functidi(t) and the
shows how we can use this material for our own scenario, thazard functior(t) are used to describe a single database,

model content summary changes. and are not “instantiated” since we do not know the values
of their configuring parameters. Of course, it is important
4.1. Survival Analysis to estimate the parameters of the survival functitn) for

each database, to have a concrete, database-specific change

Survival analysis is a collection of statistical techniqueénOdel' Even more imperative is to discoyeedictor vari-

that help predict the time until an event occurs [21]. Thesgblesthat mfluencg the .surwval tmes. For example,' when
methods were initially used to predict the time of survivalanaIyZIng the survival times of patients with heart disease,

for patients under different treatments, hence the name “sutlhe weight of a patient is a predictor variable and influences

vival analysis.” For the same reason the “time until an eventdhetsurwyalltltme Of.th def F_’g“elrl‘ L fAnangho(LjJsiy,bwe wantto z_re-
occurs” is also calledurvival time. For our purposes, the Ict survival imes individuaily for each database, according

survival time is the number of weekssuch that an old da- to its characteristics. Next, we describe the Cox proportional

tabase content summaey(D, ¢) is “sufficiently different” hazards regression model that we use for this purpose.

from the current summarg' (D). (We define formally the . .

survival time of a databasg(in )Se((:tion 43) y 4.2. Cox Proportional Hazards Regression Model
Survival times can be modeled througtsarvival func- ) ) )

tion S(t) that captures the probability that the survival time "€ COx proportional hazards regression moge0] is a

of an object is greater than or equal#o In the survival technique widely used in statistics for discovering important

analysis literature, the distribution 6f(t) is also described variables that influence survival times. It is a non-parametric
in terms of ahazard functiorh(t), which is the “rate of fail- model, because it makes no assumptions about the nature or

ure” at timet, conditional on survival until time: h(t) = shapg of the hazard fungtion. The only a;sumption is.that the
as(1) ) . . logarithm of the underlying hazard rate is a lineamction

— 5y A common modeling choice fof(¢) is theexpo-  jrine predictor variables.

nential distribution whereS(t) = ¢~**, and so the hazard —————————— o _ _

function is constant over timéz(t) _ /\)_ Ageneralization The “linearity” or “proportionality” requirement is essentially a

. . ; . e . monotonicity requirement (e.g., the higher the weight of a patient, the higher
of the exponential distribution is the/eibull distribution  he risk of heart attack). If a variable monotonically affects the hazard rate,

whereS(t) = e~ " and so the hazard function varies overthen an appropriate transformation (elgg(-)) can make its effect linear.
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J ] I 1 ] the PH assumption is thetratified Cox modej26], which
oI : is used to account for variables that do not satisfy the pro-
P portionality assumption. In this case, the variables that do
not satisfy the proportionality assumption are used to split

0.56

0 s moom s e s % the dataset into different “strata.” Th& Cox coefficients
remain the same across the different strata, but each stratum

Figure 8. The KL divergence of “old” sample- now has different baseline functiohs(¢).

based content summaries with respect to the Next, we describe how we use the Cox regression model
“current” ones, as a function of the time 7" be- to represent changes in text database content summaries.
tween updates and averaged over each data-

base D in the dataset, for different scheduling 4.3. Using Cox Regression to Model Content Sum-
policies ( 7 = 0.5). mary Changes

) ) Before using any survival analysis technique for our prob-
Letz be a predictor variable, aney andx s be the val-  |em we need to define “change.” A straightforward defini-
ues of that variable for two databaseandB, respectively. tion is that two content summari€s(D) andO(D,t) are
Under the Cox model, the hazard functidns(t) andhp(t)  gifferent” when they are not identical. However, even a
can be expressed for databaseand B as: small change in a single document in a database will prob-

ha(t) = %4 ho(t) = Inha(t) = Inho(t) + fza  (1a) ably result in a change in its content summary, but such
h3§t§ = eP7B hogtg = In hBEtg =1In hogt; + Bxp (1b) change is unlikely to be of importance for database selec-

whereh(t) is abaseline hazard functiorcommon for all
the members of the population. The Cox model can be ge
eralized forn predictor variableslog h(t) = log hg(t) +

tion. Therefore, we relax this definition and say that two
gontent summaries are different when Kt 7 (see Sec-
tion 3.2 for the definition of KL divergence), wheteis a

