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Abstract
The high network latencies and limited battery life of mobile
phones can make mobile web browsing a frustrating experience. In
prior work, we proposed trading memory capacity for lower web
access latency and a more convenient data transfer schedule from
an energy perspective by prefetching slowly-changing data (search
queries and results) nightly, when the phone is charging. However,
most web content is intrinsically much more dynamic and may be
updated multiple times a day, thus eliminating the effectiveness of
periodic updates.

This paper addresses the challenge of prefetching dynamic web
content in a timely fashion, giving the user an instant web brows-
ing experience but without aggravating the battery lifetime issue.
We start by analyzing the web access traces of 8,000 users, and
observe that mobile web browsing exhibits a strong spatiotemporal
signature, which is different for every user. We propose to use a ma-
chine learning approach based on stochastic gradient boosting tech-
niques to efficiently model this signature on a per user basis. The
machine learning model is capable of accurately predicting future
web accesses and prefetching the content in a timely manner. Our
experimental evaluation with 48,000 models trained on real user
datasets shows that we can accurately prefetch 60% of the URLs
for about 80-90% of the users within 2 minutes before the request.
The system prototype we built not only provides more than 80%
lower web access time for more than 80% of the users, but it also
achieves the same or lower radio energy dissipation by more than
50% for the majority of mobile users.

Categories and Subject Descriptors H.4.m [Information Sys-
tems]: Information Systems Applications—Miscellaneous

General Terms Algorithms, Human Factors, Experimentation

1. Introduction
With recent advances in large touch screens and widespread data
networks, smartphones are rapidly gaining popularity. They are the
most convenient device to access the web, and according to a recent
study [22], mobile devices are expected to surpass desktop web
browsing in the next 4 years. Mobile phone user’s experience has
come a long way in the past decade, but such devices still face
high network latencies and limited battery life, which can make the
mobile experience frustrating.
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Luckily, memory capacity is still experiencing healthy improve-
ments [15], and can be used to mitigate the two previous limita-
tions. Surplus memory can be used to store data that is brought
to the mobile device when network conditions are favorable. The
data can be later accessed at low latency and low energy cost.
Based on this observation we have proposed the concept of Pocket
Cloudlets [19], i.e., bringing part of cloud services into mobile
phones to reduce latency and energy consumption, with the added
benefit of significantly reducing the load on the server side as well.
We demonstrated the concept using a search service: a set of pop-
ular search queries and results is loaded onto the phone at night,
when the phone is charging, to speed up searches during the next
day. However, in that work we limited ourselves to search and did
not address actual web content. While search results change slowly
(they can be considered static on a daily basis), web content can
change quickly during a single day.

To enable a faster mobile web browsing experience on the
currently available mobile infrastructure, this paper proposes an
intelligent web content prefetcher that downloads web content on
the mobile device at appropriate times, anticipating a user’s future
web accesses. Perhaps the biggest challenge with prefetching web
content compared to search queries and results is that web content
is dynamic. While the mapping of search queries to search results
remains relatively stable over days or even weeks, web content
changes frequently. News and social network web sites change
continuously, such that the nightly update approach does not work
as well as it does for search.

A naı̈ve approach to achieving high prefetching accuracy is to
prefetch as much content we can as often as possible. However, this
approach is not practical due to constraints in battery capacity and
limited network bandwidth. Downloading all frequently accessed
web pages of a user every 2 minutes might ensure a lightning-
fast web browsing experience, but the battery would not last very
long. At a high level, we can consider a prefetch of a web page
as unsuccessful or “wasted” either because it happened too long
ago (and thus the content on the device is stale), or because the
user did not end up explicitly requesting the web page at all. In
either of these cases, we end up using some phone’s resources
without realizing any gains. Therefore, our goal is to achieve timely
prefetches without increasing (and possibly decreasing!) energy
consumption.

We first analyze the web access traces from roughly 8,000
mobile users over a period of 3 months and show three well-defined
patterns. First, users often visit a small set of web pages from their
phones, which they tend to repeatedly visit over time. Second, user
accesses are often periodic and happen at given time windows.
For example, a user may check the Facebook updates every 30
minutes and the CNN news right when she wakes up and during
an afternoon break. Third, users often access content in bursts. For
example, when the user checks the news, she may also check the
weather forecast and current stock prices.
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Figure 1. (a) Repeatability of mobile URL visits. (b) Average and standard deviation of the cumulative URL volume that the top most
frequently visited URLs are accountable for.

Prior work in web content prefetching has focused on simply
correlating sets of web sites accessed together and using this infor-
mation to prefetch the set when the first page of a set is accessed. In
this work, we study properties of mobile web accesses that go be-
yond these sequential features. We take advantage of the spatiotem-
poral access patterns obtained from our analysis and use machine
learning techniques to create a model that can be used to predict
both what web pages a user is likely to request as well as when
these requests are likely to occur. By learning how each individual
user accesses the web over time, the phone can proactively down-
load web content before the user explicitly attempts to access it,
thus enabling an instant mobile browsing experience.

Our experimental evaluation with real user datasets shows that
we can accurately prefetch 60% of the URLs for about 80-90%
of the users within 2 minutes before the request. Furthermore, the
proposed approach not only provides more than 80% lower web
access time for more than 80% of the users, but it also achieves the
same or lower radio energy dissipation by more than 50% for the
majority of mobile users.

In summary, this paper makes the following contributions:

• Provides a detailed analysis of web browsing on mobile phones
from 8,000 users, showing widely disparate behaviors from
user to user but a strong spatiotemporal structure for individual
users.

• Formulates the problem of web content prefetching as a binary
access prediction problem in machine learning, where the fea-
tures are derived from the observable structure of mobile web
browsing. We use stochastic gradient boosting techniques for
this purpose, which allow us to provide insight into which fea-
tures are the most relevant to access prediction.

• Experimentally evaluates the accuracy of the proposed ap-
proach for each user by creating individual user models with
a portion of the accesses in each trace, and testing their per-
formance with the remaining portion. Quantifies, using a pro-
totype implementation, the impact of the proposed approach on
the web access time and radio power consumption with respect
to the state-of-the-art.

2. Mobile web Browsing Analysis
Central to our work is the ability to understand and model effec-
tively the user browsing behavior. We start our study by first pro-
viding a description of the data set that we used, and continue with
the results of our analysis both on aggregate across users and indi-
vidually per user.

