
Rank-Aware Crawling of Hidden Web sites

George Valkanas, Alexandros Ntoulas, and Dimitrios Gunopulos

Dept. of Informatics & Telecommunications
University of Athens, Greece

gvalk@di.uoa.gr, antoulas@di.uoa.gr, dg@di.uoa.gr

Abstract. An ever-increasing amount of valuable information on the
Web today is stored inside online databases and is accessible only after
the users issue a query through a search interface. Such information is
collectively called the “Hidden Web” and is mostly inaccessible by tra-
ditional search engine crawlers that scout the Web following links. Since
the only way to access the Hidden Web pages is through the submission
of queries to the Hidden Web sites, previous work [14, 18] has focused on
how to automatically generate queries in order to incrementally retrieve
and cover a Hidden Web site in depth, as much as possible.
For certain applications however it is not necessary to have crawled a
Hidden-Web site in-depth. For example, a meta-searcher or a content
aggregator will utilize only the top portion of the ranked result lists
coming from the querying of a Hidden Web site instead of its full content.
Hence, if we can crawl a Hidden Web site in breadth, i.e. download just
the top results for all potential queries, we can enable such applications
without the need for allocating resources for fully crawling a potentially
huge Hidden Web site.
In this paper we present algorithms for crawling a Hidden Web site by
taking the ranking of the results into account. Since we do not know
all potential queries that may be directed to the Web site in advance,
we study how to approximate the site’s ranking function so that we can
compute the top results based on the data collected so far. We provide
a framework for performing ranking-aware Hidden Web crawling and we
show experimental results on a real Web site demonstrating the perfor-
mance of our methods.

1 Introduction

The content available through Web-accessible databases today is ever-increasing
in quantity and quality. Such content is typically dynamically generated without
any pre-existing direct links to it, and is available only after the users provide a
query through a Web search interface. As a result, content from Web-accessible
databases is essentially “hidden” from Web search engines who scout the Web
following links in order to discover and download content. Such content is col-
lectively called the “Hidden Web”.

As the Hidden Web contains information of high quality and high value to
the users [2] there have been previous efforts in surfacing it, so that it can be part



of a search engine’s central index. Since the only way for surfacing the Hidden-
Web content is by filling the Web forms, previous work [14, 18, 10] has focused
on how to automatically generate queries. Such queries are either selected from
a pre-compiled list or selected on-the-fly and are iteratively issued to a given
Hidden-Web site in order to retrieve its content. The goal of these approaches is
to cover a Hidden-Web site as much as possible in depth, i.e. download as much
of its content as possible with a small number of queries.

However, although downloading all of (or as much as possible) a Hidden-
Web site is obviously desirable, there are cases where some Hidden-Web sites
offer their services at a cost (e.g.www.westlaw.com). If our goal is to download
all of the Hidden-Web site at a minimum cost, the techniques presented in [14,
18, 10] are directly applicable. There are however applications on the Web that
do not necessarily require a Hidden-Web site to be completely crawled. For
example, a meta-search engine needs to operate mostly on the top few results
from a Hidden Web site, for a given query. Similarly, a content aggregator service
operating over Hidden-Web sites needs to also know the top few items in order
to provide a good summary to its readers. Hence, if we can crawl and cache a
local copy of a Hidden Web site in breadth, (i.e. download only the top results
for the potential queries that we care about), we can provide such applications
the data they need without paying the cost of downloading fully a potentially
very large Hidden-Web site.

One big challenge with this approach is that we do not know the queries that
will be issued to, e.g., a meta-searcher in advance. One solution to this problem
is to query the Hidden-Web site on-the-fly and cache the top results for every
query. This approach however, may lead to unnessecary queries (and thus cost)
to the Hidden-Web site. For example, we may identify the top-k results of the
query “digital camera” by examining the top results of the query “camera”.