S B, where ther,'s are the predictor variables, and “change sensitivity” thresholtl Higher values of- result in
i=1 Mitis 7 s

the 5;'s are the model coefficients. The algorithm presenteﬁllonger survival times and the e_xa_lct valueroshould be se- :
ected based on the characteristics of the database selection

by Cox [10] shows how to compute i values. orithm of choice. We will see how we can effectively use

The Cox model, as presented so far, seems to solve tﬁ% Cox model to iﬁcor oratein our change model La%er
same problem addressed by multiple regression. Howevem, Section 5, we showFt)hat we can defing update 'schedLJIes
the dependent variable (survival time) in our case is not nor-h d ' he ch | p P
mally distributed, but usually follows the exponential or thet atadapt to the chosen valuero
Weibull distribution —a serious violation for ordinary mul- . ) o
tiple regression. Another important distinction is the facP€finition 3: Given a value of the change sensitivity thresh-

that the Cox model effectively exploits incomplete or “cen-0/d 7 > 0, the survival time of a database at a point in

sored” data, from cases that “survived” the whole study pelM€ ~With associated “current” content summagy D)— is
e smallest time for which the KL divergence a@d(D, t)

riod. Excluding these cases from the study would seriously’. ,

affect the result, introducing a strong bias in the resultin§;Ilth respect ta'(D) is greater thanr.

model. Those observations are calteshsoredbbservations

and contain only partial information, indicating thidlere  Computing Survival Times: Using the study of Section 3

was no failure during the time of observatioriThe Cox as well as Definition 3, we computed the survival time of

model effectively uses the information provided from ceneach content summary for different values of threshald

sored cases. (For more information, see [10].) For some databases, we did not detect a change within the
The Cox proportional hazards model is one of the most

general models for working with survival data, since it does “We use KL divergence for our change definition (as opposed to pre-

not assume any specific baseline hazard function. Thfsionor recall) because KL depends on the whole wqrd-frequency distri-

. . ution. As our later experiments show, an update policy derived from the
model allows the extraction of a “normalized” hazard funC'KL-based change definition improves not only the KL divergence but also
tion hg(t) that is not influenced by predictor variables. Thisprecision and recall.




period of the study. As explained in Section 4.2, thesan* Features | [ Br Br
sored cases are still useful since they provide evidence that szer |01 | 13
the content summary of a database with the given character- . éize,T 0.094 | 6762 | -1.305
isticsdid not changewithin the allotted time period and for
the thresholdr of choice. The result of our study is a set Table 4. The coefficients of the Cox model,
of survival times, some marked as censored, that we use aswhen trained for various sets of features.
input to the Cox regression model.

select the database features that we pass as parameters tadbg model using the variables indicated above. We vali-
Cox model. We use two sets of features: a setoiifen’  gated the results using leave-one-out cross valid&tithe
features and a set okVolutiorf features. Thecurrentfea-  results of the initial run indicated that, from tharrentfea-
tures are characteristics of the database at a given point iires, the number of words and the topic of the database are
time. For example, the topic of the database and its DNS depot good predictor variables, while from tiegolutionfea-
main arecurrentfeatures of a database. On the other handyres precision and recall are not good predictor variables;
we extract theevolutionfeatures by observing how the data-the KL features are good predictors, and strongly and posi-
base changes over a (training) time period. For the remaindﬁ\ge|y correlated with each other.

of the discussion, we focus on the features for the impor- Gjyen these results, we decided to drop the number of
tant case of approximate, sample-based content summarigg,rqs and the topic variables from tioeirrent set, keep-
Analogous features can be defined for crawlable database;ﬁg only the threshold, the database size, and the domain.

for which we can extract complete summaries. From theevolutionset we dropped the recall and precision
The initial set ofcurrentfeatures that we used was: features. Also, from the KL features we kept only thefea-
e The threshold. ture: given its presence, featuresthroughxg were largely

. . . redundant. Furthermore, we reduced the training time from
o The Iogarlthm_ of the estl_mated size of the datgbaseto to three weeks. To examine whether any of the selected
where we estimate the size of the database using gy res —other than thresheidwhich we always keep— are
sample-resample” method from [25]. redundant, we trained Cox using (a) size andb) x; and
e The number of words in the current samgléD). 7;and (C)x1, size, andr. We describe our findings next.