2.1 Data Set
We used the mobile web access logs of 8,000 users across the
United States over a 3-month period. The users were randomly
selected among a larger number of users that opted to download
and install the Bing application or to enable the pre-installed Bing
toolbar on their mobile phones. Users’ phones varied from high-
end smartphones (e.g., iPhone, Android, Blackberry) to low-end
featurephones (e.g., LG and Samsung devices with custom operat-
ing systems). From the total of 8,000 users in our dataset, half are
smartphone users and half are featurephone users. To get a deeper
understanding on user behavior, each of the two sets of users was
further split into 4 different classes (low, medium, high, and ex-
treme volume classes) based on the monthly volume of web ac-
cesses ([20-40), [40,140), [140,460), [460,∞) respectively). In the
logs we analyzed, the information on each web access included
unique user identifier, full path of accessed URL, and access times-
tamp.

2.2 Repeatability of Mobile Web Accesses
We first study the repeatability of mobile web accesses. We com-
pute the number of times that any user will be visiting a new unique
URL (i.e., a full path URL that has not been visited before) in
the next access. We show the results in Figure 1(a) across volume
classes and device types. Approximately 40% to 60% of the smart-
phone users, for the low and extreme volume classes, are likely to
visit a new URL 20% of the time. In other words, 80% of the URL
visits are repeated visits for roughly half of the smartphone users.
We also observe that users in higher volume classes are more likely
to repeat visits than users in lower volume classes. Finally, although
the trends are similar for featurephones, the overall repeated visits
are higher when compared to smartphone users. Intuitively, fea-
turephone users that have to interact with devices with constrained
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Figure 2. Breakdown of total URL accesses into targeted (URLs
that have been accessed at least 5 times in a month) and untargeted.
The white numbers in each bar plot represent the average number
of unique targeted/untargeted URLs.

user interfaces and hardware capabilities are more likely to access
the web in a more conservative way compared to smartphone users.
They tend to explore the web less and focus more on accessing web
content they really need to access.

To examine the repeatability of URL visits in more detail, we
also compute, for each user, the cumulative URL volume for the
top URLs that the user accesses. The result is shown in Figure
1(b). The numbers on the horizontal axis represent the top most
frequently visited URLs (these URLs might be different across
users). The vertical axis shows the cumulative fraction of the total
URL visits that the number of the most frequently visited URLs
is responsible for across users. Notably, across user classes, the
most frequently visited URL accounts for about 50% of the overall
user’s URL visits. In other words, a single URL is responsible for
approximately half of a typical user’s URL requests. However, we
also observe that the overall URL volume varies across users. More
specifically, there are users for whom more than 90% of their total
URL volume can be attributed to a single URL, and users for which
the most frequent URL corresponds to less than 10% of their total
volume. It is therefore important for any prefetching technique to
take into account the individual characteristics of every user.

2.3 Targeted vs. Untargeted web Accesses
From the analysis so far we infer that the URLs that a user visits
fall into two classes: there is a small number of frequently visited
URLs, and a long tail of infrequently visited URLs. In order to
investigate the properties of these two kinds of URLs we classify
them as targeted and untargeted URLs. We define a targeted URL
to be one which was visited by the user at least 5 times in a month.
We chose this threshold by closely analyzing the user web access
logs. We found that smaller thresholds, such as 3, could be too
permissive and cause 50% of the extreme volume users to have
more than 50 targeted URLs. On the other hand, higher thresholds
such as 10 could be too aggressive and cause 30% of the low
volume users to have 0 targeted URLs.

We analyze the volume of web accesses generated by targeted
and untargeted URLs. As Figure 2 shows, although the targeted ac-
cesses are only slightly more than the untargeted accesses for the
low volume users, the URL accesses are dominated by targeted ac-
cesses for the remaining classes of users. For example, for high
volume users, targeted accesses account for 70% of the total smart-
phone URL accesses.

Figure 2 also provides more insight on the average number of
unique targeted URLs across the different volume classes and de-
vice types (number indicated inside the bars in Figure 2). For low
and medium volume users and for both featurephones and smart-
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Figure 3. Time elapsed between consecutive smartphone web ac-
cesses when all, targeted, or untargeted URLs are considered. The
trends are identical for featurephones (not shown).

phones, the average number of unique targeted URLs is roughly
2 and 3 respectively. For high and extreme volume classes, it in-
creases to 9 and 12 for featurephones and smartphones respectively.
In other words, 2 to 12 unique URLs are, on average, responsible
for more than 70% of a user’s web accesses. Hence, enabling the
mobile device to properly model when and which of the small num-
ber of targeted URLs will be accessed by the user is of paramount
importance for an effective prefetching policy.

2.4 Timing of Mobile Web Accesses
Web pages are constantly updated. For a prefetching technique
to be effective, it needs to predict when the user’s web accesses
will take place. Hence, we study the temporal access patterns of
our users. Figure 3 shows the elapsed time between consecutive
smartphone web accesses for targeted, untargeted and combined
(targeted and untargeted) URL visits. Approximately 35% to 50%
of targeted URL visits across the 4 volume classes occur within
12 minutes (0.2 hours in Figure 3) of the last targeted URL visit.
Additionally, 25% to 40% (depending on the volume class) of
targeted URL visits take place within 6 minutes (0.1 hours in Figure
3) of the last targeted URL visit. Hence, a targeted URL access can
serve as a good predictor of the time at which a next targeted URL
access will occur.

According to Figure 3, untargeted URL visits tend to be more
concentrated in time when compared to targeted URLs. Approxi-
mately 70% to 80% of untargeted URL visits (as opposed to 35%
to 50% of targeted URL visits) take place within 12 minutes of the
last untargeted URL visit. In other words, when mobile users ex-
plore the web, they tend to visit many more URLs within a short
amount of time as compared to when visiting targeted content. We
can leverage this information to improve the accuracy of prefetch-
ing and save battery resources by not prefetching targeted content
when the user is about to visit untargeted URLs.

2.5 A Peek into Individual Users
In addition to relative timing, we also study the role of absolute tim-
ing in mobile web browsing (e.g., time of day when URL accesses
occur). In general, knowing when to expect URL accesses can drive
content prefetching. Figure 4 shows the timestamps within a day of
all URL accesses that 4 random smartphone users performed over
3 months.
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Figure 4. Web accesses of 4 representative smartphone users in
the high volume class. All accesses over the 3 months are projected
into a single day. The red stars represent untargeted URL visits. The
blue circles represent targeted URL visits.

