
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. YY, XXX. ZZ 1

Rapid Detection of Local Communities
in Graph Streams

Panagiotis Liakos, Katia Papakonstantinopoulou, Alexandros Ntoulas, and Alex Delis

Abstract—We examine the problem of uncovering communities in complex real-world networks whose elements and their respective
associations manifest as streams of data. Community detection is applied in emerging computational environments and concerns
critical applications in diverse areas including social computing, web analysis, IoT and biology. Despite the already expended related
research efforts, the task of revealing the community structure of massive and rapidly-evolving networks remains very challenging.
More specifically, there is an emerging need for online approaches that ingest graph data as a stream. In this paper, we propose a
streaming-graph community-detection algorithm that expands seed-sets of nodes to communities. We consider an online setting and
process a stream of edges while aiming to form communities on-the-fly using partial knowledge of the graph structure. We use
space-efficient structures to maintain very limited information regarding the nodes of the graph and the sought communities, so as to
effectively process large scale networks. In addition to our novel streaming approach, we develop a technique that increases the
accuracy of our algorithm considerably and additionally propose a new clustering algorithm that allows for automatically deriving the
size of the communities we seek to detect. Using ground-truth communities for a wide range of large real-word and synthetic networks,
our experimental evaluation shows that our approach does achieve accuracy comparable, and oftentimes better, to the state-of-the-art
non-streaming community detection algorithms. More importantly, we attain significant improvements in both execution time and
memory requirements.

Index Terms—Local Community Detection, Graph Streams, Seed-set Expansion, Social Networks.

F

1 INTRODUCTION

REVEALING the community structure of networks repre-
senting entities in various domains is a challenge that

garners the interest of both industry and academia. Despite
their size, networks exhibit a high level of order and or-
ganization, a property frequently referred to as community
structure [1]. Nodes tend to organize into densely connected
groups that exhibit weak ties with the rest of the graph. We
refer to such groups as communities, whereas the task of
identifying them is termed community detection.

Community detection is a fundamental problem in the
study of networks and becomes more relevant with the
prevalence of online social networking services such as
LinkedIn and Facebook. Understanding network commu-
nities leads to invaluable insights around the functioning
of many integral systems, in areas such as social com-
puting, web analysis, IoT and biology. In a social context,
identifying the communities of individuals enables us to
perform recommendations for new connections. Moreover,
by uncovering the membership of an individual to various
organizational groups, we can provide more informative
and engaging social network feeds. Community detection
can be also successfully applied to numerous other types
of networks, such as the World Wide Web or biological
networks. In the context of the World Wide Web, we are

This work has been partially supported by the EU H2020 “GALENA” grant
with agreement n. 641515.

• P. Liakos, A. Ntoulas, and A. Delis are with the Department of Informatics
and Telecommunications, University of Athens, Athens 15703, Greece.
E-mail: {p.liakos, antoulas, ad}@di.uoa.gr.

• K. Papakonstantinopoulou is with the Department of Informatics, Athens
University of Economics and Business, Athens GR 10434, Greece.
Email: katia@aueb.gr

Manuscript received January 7, 2020; revised 9/6/2020

often interested in identifying topic-focused communities
and tracking their evolution in time [2]. Biological networks
comprise among others neural networks, food webs, and
metabolic networks [1], on which we are particularly inter-
ested in inferring their functional modules such as cycles
and pathways [2].

In the last two decades, a plethora of community detec-
tion methods has been proposed. Initially, the focus has been
on non-overlapping communities [3], [4], [5], [6]. More re-
cent approaches, however, allow for nodes to belong to more
than one community [7], [8], [9], [10], [11], [12]. Still, these
approaches focus on the entire graph structure and do not
scale with regards to both execution time and memory con-
sumption; hence, they are also not applicable to the massive
and dynamically formed graphs of the Big Data era. Recent
efforts manage to scale as far as execution time is concerned
by focusing on the local structure and expanding exemplary
seed-sets into communities [13], [14], [15], [16]. Such a semi-
supervised learning task can be applied to numerous real
world applications, e.g., given a few researchers focusing
on “Data Engineering” we can use a citation network to
detect their colleagues in the same field. However, the space
requirements of such algorithms rapidly become a concern
due to the unprecedented size now reached by real-world
graphs. The latter have become difficult to represent in-
memory even in a distributed setting [17].