In this paper, we study the problem of creating a small, broad local copy of a
Hidden-Web site in an rank-aware manner. Our goal is to use this copy in order
to get the top-k results for a given query instead of querying the Hidden-Web
site directly. Our main idea is to approximate the ranking function employed by
the Hidden-Web site and leverage it in order to determine how to crawl it. We
extend previous techniques for automatic query generation to take into account
the ranking function of each Web site and we showcase the performance of our
techniques in a real Web site.

In short, our contributions here are the following:

– We extend previous techniques by using an active learning [17] variation to
crawl Hidden-Web sites, hence deriving a family of algorithms that cover
the site while taking ranking into account. Our technique is generic and
uses domain-independent features, so that it may be applied to numerous
Hidden-Web sites without major modifications.

– Since our technique determines which queries to use based on the retrieved
ranked results, we show that it manages to achieve better coverage perfor-
mance than previously existing techniques.



– We provide an experimental evaluation of our proposed technique, by crawl-
ing YouTube. An interesting outcome of the evaluation is that our techniques
can be very easily parallelized in order to crawl Hidden-Web sites.

The rest of the paper is organized as follows: Section 2 formally defines the
problem, followed by Section 3 which introduces our proposed approach. Section
5 demonstrates our experimental findings. Section 6 presents related work and
finally Section 7 concludes the paper, with ideas for future work.

2 Background

We start by formally defining the problem of ranking-aware Hidden-Web crawl-
ing and our goals. To make our discussion more concrete, we assume that a
Hidden-Web site is associated with a database D, containing documents D =
{d1, d2, ..., d|D|}. We represent each document di within D as a bag of words, i.e.

di = {w1
i , w

2
i , ..., w

|wi|
i }. Similarly, we represent the set of unique terms contained

by all documents in D by T = {t1, t2, ..., t|T |}.
We defineDq ⊆ D to be the set of documents retrieved by query q. These doc-

uments are the relevant ones w.r.t. q as they were returned by the Hidden-Web
site. Let R be a ranking (permutation) of Dq, i.e. R = R(q,Dq) → {1, 2, .., |Dq|}.
Note that we are only interested in the rank (position) of each document. Also
each document appears only once in a ranking. Based on this notation, we can
now formally define our goal in rank-aware crawling of a Hidden-Web site:

Definition. Given a Hidden-Web site, identify the minimum set of queries
that covers the content from the site that allows us to approximate the ranking
of all potential queries.

Intuitively, we want to retrieve as much content from the Hidden Web site
as possible, while maintaining the queries probed to the site at a minimum. At
the same time, we are interested in the ranking that each query is associated
with. Since the set of unique terms in D is T , there are |T | rankings for single-
keyword queries, and 2|T | combinations of queries. However, since keyword search
commonly employs AND semantics which restrict the results, we can achieve
better coverage by issuing only single keyword queries. Therefore, since coverage
is a basic goal, we want to issue fewer queries than |T | while being able to
approximate the ranking of any ti ∈ T that has been retrieved so far.

3 Rank-Aware Crawling

3.1 Efficiency

As we already discussed in the previous section, a fundamental goal of our tech-
niques is to minimize the download cost when crawling a Hidden-Web site while
achieving high coverage. Similar to [14], in order to compare among crawling
techniques, we use the notion of efficiency for a query term t, defined as:



Efficiency(t) =
Pnew(t)

Cost(t)

where Pnew is the fraction of new items (over all current items) that term
t is expected to retrieve and Cost is the overall cost associated with issuing
term t, measured for example in money, bandwidth, or communications between
the crawler and the Hidden-Web site. In [14] the authors use the Efficiency

metric described above to determine which queries the crawler should issue to
the Hidden-Web site. Their goal is to maximize the coverage of the site using the
minimum number of queries. Since we are also interested in coverage we will be
using the Efficiency metric as well. However, as we also aim at approximating
the ranked results of the queries coming from a Hidden Web site, we will extend
this metric by considering the “ranking gain” of the query term as discussed
next.