The variance in mobile web access patterns across the 4 users
is striking. The URL visits of users 1 and 4 are dominated by un-
targeted URLs. Most likely, a web content prefetching technique
will have difficulty in modeling these users’ web browsing patterns
accurately, as it has no way of predicting the untargeted accesses.
Interestingly, however, users 1 and 4 access web pages from their
phones at given time intervals within the day (e.g., user 4’s accesses
are only between 6am and 9am, 9pm and 11pm, and midnight and
2am). On the other hand, for users 2 and 3, web accesses are dom-
inated by a small set of targeted URLs (2 targeted URLs for user
2 and 7 for user 3). More importantly, the single most frequently
visited targeted URL is responsible for the majority of that user’s
URL visits. Additionally, both users 2 and 3 tend to continuously
access this single targeted URL periodically throughout the day. If
a prefetching policy can predict when the targeted URL will be ac-
cessed by the users based on their periodic accesses, it can be very
effective in providing an instant mobile browsing experience.

2.6 Summary and Key Findings
The analysis of real web access logs from 8,000 users has high-
lighted different aspects of mobile web browsing behavior that are
critical to content prefetching:

• A small number of targeted URLs is responsible for the major-
ity of a user’s URL visits. Predicting these targeted URL ac-
cesses can have a huge impact on the user’s browsing experi-
ence.

• Targeted URL accesses are clustered in time. Mobile users tend
to access them in batches within short time windows. Hence,
recent targeted URL accesses can be strong indicators of future
URL visits.

• Untargeted URL accesses are significantly more clustered in
time than targeted URL accesses. Recent untargeted URL ac-
cesses can help us decide about the type of future URL accesses
(targeted vs. untargeted).

• URL accesses exhibit strong temporal properties that help us
prefetch content in a timely manner. Prefetching based only on
past sequences (or, more generally, sets) of web accesses can be

inefficient as it might not provide enough information to decide
when to prefetch.

• Mobile web browsing behavior across users can vary greatly in
the type and number of accessed URLs as well as the timing of
URL accesses.

Thus, a data-driven content prefetching technique that takes ad-
vantage of the underlying spatiotemporal patterns of each individ-
ual user’s web browsing behavior is required to enable timely and
accurate content prefetching.

3. Content Prefetching As A Learning Problem
Mobile web browsing behavior exhibits several spatial and tem-
poral properties. To enable timely prefetching of web content, the
prefetching scheme needs to carefully model and learn all these
different properties for each individual user. However, optimally
combining these properties is not straightforward.

Our approach is inspired by the web search community, where
multiple hundreds or thousands of features are combined to rank
web documents (i.e., URLs). In a web search scenario, the user
submits a query and the search engine ranks a set of URLs to show
the most relevant ones higher up in the result page. The ranking
problem is often formulated as a click prediction problem, where
for every related URL, the engine has to estimate the probability
of a user click on that URL. The higher the probability, the higher
the rank of the URL. To create the click prediction model, search
engines leverage, among other signals, web search click logs. For
every URL displayed to the user, various features are computed,
encoding information about the user, the query, the URL or all of
them. Each feature vector is labeled as a click (if the URL was
clicked) or a non-click (if it was not clicked). The click prediction
model is then trained using millions of these labeled feature vec-
tors.

In web content prefetching, the web search click logs are re-
placed by the user’s web access logs. The URLs are no longer web
search results, but the targeted URLs identified in the user’s web
access logs. The click prediction model is now turned into a web
access prediction model whose role is to assign, at any given time,
an access probability to each targeted URL. The higher the prob-
ability, the more likely the user is to request access to this URL.
The features used to train the prediction model are the most critical
elements of the modeling process and are directly extracted from
the user’s web access logs.

Conversely to web search, in web content prefetching the user
does not explicitly submit a query. Thus, to determine when the
mobile device should make a web access prediction, we follow an
event-driven approach where the mobile device makes web access
predictions as a result of certain user actions. For instance, the
mobile device makes a prediction every time the user unlocks the
phone, activates the browser or visits a URL. Depending on the
resulting probabilities, the phone decides whether to prefetch any
content.

Figure 5 provides an overview of our web access prediction
approach. Offline, the mobile device records user web accesses,
including automatic page refreshes, and periodically (e.g., weekly,
monthly) uses this information to build a web access prediction
model for the user. This model can be built on the mobile device
itself, but most likely would be built on users’ desktops or the
cloud. First, a set of features is extracted for every targeted URL
in a user’s web logs. The role of these features is to encode the
underlying structure of mobile web browsing behavior in terms of
spatial and temporal properties, as described in Section 2. Then,
the web access logs are mapped to a set of feature vectors that are
annotated as accesses or non-accesses.
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Figure 5. We specify the problem of web content prefetching as
an access prediction problem. In this example, the user has two
targeted URLs.

Using these labeled feature vector traces, the system trains a
model that leverages state-of-the-art stochastic gradient boosting
techniques [32], creating a decision tree that supports time ranges,
with access probabilities in its leaves. The goal of the training
phase is to combine the different features provided as input to
enable the model to maximize the number of correct predictions
in the test data set. Online, user actions such as unlocking the
phone may trigger a prediction. A feature vector is then generated
for every targeted URL, and the prediction model is invoked with
each of these feature vectors as input. For every feature vector and
thus every targeted URL, the model assigns an access probability.
Depending on these probabilities and a pre-configured threshold,
none, one or more targeted URLs are fetched, along with associated
images, css, javascript, etc.

Formulating the problem of content prefetching as a binary ac-
cess prediction problem and leveraging state-of-the-art stochastic
gradient boosting techniques provides a significant advantage. The
ability of these modeling tools to consume a large number of fea-
tures and exploit their dependencies to maximize access prediction
enables us to virtually encode any possible information as a fea-
ture without being limited by the nature of the modeling tool (e.g.,
Markov model). More importantly, it allows us to compare the ef-
fectiveness of different features in the access prediction task to dis-
cover which features best capture mobile web browsing patterns.

3.1 Web Access Prediction with MART

We use MART [32], a learning tool based on Multiple Additive
Regression Trees, widely deployed in commercial systems for web
search and advertisement ranking. MART is based on the stochastic
gradient boosting approach [14].

To construct the predictive model, MART takes as input histori-
cal data on web accesses, which is partitioned into training and val-
idation sets, where the size of the latter is typically 1/5th or 1/6th

of the former. The training data set is used to build the model, while
the validation set is used to provide an unbiased error estimate.