e The topic of each database, defined as the top level cat-

egory under which the database is classified in the OpeTraining the Cox Model:  After the initial feature selec-

Directory. This is a categorical variable with 16 distincttion, we trained the Cox model again. The results indicated

values (e.g., "Arts,” “Sports,” and so on). We encodecthat all the features that we had selected are good predictor

this variable as a set of dummy binary variables: eachariable§ and strongly influence the survival time of the ex-
variable has the value 1 if the database is classified ufracted summaries. However, the domain variable did not
der the corresponding category, and O otherwise. satisfy the proportionality assumption, which is required by
e The domain of the database, which is a categorical varfn® Cox model (see Section 4.2): the hazard ratio between
able with five distinct values (com, org, edu, gov, misc) WO domains was not constant over time. Hence, we resorted
We encoded this variable as a set of 5 binary variablestC thestratified Cox modektratifying on domairl.
) ] The result of the training was a set of coefficiefits 5,

To extract the set okvolution features, we retrieved 4 3. for features sizex,, andr, respectively. We show
sample-based content summaries from each database eVg¥ cox coefficients that we obtained in Table 4. The pos-
week over a period of 10 weeks. Then, for each databasgye values of3, and 3, indicate that larger databases are
we compared every pair approximatesummaries that were e |ikely to change than smaller ones and that databases
gxtracted ex_a_ctlgt weeks apart (|.e:, on Weekandtj&-k) US-  that changed during training are more likely to change in the
ing the precision, recall, and KL divergence metrics. Speciffyre than those that did not change. In contrast, the nega-

ically, the features that we computed were: tive value for3, shows that —not surprisingly— higher values
e The average KL divergence,, ..., kg between sum- Of 7 resultin longer survival times for content summaries.
maries extracted with time differenceDf. . . , 9 weeks. Given the results of the analysis, for two databaBes

e The average Welghted and unwe|ghted precision of 5Since each database generates multiple survival times, we leave out one
summaries extracted with time difference of... ;9  databaseat a time for the cross-validation.
weeks. 5For all models, the statistical significance is at the 0.001% level accord-
ing to the Wald statistic [21].
e The average weighted and unweighted recall of sum- 7This meant that we had to compute separate baseline hazard functions

maries extracted with time differencemnf. . ., 9 weeks. for each domain.



Features | Domain | Agom | Ydom S(t)

com 0.0180 | 0.901
edu 0.0205 | 0.585

com 0.0211 | 0.844 1
edu 0.0392 | 0.578 7
size,r gov 0.0193 | 0.701 B
misc 0.0163 | 1.072 0.8 1
org 0.0239 | 0.723 ]
com 0.0320 | 0.886 7
edu 0.0774| 0.576 0.6
K1, T gov 0.0245 | 0.795 7
misc 0.0500 | 1.014 7
org 0.0542 | 0.715 0.4 -

K1, Size,T gov 0.0393 | 0.780 0.2
misc | 0.0236 | 1.050 o
og |o00274| 0724 4 ____ .~~~ ° o,
0 10 20 30 40 50
Table 5. The parameters for the baseline sur- . ) ) )
vival functions for five domains. The baseline Figure 9. The survival function  5(t) for differ-
survival functions describe the survival time ent domains (|D| = 1,000, 7 = 0.5, 1 = 0.1).

of a database D in each domain with |D| =1

(In(|D]) = 0)and x; =0, and for 7 = 0.
they tend to remain unchanged for longer time periods as
their age increases). We summarize our results in the fol-

and D, from the same domain, we have: lowing definition:

Definition 4:  The functionS;(¢) that gives the survival

InSi(t) = exp(BsIn(|D1]) + Berr, + Br71) - InSo(t) function for a databas®; is:

InSy(t) = exp(BsIn(|D2|) + Brki, + Br72) - InSy(t)

. . . . S;i(t) = exp (=A;t7m) with (2a)
whereSy(t) is the baseline survival function for the respec- 5
tive domain. The baseline survival function corresponds toa i = Adom (|Dil” - exp (Berin) - exp (B,7:))  (2b)