3.2 Ranking Gain

Apart from the coverage aspect, we are also interested in the ranking associated
with each term. First, we describe the intuition behind the ranking gain of a term:
it is a measure of the degree to which we can approximate the term’s ranking, i.e.
the ordering of results we would obtain by querying this term. In other words, we
evaluate how similar a derived ranking would be to the actual one. If we are able
to accurately reconstruct the ranking of a term, then that term’s gain (w.r.t.
ranking) would be close to 0. On the contrary, if the derived ranking introduces
a big error in our attempt to approximate the actual one, then, we would need to
query this term. The need to correctly derive the ranking of a term is important
for several reasons, both for single and multi-keyword queries. Finally, we note
that already queried terms have a ranking gain of 0, as their actual ranking is
known.

Therefore, to evaluate the ranking gain of a term we would need to know its
actual ranking, so that we can measure the distance between the two. However,
in that case, we would not need to derive it in the first place, hence, we take a
different approach on computing the ranking gain. The idea is that documents
in which the term already exists in may provide clues about the overall ranking
for that term. Even if they do not provide evidence for the actual ranking itself,
they can still be useful.

Once the ranked result of querying the site with term t has been retrieved,
we parse the documents and extract the terms they contain. For each term, we
maintain a set of inverted indexes of the documents it is contained in with respect
to each probed query, keeping the ordering in which the result was returned. This
results in a set of orderings for each term, which we can aggregate to obtain a
single one and compute the ranking gain as their level of disagreement. The
more these rankings disagree among them, the more likely we consider it to be
that the inferred ranking will be misleading. That is because their aggregate



list, which seems as a natural choice for the derived list, would try to average
all distances, which would result in a lot of information being lost. We can then
define the measure used to compute the ranking gain of a term t as:

RankingGain(t) =

N∑

i=1

d(ri, agg(t))

where agg(t) is the aggregate list of the N rankings ri, ∀i = 1, .., N , of term
t and d is a distance function between two ranked inputs. An aggregate list is
one that minimizes the distance between itself and all other input lists.

What we state in the above equation is that by querying t, what we gain for its
ranking aspect is equal to the overall disagreement of the rankings that t belongs
to already. Terms with identical rankings among queries have a ranking gain of
0, as we do not benefit with respect to this parameter. Terms with rankings that
exhibit a strong correlation will have a lower benefit for that factor compared to
ones with higher discordance.

A major drawback of this approach is that it needs to compute the aggre-
gate list of each term t. However, ranking aggregation is known to be NP-Hard
[5].Moreover, it can not be efficiently maintained incrementally. This entails re-
computation of the aggregate lists from scratch. Hence, it is in our best interest
to avoid consuming the crawler’s resources on computing aggregate lists. Instead,
we use the following observation:

Observation. The bigger the distance is between two ranked inputs of a
term t, the bigger the ranking gain of this term will be.

We can then reformulate the ranking gain as

RankingGain(t) =
2

N ∗ (N − 1)

N∑

i=1

N∑

j=i+1

d(ri, rj)

hence computing the pair-wise distances between all ranked inputs of a term.
To avoid boosting inputs with bigger lengths, we take the average of pair-wise
distances, by dividing with the number of all possible pairs.

3.3 Putting it all together

Since we are interested in both maximizing coverage and achieving good results
in approximating the ranking of the Hidden-Web site, we combine the two cost
models presented above into a single one. More specifically, we use their weighted
average as:

Gain(t) =
(1− w) ∗ Pnew(t) + w ∗RankingGain(t)

Cost(t)

The cost is paid only once, as it is related to the query term and to the
number of pages that it will retrieve, and is the same for both coverage and
ranking gain. Retrieved documents are parsed and terms are extracted, and we
select as the subsequent query the one with the highest (overall) Gain.