Each entry contains a set of n features, F = {f1, f2, . . . , fn},1

that might be related to a spatial parameter s (e.g., the previously
accessed URL), a temporal parameter t (e.g., time of day), a spa-
tiotemporal parameter b (e.g., time since this URL was last ac-
cessed), or a popularity feature p (e.g., how popular this URL across
all accessed URLs), in conjunction with a label a which records the
user’s action. The training data is fed into MART to build a clas-
sification model, M, which is used to estimate the probability of
access pM(a|s, t, b, p). In our tests, we use the gradient-descent
as the optimization technique, and use binary decision trees as the
fitting function.

Once model M is trained, MART reports a relative ordering of
all features Fq , which indicates the “relative feature importance”
when making a prediction. The larger the number of decision tree
branches associated to a feature, the higher the importance of that
feature. The most important feature has an importance of 1, while
other features have a relative importance between 0 and 1. The
relative importance of feature values allows us to quantify and
compare the impact of different features on the prediction accuracy.

3.2 Feature Generation
Feature generation is one of the most critical steps of the model-
ing process. Its role is to provide as accurate and discriminative
information as possible about the mobile web browsing behavior
of individual users. We leverage the findings from our large scale
user study to drive the feature generation process. According to
our analysis, mobile web browsing behavior exhibits strong spatial,
temporal, and spatiotemporal structure. As a result, we introduce 4
sets of features, shown in Table 1, that focus on capturing this struc-
ture. Overall, for a user with k targeted URLs, 2× k + 11 features
are computed. A detailed description of each feature is provided in
Table 1.

The spatial features encode sets of mobile web accesses ac-
cessed together (Figure 1), and record information about the im-
mediately previously accessed URL (either that it was to an untar-
geted URL, or to which targeted URL it was). The temporal fea-
tures record the periodicity of targeted web accesses (Figure 4),
and the time of day or day of the week in which these accesses
occur. The spatiotemporal features combine spatial and temporal
properties to encode information such as the time elapsed between
a targeted URL access and the immediately previous access (Figure
3). These features can provide invaluable information to the model
to decide what targeted URL and when to prefetch, enabling timely
prefetches. The popularity features encode the popularity of each
targeted URL, and can be used to decide which targeted URLs will
most likely be accessed. These features can be particularly impor-
tant, given that the number of targeted URLs varies anywhere from
1 to 10, but usually 2 or 3 of these URLs are responsible for most
targeted URL accesses (Figures 2 and 4).

3.3 Training for Timely Prefetches
To understand how features are computed, and training, validation
and test files are generated, consider the log of an example user
in Figure 6. Web logs are first split into training, validation and
test with a data volume ratio of 70%:10%:20%, respectively. We
initially process the training data only to identify the targeted URLs
of the user, namely t1, t2, . . . , tk – URLs that have been accessed
more than 5 times a month. For the example user in Figure 6, k = 2.
After having identified the targeted URLs, the training, validation
and test data sets are generated as follows.

1 As the model’s goal is to predict targeted web accesses, the feature vectors
are generated only for targeted web accesses or non-accesses. However, the
feature values encode information about both targeted and untargeted web
accesses.



Feature
Feature name Definition

Example for tx=t1
class in Figure 6

spatial
ti Targeted∗ whether the previous access was to the targeted URL ti, for i ∈ [1, k] t1 = 0; t2 = 0
Untargeted whether the previous access was an access to an untargeted URL 1

temporal

TimeOfDay time of day at which the access occurred 11h15m
AvgTime average access time over all accesses to the same targeted URL tx 9h06

TimeStdev standard deviation over all access times for the same targeted URL tx 55m
Weekend whether the access happened during a weekend 1

TimeSinceTargeted time elapsed since any targeted URL was last accessed 1d3h15m

ti TimeSinceTargeted∗ time elapsed since the targeted URL ti was last accessed, for i ∈ [1, k]
t1 = 1d3h15m;
t2 = 1d3h14m

spatio- TimeSinceUntargeted time elapsed since any untargeted URL was last accessed 2m
temporal TimeSinceAccess time elapsed since the targeted URL tx was last accessed 1d3h15m

AvgInterAccessTime average time between two consecutive accesses to the targeted URL tx 1d12h31m
InterAccessTimeStdev standard deviation of inter-access times for the targeted URL tx 9h16m

popularity
PopAmongTargeted popularity of the targeted URL tx over all k targeted URLs 75%

PopAmongAll popularity of the targeted URL tx over all targeted and untargeted URLs 37.5%

Table 1. Features used for training MART. In the table, we assume the feature vector describes an access to a targeted URL tx of a user with
k targeted URLs. Feature names marked with * correspond to k features, one per targeted URL.

Starting from the first web access in the logs, we divide user’s
web accesses into multiple access epochs with a duration of D min-
utes each. For instance, Figure 6 shows 4 different access epochs,
where D = 5. For each access epoch, we compute k feature vec-
tors (Table 1), one for every targeted URL. The vectors for targeted
URLs accessed in the epoch are labeled as accessed. All other vec-
tors are labeled as non-accessed.

If a targeted URL is accessed multiple times within an epoch,
only one feature vector is computed for the first access to that URL
within the epoch. This biases the model towards the first access,
which improves timeliness. The duration of the access epoch D de-
fines the freshness of the prediction, and, thus, we call it the fresh-
ness threshold. Whenever a prediction is made in the beginning of
an access epoch and a URL is prefetched, its content is considered
fresh for the duration D of the access epoch. In that way, we implic-
itly assume that the web content update rate is less than 1 update
per D minutes.

The labeled feature vectors in the training file are used offline
to train the access prediction model. The labeled feature vectors in
the test data set are used to evaluate the performance of the model.
In particular, for each feature vector in the test file, we retrieve the
access probability from the model. An access probability higher
than 0.5 corresponds to prefetching the targeted URL (this proba-
bility threshold could be adjusted dynamically depending on net-
work and battery conditions). The success or not of the prediction
depends on the label of the feature vector in the test file. If it was
marked as accessed, the prefetching was successful, otherwise the
prefetching was unsuccessful.

4. Evaluation
We evaluate our approach using logs of all 8,000 users in our
dataset. We split the dataset into training, validation and test sets,
and use the test set to measure the accuracy in predicting both
web accesses and non-accesses. To evaluate the freshness of the
prefetches, we need to know the content update rate of each web
page. Unfortunately, this is hard to reliably estimate because we
cannot know all the updates for the pages in our dataset and be-
cause several pages require user authentication to be accessed (e.g.,
Facebook). To provide a notion of prefetch timeliness we leverage
the concept of freshness threshold previously introduced. Different
freshness thresholds allow us to evaluate the ability of the model
to timely prefetch content for different time thresholds and, thus,
for different content update rates. In the experiments, we use three
different thresholds: 2, 5 and 10 minutes. To study the impact of dif-
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Figure 6. Example of web accesses trace and the resulting web
accesses and non-accesses events generated. Dashed lines delimit

access epochs. The feature vector values for t1 in the 3rd access
epoch are shown in the last column of Table 1.

ferent features on the model’s prediction accuracy, we train models
with either all or a subset of the proposed features. Overall, for each
user we train 6 different models (2 sets of features and 3 freshness
thresholds). Across all users, we train a total of 48,000 prediction
models.