“baseline” databas® with size|D| = 1 (i.e.,In(|D[) = 0),  where|D;]| is the size of the database,; is the KL diver-

k1 = 0, andr = 0. gence of the samples obtained during the training peritd,
Under the Cox model, the returned baseline survival funcs, and 3, are the Cox coefficients from Table ¥;,,,, and

tions remain unspecified and are defined only by a set of vajydom are the domain-specific constants from Table 5, and

uesSo(t1), So(tz), ..., So(tn). In our experiments, we had js the value of the change threshold #f (Definition 3).
five baseline survival functions, one for each domain (i.e.,

com, edu, org, gov, misc). To fit the baseline survival func- Definition 4 provides a concrete change model for a data-
tions, we assumed that they follow the Weibull distributionPaseD that is specific to the database characteristics and to
(see Section 4.1), which has the general foftn) = ¢—**".  the change sensitivity, as controlled by the threshold\n

We applied curve fitting using a least-squares method (ifinteresting resultis that summaries of large databases change
particular the Levenberg-Marquardt method [22]) to estimore often than those of small databases, as indicated by the
mate the parameters of the Weibull distribution for each dopositive value of3;, which corresponds to the database size.
main. For all estimates, the statistical significance was at tHeigure 9 shows the shape 6ft) for different domains, for
0.001% level. Table 5 summarizes the results. a hypothetical database with |[D| = 1000 andr; = 0.1,

An interesting result is that the survival functions do notand forr = 0.5. This figure shows that content summaries
follow the exponential distributiom(= 1). Previous stud- tend to vary substantially across domains (e.g., compare the
ies [6] indicated that individual webdocumentshave life-  “misc” curve against the “gov” curve).
times that follow the exponential distribution. Our results,
though, indicate that content summaries, with aggregate stg- Scheduling Updates
tistics abousets of documentshange more slowly.

So far, we have described how to compute the survival
Modeling Conclusions: We have presented a statisticalfunction S(t) for a text database. In this section, we de-
analysis of the survival times of database content summariescribe how we can explofi(t) to schedule database content
We used Cox regression analysis to examine the effect simmary updates and contact each database only when nec-
different variables in the survival time of content summariegssary. Specifically, we first describe the theory behind our
and showed that the survival times of content summaries foscheduling policy (Section 5.1). Then, we present the exper-
low the Weibull distribution, in most cases with< 1 (i.e., imental evaluation of our policy (Section 5.2), which shows



that sophisticated update scheduling can improve the quality | D: Ai | T=40)| T=10

. . . tomshardware.com 0.088 | 46 weeks| 5 weeks
of the extracted content summaries in a resource-restricted usps. com 0.023 | 34 weeks| 12 weeke
environment.

o _ Table 6. Optimal content-summary update fre-
5.1. Deriving an Update Policy quencies for two databases.

A metasearcher may provide access to hundreds or thou-
sands of .databases and operatg u.nder limited networ k an%_ When ); is large compared to the resource constraint
computational resources. To optimize the overall quality of F, the optimal revisit frequency; becomes smaller as
the content summaries, the metasearcher has to carefully de- A |
. . : grows larger.
cide when to update each of the summaries, so that they are
acceptably up to date during query processing. In our solution to the above generalized optimiza-
To model the constraint on the workload that a metation problem, we also observed similar trends even when
searcher might handle, we defifieas the average number of v # 1 (i.e., when the rate of change varies over time).
content summary updates that the metasearcher can perfofte an example, in Table 6 we show the optimal up-
in a week. Then, under Haive strategy that allocates up- date frequencies for the content summaries of two da-
dates to databases uniformly,= % represents the average tabases,tomshardware.com  and usps.com . We
number of weeks between two updates of a database, wher@an see that, whel’ is small " = 10), we up-
n is the total number of databases. For examfple= 2  datetomshardware.com more often tharusps.com ,
weeks means that the metasearcher can update the summsinge \; is larger fortomshardware.com . However,
of each database every two weeks, on average. when T is large " = 40) the optimal update frequen-
As we have seen in Section 4.3, the rate of change afies are reversed. The scheduling algorithm decides that
the database contents may vary drastically from databasettumshardware.com changes “too frequently” and is not
database, so thWaive strategy above is bound to allocate beneficial to allocate more resources to try to keep it up to
updates to databases suboptimally. Thus, the goal of odate. Therefore, the algorithm decides to update the content
update scheduling is to determine the update frequgihcy summary fromtomshardware.com  less frequently, and
for each databas®; individually, in such a way that the instead focus on databases likgps.com that can be kept
function >, S;(¢) is maximized, while at the same time up to date. This trend holds across domains and across val-
not exceeding the number of updates allowed. In this casages ofy.
we maximize the average probability that the content sum-
maries are up to date. One complication is that the sub.2. Experimental Results
vival function S;(¢) changes its value over time, so differ-
ent update scheduling policies may be considered “optimal” In Section 4.3, we showed how to compute the form and
depending on whew;(t) is measured. To address this is-parameters of the survival functio$}(¢), which measures
sue, we assume that the metasearcher wants to maximitte probability that the summary of a databd3eis up to
the time-averagedralue of the survival function, given as: datet weeks after it was computed. Based on Cox’s model,
S = limy_ o % f(f S, Si(t)dt. This formulation of the we derived a variety of models that compuigt) based on
scheduling problem is similar to that in [7] for the problemthree different sets of features (see Tables 4 and 5). Now, we
of keeping the index of a search engine up to date. We fot!se these models to devise three update policies, using the
mulate our goal as the following optimization problem.  approach from Section 5.1 and the following feature sets:
e k1, Size,7: We use all the available features.