4 Ranking Distances

There are several measures that are particularly suited to compute the distance
between two or more ordered lists, most of which aim at finding the degree of
correlation. Such rankings include Kendall τ , Spearman footrule and Spearman
ρ, top-K variants, nDCG etc. We have used the ones that are most commonly
used in the bibliography, due to several properties that they exhibit (i.e. extended
Condorcet criterion). In our work we experimented with different metrics for
computing ranking distances as they directly affect our crawling strategies. More
specifically, we experimented with Kendall tau, Spearman Footrule, Top-K and
variations of these, to account for potential ties or different ranking lengths.

4.1 Kendall τ

Kendall τ measures the correlation of two given lists, as the number of pairwise
swappings, given by the equation

τ =
2 ∗ (nc − nd)

n ∗ (n− 1)

where nc is the number of concordant pairs, nd the number of discordant pairs
and n the number of distinct elements in both lists. We normalize the result in
the [0, 1] range.

We have also used Kendall τ−b to account for ties, following the methodology
in [6]

4.2 Spearman Footrule

Another commonly used ranking distance is the Spearman footrule, where the
distance of two rankings r1 and r2 is given by:

D(r1, r2) =

n∑

i=1

|r1i − r2i |

and rij is the index of j − th element in ranking ri. To address the problem
of ranking length variation, we have also used scaled Spearman footrule (SSF),
given by

D(r1, r2) =

n∑

i=1

|
r1i
|r1|

−
r2i
|r2|

|

4.3 Top-K

In essence, users are not interested in the entire ranking that a web site performs
but rather in the top ranked ones, known as the top-k documents. Hence, the
top-k distance captures the difference between the first k ranked documents,
disregarding all others. Given a ranking r, we denote by r(k) its first k entries.



Using the formula from [7], the distance between r1 and r2 up to position i is
given by

δi(r1, r2) =
|(r1(i) ∪ r2(i))− (r1(i) ∩ r2(i))|

2 ∗ i

This distance captures the fraction of non commonly shared items in the first
i positions. Then, to get the overall distance, we sum δ’s, for i = 1, ..., k. More
formally

D(r1, r2) =
1

k

k∑

i=1

δi(r1, r2).

5 Experimental Evaluation

5.1 Experimental setup

We have conducted a set of experiments to measure our approach in terms of
effectiveness, on YouTube [19]. YouTube is a social sharing video service web
site, where users are able to upload videos and search for them through a simple
keyword interface.

The YouTube service limits its results to 1000 items, however it contains du-
plicate entries, i.e. the same video (identified by url) appears in different ranking
positions. In such cases, we maintain only the first occurrence of a video, as this
is when a user will see it for the first time and possibly select it. After removing
duplicates, the maximum number of returned videos per query is about 800 on
average. This fact poses an upper bound on the number of videos we expect to
see in our experimental results. Our results are from crawling the site between
March 1st and March 28th, 2011. Instead of letting the crawlers run indefinitely,
we limit the number of queries each one may probe to 300. Each configuration
runs independently of the others and computes its statistics based on the set of
documents that it has retrieved by itself.

We consider as documents the text-based information of the videos, i.e. title,
description and tags. We did not include the user comments as they are not
always directly related to the video at hand.

5.2 Harvest rate

We start our presentation of the experimental results by first evaluating the
number of documents that each approach manages to retrieve from the Hidden
Web site. We compare our methods with the ones presented in [14].

Figures 1 and 2 show the number of documents that each of the configurations
retrieved from the Hidden Web site. Each configuration is selecting keywords
based on our discussion in Section 3 but using a difference distance metric as
shown in Table 1. Knowing the upper limit of YouTube query results (i.e. 800),
we display our findings as a percentage of the optimal retrieval case, where
each new query retrieves the maximum number of new distinct documents. It is



Table 1. Crawling configurations

ID Distance

CVR None

KTA Kendall τ -a

KTB Kendall τ -b

SF Spearman Footrule

SSF Scaled Spearman Footrule

TOPK Top-X

cKTB KTB with Jaccard weighting

cSF SF with Jaccard weighting

cSSF SSF with Jaccard weighting

cTOPK TopX with Jaccard weighting

interesting to note that the approach that does not take ranking into account at
all, performs the lowest among all of the techniques.