Finally, we use our prototype implementation of the proposed
prefetching approach, shown in Figure 7, to provide an estimate
on the power consumption overhead and the web access time gains
achieved. The preferred freshness threshold is manually selected by
the user.

4.1 Model Prediction Accuracy
We start by evaluating the accuracy of our approach. Our goal is
to maximize the number of successful prefetches and minimize
the number of unsuccessful prefetches. In all the experiments, we
decide to prefetch a web page when the access probability returned
by the model is higher or equal to 0.5.

4.1.1 Prefetching Accuracy
Figure 8(a) shows the trained model accuracy in predicting smart-
phone users’ web accesses across different volume classes, and
freshness thresholds. We first consider the freshness threshold of
2 minutes. For roughly 80-90% of the users, the prediction model
correctly predicts the targeted URL that will be accessed in the next
2 minutes at least 80% of the time. In other words, 80% of the tar-
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Figure 8. CDF of successful predictions of (a) web accesses and (b) web non-accesses for smartphone users across different volume classes
and freshness thresholds. The results for featurephone users are very similar and are not shown in the interest of space.

Figure 7. Web access prediction system prototype running on
Windows Phone 7.

geted URL accesses of approximately 80-90% of the users can be
prefetched within 2 minutes of the user actually accessing them.
To put things in perspective, 80% of the targeted URL accesses
correspond to 55%-60% of the all URL accesses (targeted and un-
targeted) for low and medium volume users and to 70% for high
and extreme volume users (Figure 2(a)).

The prefetching accuracy across all user volume classes is quite
similar. In general, the smaller the web access history, the harder it
is to make predictions because the repeatability of URL accesses is
lower and low volume users visit the web less frequently, thus not
providing enough information for the training phase. Still, the mod-
els for low volume users achieve 80% or higher accuracy in 80% of
the cases. On the other hand, for high and extreme volume models
it is difficult to achieve 100% accuracy in all cases because despite
the rich traces of these users, some exhibit a random behavior.

The performance of the prediction model does not vary signif-
icantly across freshness thresholds. Higher freshness thresholds (5
and 10 minutes) cause only a slight degradation in the prediction
accuracy. For instance, for the high volume class, the percentage of
users for which the model successfully predicts at least 80% of their
web accesses reduces from 90% (2 minutes) to 87% (10 minutes).

The accuracy for featurephone users (omitted due to space con-
straints) is consistently slightly better than that for smartphone

users. For 95% of the featurephone users (compared to 90% for
smartphones) we can successfully predict at least 80% of a given
user’s web accesses. This is due to the higher repeatability of URL
accesses for featurephone users compared to smartphone users
(Figure 1).

Overall, across all user volumes, device types and freshness
thresholds, at least 80% of a user’s targeted accesses can be suc-
cessfully predicted for approximately 90% of the users. In prac-
tice, the proposed content prefetching technique can provide instant
browsing experience for 80% of a user’s targeted accesses while
guaranteeing that the prefetched content will be at most 2 minutes
old.

4.1.2 False Positives
Correctly predicting web accesses helps provide an instant mobile
browsing experience, but incorrectly predicting non-accesses to
web pages can result in unnecessary prefetches (false positives) that
can drain the battery of the mobile device. Figure 8(b) shows the
fraction of successful non-access predictions of the trained model
in the case of smartphone users, across different volume classes
and freshness thresholds. For the 2-minute freshness threshold, the
model successfully predicts non-accesses at least 80% of the time
for anywhere between 90% (high volume class) and 80% (low
volume class) of the users. Again, the lower the volume class, the
lower the non-accesses prediction accuracy.

Figure 10 provides more insights on the ability of the proposed
prefetching technique to accurately predict web non-accesses. It
shows the CDF of the actual number of unsuccessful prefetches
across smartphone users in the medium and high volume classes for
different freshness thresholds. For approximately 90% of the users,
the number of false positives (unsuccessful prefetches) is less than
4, 5, 10, and 100 for the low, medium, high and extreme volume
classes respectively. Given that the test dataset of every user con-
tained accesses over a period of approximately 20 days, these num-
bers correspond to less than one (low, medium and high volume
classes) and approximately 5 (extreme volume class) unsuccessful
prefetches per day. As a result, the proposed prefetching approach
has minimal impact on the battery life of the mobile device for the
vast majority of mobile users. However, if necessary to limit battery
life degradation, the number of prefetches could be throttled by a
daily threshold and the probability threshold above which a page is
prefetched could be adjusted dynamically.

However, the tail of the CDF plots in Figure 10 can be relatively
long, especially for extreme volume users. In general, there is a
small percentage of users (less than 2% across all volume classes),
for which the number of false positives can significantly increase.
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Figure 9. CDF of successful predictions of web accesses, and web non-accesses when all features as well as no temporal or spatiotemporal
features are used in the training phase, for the 5-minute freshness threshold and smartphone users. Results are similar across freshness
thresholds, device types, and user volume classes, and are not shown in the interest of space.
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freshness thresholds. The results for featurephones and the rest user
volume classes are not shown in the interest of space.

These are users with a random or unpredictable web access behav-
ior. To prevent the number of unsuccessful predictions from nega-
tively impacting the battery life of the mobile device, the prefetch-
ing mechanism can monitor, over time, its own access prediction
accuracy and accordingly disable any prefetching attempts when
the number of false positives exceeds a daily threshold. In that way,
even these users will not experience any noticeable degradation in
their mobile devices’ battery life.

4.1.3 Feature Importance
In this section, we leverage the relative importance of features
reported by MART (described in detail in the previous section) to
study the impact of different features on the performance of the
web access prediction model.