Problem 1: Find the optimal update frequengy for each . .
P b quendy e size andr: We do not use the history of the database,

databaseD, such thatS is maximized under the constraint

ST f—n i.e., we ignore the evolution featurg and we use only

=17 T the database size and the change sensitivity threshold
Given the analytical forms of th&;(¢) functions in the pre- e 1 andr: We use only the history of the database and
vious sections, we can solve this optimization problem us-  the thresholdr. We consider this policy to examine
ing the Lagrange-multiplier methodas shown for example whether we can work without size estimatidn.

in [7, 24]). Cho et al. [7] investigated a special case of thisyg also consider thilaive policy, discussed above, where

optimization problem whery = 1 (i.e., when the rate of uniformly update all summaries evefyweeks?
change is constant over time), and observed the following:

8The size estimation method that we use [25] relies on the database re-
1. When )\; (which can be interpreted as denoting “howturning the number of matches for each query. This method becomes prob-

often the content summary changes”) is small relative t&samatic for databases that do not report such numbers with the query results.
9The results presented in this paper focus on sample-based content sum-

the resource constraiit, the optimal revisit frequency aries. We also ran analogous experiments for the complete content sum-
fi: becomes larger as; grows larger. maries, and the results were similar.



We measured the precision of the update operations as the
ratio of the precise updates over the total number of updates
o i performed. Figure 10 shows the precision results as a func-
o7 g A tion of 7" and for~ = 0.5. For this value ofr and for the

E S s databases in our dataset, very low valueg'df.e., 7" < 10)
are unnecessary, since then the databases are contacted too
often and before they have changed sufficiently. A decrease
in the value ofr cause the curves to “move” towards the
left: the summaries change more frequently and then the up-
o1 dates become more precise. For examplerfer 0.25 and
P T = 10, precision is approximately 40%, while f@r = 25
it is approximately 80%.

Interestingly, the update precision can be predicted ana-
lytically, using the target functio§ described in Section 5.1.
The average probability of survival (our target function) cor-
responds in principle to the percentage of non-precise up-
dates. This result is intuitive, since our target function es-
sentially encodes the probability that the summary of the da-
tabase has changed. Therefore, during scheduling, it is pos-
Quality of Content Summaries under Different Policies:  sible to select a value &f that achieves (approximately) the
We examine the performance of each updating policy, byesired update precision.
measuring the average (weighted and unweighted) precision

and regall, and the average KL d!verggnce of the generatP(Ejonclusion: As a general conclusion, we have observed
approximatesummaries. We consider different valuesiof that our scheduling policies result in high-quality content

whereT is the average number of weeks between updates. . : .
) . summaries, even under strict constraints on the allowable up-
Figures 2 and 3 show the average weighted and un;

. - . . . fr ncy. Al r modelin roach hel redi
weighted precision of the approximate summaries, obtain c%f\te equency. /so, ou ode g approach heips p edict
. . . e precision of the update operations, in turn allowing the
under the scheduling policies that we consider. The results

- : . Metasearcher to tune the update frequency to efficiently kee

indicate that, by using any of our policies, we can keep th . P d y y P
: . e content summaries up to date.