The graphs in Fig. 1 are a direct application of the discussion in Section 3,
using different distances. We have also experimented with a variation of these
techniques, the results of which are shown in Fig. 2. In this case, we have weighted
the outcome of the distance function by the Jaccard coefficient of the two rank-
ings, i.e. the fraction of their common documents.

As we observe from the graphs, the different configurations of our crawling
policy perform differently. Overall, all policies achieve better coverage than the
one in [14] which does not optimize for the rankings. The highest harvest rate
is given by Kendall τ -a, followed by SSF. The reason that the coverage-only
approach performs the lowest, is that it relies on static features alone, whereas
YouTube ranks results in a query dependent manner. Though we do not know
the exact ranking function of the Hidden-Web site, loosing the (explicit) cover-
age aspect and increasing other, more dynamic, features seems to be beneficial.
Interestingly, we also observe that the policies start performing better after is-
suing about 100 queries. This is due to the fact that the policies need to acquire
some knowledge about the document collection before they start selecting good
queries to probe.



 0

 20

 40

 60

 80

 100

 0  50  100  150  200  250  300

cu
m

ul
at

iv
e 

%
 n

ew
 d

oc
s

#queries

CVR
KTA
KTB

SF
SSF

TOP20

Fig. 1. Harvest rate (%) of approaches

 0

 20

 40

 60

 80

 100

 0  50  100  150  200  250  300

cu
m

ul
at

iv
e 

%
 n

ew
 d

oc
s

#queries

CVR
cKTB

cSF
cSSF

cTOP20

Fig. 2. Harvest rate of approaches

5.3 Empirical comparison of the approaches

Table 2 shows the 15 first terms for each of the approaches. Apart from the 1st
query, which was the seed term and the 2nd one, where the ranking has not yet
taken effect, it is clear that all configurations differentiate from each other as
soon as the 3rd query. An interesting observation is that, apart from the coverage
approach, the first 10 query terms in all configurations appear to be semantically
related to the first one, i.e. food.

Figure 3 provides a more general view of query correlation among configura-
tions. This grid map shows the number of commonly queried terms between any
two of our about 30 configurations, measured as the percentage of their inter-
section. The closer the value is to 1.0, the higher the correlation. It is clear from
Fig. 3, that certain configuration, not on the diagonal, exhibit a high correlation.
These in fact use the same distance measure (e.g. KTb), with different weight w.



Table 2. First 15 query terms by configuration

No Ranking KTa KTb SF SSF Top-20

soup soup soup soup soup soup

http http http http http http

twitter homemade parents annual prepares listening

www doneness retro bold coulis sausage

youtube panlasangpinoy residents casserole fresco nutrition

watch margarine traumatic acidity penne steamed

follow toweling deborah aparta unbelievable songifications

add fashioned ixzz beet mixer wonton

video foodwishes casserole antioxidants shawtayee siu

user foodies litre absorbable stvplayer intestines

center dmark hing acquire sinatras powders

subscription swirls hamburgers antibacterial larder enhances

machinima dmarkii mattar antiparasitic broadcaster intricate

tags secretlifeofabionerd sooji antiinflammatory gilbrook craftsmanship

high hungrynation drizzle acnes tyres luggage

 0  5  10  15  20  25  30  35
 0

 5

 10

 15

 20

 25

 30

 35

 0

 0.2

 0.4

 0.6

 0.8

 1

Fig. 3. Probed queries correlation among configurations

Nevertheless, apart from these configurations, the rest have very low correlation
(below 25% in most cases). This means that the query terms selected to probe
the Hidden-Web site are entirely different, despite the fact that all configurations
started with the same one.