Table 2 shows the relative ranking for the spatial, temporal, spa-
tiotemporal and popularity features for high volume smartphone
users (results are similar for other device types and volume classes).
Spatiotemporal features have the highest relative importance. For
88% of the high volume users, at least one of the spatiotemporal
features is ranked 1st. Popularity features follow next, with 10%
of the users having them as the most important features. Pure tem-
poral features are very rarely ranked 1st (2% of the cases), and
instead are at the 4th or worse positions in most cases. Spatial fea-
tures come last: they almost never qualify as one of the top three
most important features. This clearly demonstrates the spatiotem-
poral structure of mobile web browsing behavior. Approaches that
predict web accesses solely based on past sequences of web ac-
cesses fail to capture the temporal structure of mobile web brows-

Feat. Feat. Feature Relative Rank
Class Name 1 2 3 4–7 8–14

spat.
ti Targeted 0.0 0.8 1.4 48.6 49.3
Untargeted 0.0 0.4 1.1 11.6 86.9

temp.

TimeOfDay 2.2 5.8 8.6 82.2 1.2
AvgTime 0.0 0.0 0.0 0.7 99.3
TimeStdev 0.0 0.0 0.0 0.4 99.6
Weekend 0.0 0.0 1.2 42.6 56.2

TimeSinceTargeted 56.7 22.4 13.8 7.0 0.1
ti TimeSinceTargeted 4.2 6.5 22.5 54.0 12.7

spat.- TimeSinceUntargeted 24.2 46.2 15.1 14.5 0.0
temp. TimeSinceAccess 2.7 5.9 24.1 66.0 1.4

AvgInterAccessTime 0.0 0.0 0.0 0.1 99.9
InterAccessTimeStdev 0.0 0.0 0.0 0.7 99.3

pop.
PopAmongTargeted 10.0 11.9 12.2 60.1 5.8
PopAmongAll 0.0 0.0 0.0 11.6 88.4

Table 2. Feature importance for high volume smartphone users.
Each cell reports the % of users for which a certain feature was

ranked 1st, 2nd, 3rd, between 4th and 7th or between 8th and 14th.
Results are consistent across all volume classes and phone types.

ing, one of its most important underlying properties based on these
results.

Feature importance is only a relative comparison that indicates
the usage frequency of each feature in the prediction model. To bet-
ter study the impact of different features in prediction accuracy, we
trained two different MART models for every user. One uses all
the proposed features (Table 1) while the other uses only spatial
and popularity features. Figure 9 shows the prediction accuracy for
both web accesses and web non-accesses achieved by each model.
Across all volume classes, the model that ignores all temporal and
spatiotemporal features achieves drastically lower prediction accu-
racy. Its access prediction accuracy is lower than 5% for more than
60% of the users while the MART model leveraging all the features
achieves more than 90% prediction accuracy for the same percent-
age of users. Similarly, the MART model that leverages all the fea-
tures is able to always achieve higher non-accesses prediction ac-
curacy. Note that the gap in prediction accuracies between the two
models is significantly smaller for non-accesses predictions. This
is expected because of the significantly higher number of web non-
accesses events in each test file (i.e., for every access epoch, even
though no targeted URLs were accessed, a web non-access event is
recorded for all targeted URLs).

4.1.4 Comparison to a Naı̈ve Sequential Approach
Figures 1 and 3 suggest that most web accesses are clustered in
space and time – most accesses follow shortly after a first access.
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Figure 11. CDF of successful predictions of web accesses for
MART and the naı̈ve sequential-based prefetching scheme, for
smartphone users. The results for featurephone users and the other
volume classes are identical, and are not shown in the interest of
space.

For this reason, a naı̈ve approach that fetches all targeted URLs on a
periodic basis would be very inefficient from a power consumption
point of view. Instead, we consider a naı̈ve approach that prefetches
every targeted URL as soon as the user accesses one of the targeted
URLs. This approach would avoid the need to build a web access
model for every user. To evaluate its effectiveness, we apply it on all
8,000 web access logs in our data set. Similarly to our approach, we
use the three different freshness thresholds to indicate the validity
of the prefetched data. If a user accesses a targeted URL before the
freshness threshold has expired, it does not trigger a new round of
prefetches.

Figure 11 shows the web access prediction accuracy achieved
by both the naı̈ve sequential approach and MART across differ-
ent volume classes and freshness thresholds. The MART approach
significantly outperforms the naı̈ve sequential approach. For about
80% of the users, the naı̈ve sequential approach achieves a predic-
tion accuracy of less than 20% (medium volume class) and 30%
(high volume class). For the same percentage of users, the pro-
posed access prediction model always achieves accuracy higher
than 80%.

The difference in performance lies in the fact that a large frac-
tion of users has only 1 or 2 targeted URLs that they constantly
visit. For these users, the naı̈ve approach always fails to prefetch
the first access, thus missing approximately half of the targeted
URL visits. On the other hand, the access prediction model lever-
ages both spatial and temporal information to predict both which
targeted URL will be accessed and when, thus providing for higher
performance.

4.2 System Prototype Analysis
We have implemented our prefetching approach in a system pro-
totype running on Windows Phone 7, and is currently being used
daily by 10+ people in our research group. On the phone, we built
a web browser application (shown in Figure 7) which monitors web
accesses and constantly uploads the collected traces to a server run-
ning on Windows Azure. The server uses MART to compute the
user’s prediction model based on the user’s logged data, and it pe-
riodically updates it as the user’s web browsing history grows. The
cloud server pushes the MART model to the phone, such that each
time a user opens the phone web browser, the local model is in-
voked and targeted web content is prefetched. In the following, we
use the phone prototype to provide an estimate on the power con-
sumed by our approach and the access time gains achieved.

Figure 12. Current consumption (@4.2V) of a Samsung Focus
running Windows Phone 7 while transmitting UDP packets. The
actual transmission (phase 2) accounts for only a portion of the
radio’s power consumption (phases 1,3 and 4).

Batch Lightweight Heavyweight
size Avg time (ms) [Stdev] Avg time (ms) [Stdev]

1 110 [22] 7734 [480]
2 120 [21] 23340 [3026]
3 306 [27] 44452 [1451]
4 382 [19] 51562 [2597]
5 468 [33] 76180 [1129]

Table 3. Time the 3G radio has to spend actively transmitting or
receiving data for downloading lightweight and heavyweight web
pages with a batch size varying from 1 to 5 pages. Measurements
executed on a Samsung Focus running Windows Phone 7.