recall metrics almost stable, independently of the resource

constraints. Figures 5 and 6 show the average weighted and

unweighted precision of the approximate summaries. Agair§. Related Work

our three scheduling policies demonstrate similar perfor-

mance, and they are all significantly better than Neve We are not aware of prior work to experimentally mea-
policy. The difference with th&aivepolicy is statistically  syre database content summary evolution over time or to
significant, even when the summaries are updated relativef¢hedule updates to the content summaries to maintain their
frequently (i.e., even for small values'dj. Finally, Figure 8  freshness. However, several previous studies have focused
shows that our updating policies keep the average KL diveign various aspects of the evolution of the web and of the re-
gence of the approximate summaries almost constant evefted problem of web crawling. Ntoulas et al. [23] studied
for a large number of weeks between updates. the changes dhdividual web pages, using the same dataset
Interestingly, the three policies that we propose demorgs we did in this paper. Ntoulas et al. concluded that 5%
strate minimal differences in pel‘fOI’mance, and these d|ﬁe|bf new content (measured in “Shing|es“) is introduced in an
ences are not Statistica”y Significant. Addltlonally, all tech'average week in all pages as a whole. Add|t|0na”y, [23] ob-
niques are significantly better than thiaive policy. This  served a strong correlation between the past and the future
indicates that it is possible to work with a smaller set Ofdegrees of the changes of a web page and showed that this
features, without decreasing performance. For example, W&rrelation might be used to predict the future changes of a
may ignore the evolution feature, and avoid computing page. In this paper (Section 3), we investigated this high-
the history of a database, which involves frequent samplinge| idea more formally through survival analysis and mod-
of the database for a (small) period of time. eled the change behavior of web databases using the Cox
proportional hazard model. This model was then used for
Precision of Update Operations: To measure how “pre- designing the optimal scheduling algorithm for summary up-
cise” the updates scheduled by our policies are, we define alates. Lim et al. [20] and Fetterly et al. [13] presented pio-
update as “precise” if it contacts a database when the nemeer measurements of the degree of change of web pages
summary of the database is different from the existing sunwver time, where change was measured using the edit dis-
mary according to the definition of change in Section 4.3tance [20] or the number of changed “shingles” [13] over

o
)

Update Precision
o
o

I
IS

Figure 10. The precision of the updates per-
formed by the different scheduling algorithms,
as a function of the average time between up-
dates 7" and for 7= 0.5.



successive versions of the web pages. Other studies of wef]
evolution include [1, 5, 27, 11, 2], and focus on issues that

are largely orthogonal to our work, such as page modifica{3]
tion rates and times, estimation of the change frequencies
for the web pages, and so on. [4]

Web crawling has attracted a substantial amount of work
over the last few years. In particular, references [7, 9, 12, 8}5]
study how a crawler should download pages to maintain
its local copy of the web up to date. Assuming that the (6]
crawler knows the exact change frequencies of pages, ref[—7]
erences [7, 9] present optimal page downloading algorithms;
while [12] proposes an algorithm based on linear program-g
ming. Cho and Ntoulas [8] employ sampling to detect
changed pages. All this work on web crawling mainly fo- [9]
cuses on maintaining a local copy of the web as up to date as
possible, which requires maximizing the fraction of remotg;q)
pages whose local copy is up to date. Our goal is different:
we want to maximize the freshness of the content summarigsi)
that describe the various web sites, so that we produce more
accurate database selection decisions.

Olston et al. [24] proposed a new algorithm for cache synft2]
chronization in which data sources notify caches of impor-
tant changes. The definition of “divergence” or “change” 13]
in [24] is quite general and can be applied to our context.
However, the proposed push model is not applicable Whe[@4
data sources are “uncooperative” and do not inform others
of their changes as is the case on the web.

[15]

7. Conclusions 6]

We presented a study —over 152 real web databases— of
the effect of time on the database content summaries d#’]
which metasearchers rely to select appropriate databases
where to evaluate keyword queries. Predictably, the qualitg}s]
of the content summaries deteriorates over time as the under-
lying databases change, which highlights the importance
update strategies for refreshing the content summaries. 2%]
described how to use survival analysis techniques, in partic-
ular how to exploit the Cox proportional hazards regressio&l]
model, for this update problem. We showed that the chan &
history of a database can be used to predict the rate of char?ge]
of its content summary in the future, and that summaries
of larger databases tend to change faster than summarigs
of smaller databases. Finally, based on the results of our
analysis, we suggested update strategies that work well in a
resource-constrained environment. Our techniques adapt(&$]
the change sensitivity desired for each database, and contact
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