Moreover, the fact that configurations probe with different queries is not suf-
ficient on its own, as they could be retrieving similar documents. For this reason,
Fig. 4 shows a similar map, measuring the correlation of retrieved documents
by each configuration. Again, this is computed as the pairwise intersection of
documents for all configurations. We can clearly see that unless the terms are
the same, the configurations retrieve entirely different portions of the Hidden
Web site. This is the main hint that using the ranking aspect results in a more
breadth-wise search.



 0  5  10  15  20  25  30  35
 0

 5

 10

 15

 20

 25

 30

 35

 0

 0.2

 0.4

 0.6

 0.8

 1

Fig. 4. Retrieved documents correlation among configurations

6 Related Work

Our work is related to several fields pertaining the web, such as Web Mining
and Web IR. More specifically, we focus on Hidden Web (HW), the existence of
which was brought to light in the early years of this millennium [2]. Research
on HW sites has focused on various aspects, such as understanding query forms
[8, 16, 20], classifying the sites based on their content [11], accessing it [9, 4] and
searching the surface web to discover HW entry points [18]. Our work focuses
on surfacing HW content, i.e. retrieving content from those sites, so that it can
be indexed, thereby it relates to the works in [14, 12, 13]. The general technique
in these works, as in ours, is to probe queries to the HW site, retrieve the actual
content and then select the next query with which to probe. These techniques
focus on coverage, i.e. retrieve as big a portion of the site’s content as possible.
The key difference is that they do not take the ranking aspect into account.

Ranking has been extensively studied both within and outside the scope of
web-related disciplines. Its importance is significantly higher in the web domain,
due to the size of the web and the fact that users rarely view more than the top
ranked documents. It is, therefore, an ever-going research topic, with various
settings and applications. To rank documents on the web, several approaches
have been proposed, such as machine learning [15], link structure [3], web content
analysis and anchor text. Our work differs in that we do not aim at building a
new ranking function for HW sites. Rather we are interested in taking ranking
performed by HW sites into account, while retrieving their content. Ranking
in the context of HW sites has been studied in [1], where the authors want
to identify the order in which to probe sources, in order to provide users with
appropriate information. Their work differs from ours in that we are interested
in the ranking performed by HW sites per se, not to globally rank the HW sites
themselves with respect to a user need. Moreover, the authors in [1] perform
sampling of HW sites, as an external step of their approach, whereas our primary
goal is to crawl HW sites and crawling is an integral part of our strategy.



Finally, our employed approach relates in notion to the active learning paradigm
[17]. Active learning is based on the idea that a classifier “may achieve higher
accuracy if it is allowed to choose the next training label from which to learn”. To
do this, a measure of the error that is introduced by a potential label is required.
Then, the label that is expected to maximize the gain is selected and used to
train the classifier. Although existing crawling algorithms for HW sites mostly
rely on mathematical models to choose their next query, simplifying our tech-
nique’s intuition, our work relates in the following manner: we choose the term
for which we can not accurately predict its global ranking, in case we probed it
to the database. Nevertheless, our work differs from active learning approaches,
as we do not use a machine learning classifier, nor is it our primary concern to
learn the ranking function of each HW site. Moreover, we are interested in cov-
erage as well. Finally, to the best of our knowledge, active learning approaches
have not been used in the context of Hidden Web sites.

7 Conclusions and Future Work

In this work we introduced the problem of crawling Hidden Web sites in a rank-
aware manner, so that we make use of the ranking aspect that these sites per-
form. We proposed a family of algorithms which address this problem and are
a generalization of existing approaches. We evaluated our techniques on real
web sites. We show that our methods achieve better coverage of the Web site
than existing methods and that overall, they visit different portions of the site,
and thus are easily parallelizable. Future directions include the application of
an active learning classifier on ranking functions and using the Hidden-Web site
ranking as a building block to identify more accurately sources that fulfill user
requirements. We are also interested in studying how the query terms used by
each configuration correlate with topically-similar document clusters.