In order to achieve this, an accurate estimation of both the power
consumption model and the radio’s transmission/reception time for
downloading different web pages is needed. We adopt the power
state model of modern 3G radios that has already been studied
and extensively measured in the literature [6, 13, 28]. As Figure
12 shows, there are 4 distinct states that the 3G radio can be in.
First, the radio incurs an energy overhead every time it has to wake
up from the sleep state (phase 1 in Figure 12). Then the actual
transmission/reception of data, which is the most power consuming
state, takes place (phase 2 in Figure 12). After completion of data
exchange, the radio spends approximately 17 seconds in two states
with different power profiles (phases 3 and 4 in Figure 12). When
the radio starts exchanging data while in phases 3 and 4, no extra
energy cost is introduced. Note, however, that with respect to en-
ergy, every data transmission incurs a very high energy overhead in
terms of the startup cost and especially the 17 seconds tail effect of
3G radios (phase 1 and phases 3 and 4 in Figure 12 respectively).
Currently, web accesses that take place more than 17 seconds far
apart, will always incur this energy overhead. However, with web
content prefetching multiple web pages are simultaneously down-
loaded at the beginning of each browser session incurring this en-
ergy overhead only once. As a result, successful predictions could
even lead to reduced energy dissipation.

Besides the power consumed, to accurately estimate energy dis-
sipation, we need to estimate the time it takes to download differ-
ent web pages (phase 2 in Figure 12). We use lightweight pages
such as facebook.com and cnn.com, whose size varies from 5 up
to 40 kBytes, and heavyweight pages such as nytimes.com and
timesofindia.com, whose size varies from 50 up to 240 kBytes to
measure the time that the radio spends transmitting/receiving bytes.
As Table 3 shows, fetching 5 lightweight pages of increasing size
in a batch takes less than half second, which is much less than the
startup time of a regular phone web browser. This means that 5
lightweight web sites can be prefetched by the time the browser is
ready for use. Fetching heavyweight sites can take much longer, but
also in this case the prefetching approach can help hiding such de-



0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

% of Web Access Time Improvement

Fr
ac

tio
n 

of
 U

se
rs

Lightweight web pages

−20 0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

% of Web Access Time Improvement

Fr
ac

tio
n 

of
 U

se
rs

Heavyweight web pages

low volume
medium volume
high volume
extreme volume

low volume
medium volume
high volume
extreme volume

Figure 13. CDF of the web access time (time that the user needs
to wait for the radio to download a web page) improvement across
all smartphone users when web access prediction is used. Negative
values indicate an increase in the user response time. The trends are
identical for featurephone users, and are not shown in the interest
of space.

lay. Assuming a user’s targeted sites are all heavyweight pages, if
the first accessed page cannot be prefetched by the time the phone
browser has loaded, the remaining targets will be still prefetched
ahead with large savings in access time. Assuming a user might
spend 1 or 2 minutes on the first page, this gives plenty of time for
fetching 5 or more heavyweight pages before the user actually re-
quests access to them. Moreover, targeted web sits are fetched in
order of MART access probability to minimize the access delay.

In the following we leverage the measurements in Table 3 and
Figure 12 to estimate web access times and radio energy dissipation
when replaying back user web access logs.

4.2.1 Web Access Time
We define web access time as the time that elapses between a user
requesting to visit a web page and the web page being available
on the mobile device. Note that web access time here refers to the
radio download time (phase 2 in Figure 12) that might be delaying
the access to the web page. In all of our experiments, we assume
a browser loading time of 3 seconds. We estimated this is roughly
the time it takes for the browser to load and the user to make a
web page request. As a result, every radio communication delay
that takes place within these first 3 seconds is not considered in the
computation of web access time.

By replaying back the web access logs of all 8,000 users, we
compute the overall web access times in the case of a state of the
art browser and in the case of the proposed prefetching scheme.
Figure 13 shows the CDF of the web access time improvement
achieved by the prefetching scheme for both lightweight and heavy-
weight pages. In both cases, the proposed prefetching scheme is
able to completely eliminate web access time for 30%, 60%, and
80% of the users depending on the different volume class. For all
these users, the proposed model was able to prefetch the web pages
the user wished to access within the past two minutes, enabling an
instant browsing experience. Furthermore, more than 90% of the
users across all volume classes, experienced a reduction in their
web access times by more than 60%. Only in the case of heavy-
weight pages, there is less than 2% of users that might experience
an increase of up to 20% in their web access times. This is the small
set of users where the number of false positives might increase sub-
stantially (Figure 10). When many heavyweight pages are simul-
taneously downloaded, the 3G radio gets congested and the over-
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Figure 14. CDF of the radio energy dissipation improvement
across all smartphone users when the web access prediction is used.
Negative values indicate an increase in radio’s energy dissipation.
The trends are identical across volume classes and device types,
and are not shown in the interest of space.

all web page download might be delayed (the time to simultane-
ously download 5 heavyweight pages is higher than sequentially
downloading the individual pages as shown in Table 3). To prevent
the number of unsuccessful predictions from negatively impacting
the web access time, the prefetching mechanism can monitor, over
time, its own access prediction accuracy and accordingly disable
any prefetching attempts when the number of false positives ex-
ceeds a daily threshold. In that way, even these users will not expe-
rience any noticeable performance degradation.

4.2.2 Radio Energy Dissipation
To quantify the effect of the proposed prefetching scheme on the
power consumption of the mobile device, we also compute the
total radio energy dissipation due to web accesses for all 8,000
users. Figure 14 shows the CDF of the radio energy improve-
ment achieved by the prefetching scheme when assuming both
lightweight and heavyweight pages are accessed by the users. Sur-
prisingly, for anywhere between 75% and 98% of users across vol-
ume classes and web page types, the radio energy dissipation re-
mains the same or is reduced when the web content prefetching ap-
proach is used. In other words, the proposed approach can enable
instant web browsing experience for the majority of the users while
maintaining the same or even significantly reducing radio energy
dissipation. This is achieved because of the high energy cost that
phases 1, 3, and 4 in Figure 12 introduce. When prefetching mul-
tiple web pages simultaneously the number of times that the radio
needs to wake up from its sleep state and incur these energy costs
can be drastically reduced. This can be clearly seen in Figure 15
where the CDF of the radio wake ups is shown when the predic-
tion scheme is used or not used. By bundling web page downloads
together, the prefetching scheme needs to wake up the radio signif-
icantly fewer times compared to state-of-the-art browsers, resulting
in substantial energy savings.

On the other hand, only 2% to 18% of users in the case of
lightweight pages, and 15% to 25% of the users in the case of
heavyweight pages across different volume classes experience an
increased radio energy dissipation. As expected, the impact on ra-
dio energy dissipation seems to be higher in the case of heavy-
weight pages since the false positives incur a higher energy penalty
when compared to lightweight pages. For less than 2% of the users
the radio energy dissipation can be increased by more than 150% to
200%. To prevent the number of unsuccessful predictions from neg-
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Figure 15. CDF of the number of radio wake ups for high volume
smartphone users when the proposed prediction scheme is used or
not used. The trends are identical across volume classes and device
types, and are not shown in the interest of space.

atively impacting radio’s energy dissipation, the prefetching mech-
anism can disable any prefetching attempts when the number of
false positives exceeds a daily threshold.

5. Related Work
Our work is inspired by Pocket Cloudlets [19]. In that work, the
authors make the observation that memory capacity can be traded
for access time and battery life in online services. It demonstrates
the concept with a search cloudlet, where the most popular search
queries and results among a large population are transfered to
mobile phones at night, when they are connected to the network
and charging. In addition, the search cloudlet also caches and ranks
higher those pages clicked by the user. However, web content has a
much more dynamic behavior than search results, and can be highly
personalized. We address these challenges by carefully training an
energy-thrifty, personalized web access prediction model capable
of doing timely prefetches.

An important contribution of our work is the data analysis we
conducted. There have been various studies [3, 7, 11, 26] on charac-
terizing the workload of web clients (session duration, content pop-
ularity, size of web responses) with the aim of improving server per-
formance through query caching, server scheduling and TCP chan-
nel management. The results of these studies cannot be directly
used in our context because i) many of these studies are relatively
old, ii) a large portion of them has focused on improving system
performance in wired networks, and iii) we analyze web access be-
havior from a client perspective, rather than a server point of view,
to build user-specific models for content prefetching.

Studies in the HCI community on web page revisitation [8–
10, 21, 29] are also relevant to our work. The main goal of this
body of research is browser and navigation tool design for usability.
These studies monitor access behavior on desktop computers, and
even more recent work has mostly focused on desktop revisitation
patterns [1, 2, 24]. Our data analysis is instead focused on mobile
web browsing behavior, which shows distinct access patterns and
user intents. We particularly focus on studying how targeted web
sites vary across mobile users and how temporal aspects such as
absolute time of web accesses and inter-access times can be used
in the prediction. Not surprisingly, there are lessons learned from
the desktop world analysis that can be used in our context. For
instance, Adar et al. [1] observe that revisitation rates for desktops
range between 50% and 80% [1], and we found a similar pattern
for smartphones. They also study the temporal behavior of revisits
to the same page over a large number of websites and correlate
the revist time to the type of web content (e.g., fast revisits are
common in web pages such as shopping, spam, pornography, while

slow revisits are common for pages related to weekend activity,
software updates, etc.). A feature related to the category of targeted
web sites could be added to our model. Overall, all these studies
suggest their findings can be applied to caching and prefetching in
browsers, but have not addressed nor implemented and evaluated
the problem of effectively modeling the web browsing behavior on
a per-user basis.

Web content prefetching has been studied extensively in the
context of desktop browsing [17, 20, 23, 25]. However, these ap-
proaches are not directly applicable to the mobile world because
they do not take into account the constraints of latency and energy
consumption imposed by mobile devices. In the context of mobile
devices, prefetching has been used to support disconnected oper-
ation [18, 33], or to reduce access latency and power consump-
tion [4, 6, 33]. Specifically, to minimize energy consumption when
prefetching web content, the content is prefetched more aggres-
sively when the available bandwidth changes to higher rates [6] or
content with high access probability, low update rate, a small data
size, and a high retrieval delay is fetched with higher priority [33].
Other approaches to reducing power consumption use proxies to
push new content to the mobile client only when the portion of the
web page of interest to the user is updated, and make use of batch
updates [4]. These techniques are orthogonal to our work, in the
sense that they look at specific optimizations which could be inte-
grated into our system to reduce power consumption. Our primary
goal is not to minimize energy consumption, but proposing a web
content prefetching model which respects the power constraints of
mobile devices.

There exists a number of techniques for predicting a user’s web
accesses. Most previous work is based on two assumptions: first
the users’ behavior can be captured only by sequential or set pat-
terns and, second, all users show similar behaviors. Hence, most
work uses variations of the Markov model [27], i.e., they attempt
to determine the probability of a user accessing web content based
on previously accessed content. Dependency graph algorithms con-
sider only first-order dependencies [16], while more sophisticated
approaches, such as prediction-by-partial match, use higher-order
dependencies [23]. Yet, these algorithms are trained with the set of
accessed content units only, and do not take the temporal structure
of web accesses into account. In our work, we do not focus only on
sequential or set patterns, but we also use additional features such
as the relative and absolute timing of web accesses, which allow us
to achieve much higher prefetching accuracy. Moreover, we show
that each user’s web access patterns are different, and we address
this variability by building personalized models.

Since web content is highly dynamic, timeliness is an impor-
tant aspect in prefetching it [4, 30, 31]. Most previous approaches
that considered timeliness of content delivery rely on subscription-
based prefetching. Subscription-based prefetching assumes that the
user manually subscribes to content of interest, which is updated at
a proxy or the client itself whenever it is modified, and the network
and/or battery conditions are favorable [30, 31]. Our work does not
rely on the user to provide any information about interests or to cre-
ate subscriptions. Some approaches operate in a link-based fashion
and prefetch content that is linked from the content currently be-
ing viewed by the user [12]. Although automatic, these approaches
may result in high bandwidth consumption and untimely requests,
especially when the currently viewed content has a lot of outgoing
links, thus it is not suitable for mobile devices.

Another line of work relies on community-based profiles for
content access prediction [5, 6, 17, 23, 25]. Communities is an
interesting dimension to prefetching, but in mobile web browsing,
the community data is not very helpful due to the high variability
of web browsing behavior across users.



6. Conclusions
Trading surplus memory capacity for lower latency and battery
life is desirable. Prior work was only capable of taking advantage
of this surplus memory for relatively static content. This work
provides the missing piece that enables mobile devices to handle
dynamic content. We presented a study of web access patterns of
8,000 users over a 3-month period. We found that users do not
browse the web randomly from their phones. Instead, we found a
strong spatiotemporal signature in mobile web browsing. Based on
these observations and the fact that each user behaves differently,
we presented a framework for extracting a web access prediction
model for each individual user. By predicting users’ web accesses,
we can provide a faster web browsing experience, with the same
or lower radio energy dissipation. Our experimental evaluation on
real datasets showed that for about 80-90% of the users we can
accurately prefetch 60% of the URLs within 2 minutes before the
request. Our results demonstrate the great potential of the proposed
methodology in empowering users to enjoy an instant mobile web
browsing experience.
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