8 Acknowledgments

This research has been co-financed by the European Union (European Social
Fund - ESF) and Greek national funds through the Operational Program “Ed-
ucation and Lifelong Learning” of the National Strategic Reference Framework
(NSRF) - Research Funding Program: Heracleitus II. This research has also been
partially supported by PIRG06-GA-2009-256603.

References

1. B. Arai, G. Das, D. Gunopulos, V. Hristidis, and N. Koudas. An access cost-aware
approach for object retrieval over multiple sources. PVLDB, 3(1):1125–1136, 2010.

2. M. Bergman. The deep web: Surfacing hidden value. Technical report, ,, 2001.
3. S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine.

In COMPUTER NETWORKS AND ISDN SYSTEMS, pages 107–117, 1998.



4. A. Dasgupta, G. Das, and H. Mannila. A random walk approach to sampling hidden
databases. In SIGMOD ’07: Proceedings of the 2007 ACM SIGMOD international

conference on Management of data, pages 629–640, 2007.
5. C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation methods for

the web. In WWW, pages 613–622, 2001.
6. R. Fagin, R. Kumar, M. Mahdian, D. Sivakumar, and E. Vee. Comparing partial

rankings. SIAM J. Discret. Math., 20(3):628–648, 2006.
7. R. Fagin, R. Kumar, and D. Sivakumar. Comparing top k lists. In SODA ’03: Pro-

ceedings of the fourteenth annual ACM-SIAM symposium on Discrete algorithms,
pages 28–36, 2003.

8. H. Garcia-Molina. Challenges in crawling the web. In BNCOD, page 3, 2003.
9. B. He, M. Patel, Z. Zhang, and K. C.-C. Chang. Accessing the deep web. Commun.

ACM, 50(5):94–101, 2007.
10. P. G. Ipeirotis, E. Agichtein, P. Jain, and L. Gravano. Towards a query optimizer

for text-centric tasks. ACM Trans. Database Syst., 32(4):21, 2007.
11. P. G. Ipeirotis, L. Gravano, and M. Sahami. Probe, count, and classify: categorizing

hidden web databases. In SIGMOD ’01: Proceedings of the 2001 ACM SIGMOD

international conference on Management of data, pages 67–78, 2001.
12. J. Liu, Z. Wu, L. Jiang, Q. Zheng, and X. Liu. Crawling deep web content through

query forms. In WEBIST, pages 634–642, 2009.
13. J. Madhavan, D. Ko, L. Kot, V. Ganapathy, A. Rasmussen, and A. Halevy. Googleś

deep web crawl. Proc. VLDB Endow., 1(2):1241–1252, 2008.
14. A. Ntoulas, P. Zerfos, and J. Cho. Downloading textual hidden web content

through keyword queries. In JCDL, pages 100–109, 2005.
15. M. Richardson. Beyond pagerank: Machine learning for static ranking. In In

WWW 06: Proceedings of the 15th international conference on World Wide Web,
pages 707–715. ACM Press, 2006.

16. P. Senellart, A. Mittal, D. Muschick, R. Gilleron, and M. Tommasi. Automatic
wrapper induction from hidden-web sources with domain knowledge. InWIDM ’08:

Proceeding of the 10th ACM workshop on Web information and data management,
pages 9–16, 2008.

17. B. Settles. Active learning literature survey. Computer Sciences Technical Report
1648, University of Wisconsin–Madison, 2009.

18. K. Vieira, L. Barbosa, J. Freire, and A. S. da Silva. Siphon++: a hidden-webcrawler
for keyword-based interfaces. In CIKM, pages 1361–1362, 2008.

19. YouTube Service. http://www.youtube.com/.
20. Z. Zhang, B. He, and K. C.-C. Chang. Understanding web query interfaces: best-

effort parsing with hidden syntax. In Proceedings of the 2004 ACM SIGMOD

international conference on Management of data, SIGMOD ’04, pages 107–118,
2004.