An increasingly popular approach for massive graph
processing is to consider a data stream model, in which
the stream comprises the edges of a graph [18], [19], [20].
The challenge here is to process this graph stream based
exclusively on single-pass access to the stream and limited
working memory [19]. This is a new direction in the field
of community detection and to the best of our knowledge

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. YY, XXX. ZZ 2

&RPPXQLWLHV��VHHGV�

*UDSK�6WUHDP

&R(X6

�

��

�

�

�
�

�
�

�
�

�

�
�

�

����

Fig. 1: A stream comprising the edges of an undirected
graph and a set of communities initialized with a few seed
nodes. For every edge of the stream we wish to evaluate
whether the adjacent nodes belong to the communities we
examine.

no prior approach has considered such a setting without
imposing restrictions on the order in which edges are made
available [21], [22]. In this paper, we propose COEUS,1 a
novel online local community detection algorithm that is
fully applicable on graph streams.

Figure 1 depicts such a graph stream whose edges arrive
at no particular order. COEUS is initialized with seed-sets
of nodes that define different communities, such as the
three sets depicted with the circles of Figure 1. As edges
arrive, we can process them but we cannot afford to keep
them all in-memory. Therefore, COEUS maintains rather
limited information about the adjacent nodes of each edge
and their participation in the communities in question. This
information is kept using probabilistic data structures to fur-
ther reduce the memory requirements of our algorithm. In
addition to our original approach for community detection
in graph streams, we propose two algorithms to enhance the
effectiveness of COEUS. The first focuses on better quantify-
ing the quality of each edge w.r.t. a community. The second
is a novel clustering algorithm that allows for automatically
determining the size of the resulting communities, in spite
of the absence of the graph structure.

Our experimental results derived using various large-
scale real-world and synthetic graphs show that COEUS
is extremely competitive with regard to accuracy compared
to approaches that employ the entire graph structure and
thus cannot operate on graph streams. More specifically,
COEUS can process with just a few MBs, graphs that
prior approaches fail to handle on a machine with 16GB
of RAM. In addition, COEUS derives the communities in
question inordinately faster. For instance, we demonstrate
that COEUS is almost 30 times faster for the largest graph
we could process with previously suggested approaches.
More importantly, COEUS is able to return its resulting
communities on demand at any time while we ingest the
graph as a stream. This is particularly important, as no other
approach is able to update communities while new edges

1COEUS stands for Community detection via seed-set Expansion on
graph Streams. In Greek mythology Coeus was the Titan of intellect, the
axis of heaven around which the constellations revolved and probably
of heavenly oracles.

arrive without additional significant computational cost, re-
gardless of the memory space we can afford to expend.

In summary, we make the following contributions:
• We propose COEUS, a novel online community de-

tection algorithm that operates on a graph stream. To
the best of our knowledge, this is the first community
detection algorithm that uses space sublinear to the
number of edges and does not impose any restrictions
on the order in which edges arrive in the stream.

• We develop a variation of our algorithm to better
quantify the quality of each edge w.r.t. a community
and verify that it improves the accuracy of COEUS
impressively.

• We suggest a novel clustering algorithm that allows
for automatically determining the size of the resulting
communities of COEUS.

• We experimentally evaluate the accuracy of our algo-
rithm and show that COEUS is extremely competitive
with prior approaches that cannot operate on graph
streams and instead need to load the complete graph in
memory. In addition, we show that both the execution
time and space requirements of COEUS are astonish-
ingly low.

2 COMMUNITY DETECTION VIA
SEED-SET EXPANSION ON GRAPH STREAMS

In this section, we first formulate the challenge we address
in this work. Then, we discuss the space requirements of our
algorithm, and present our novel approach for streaming
community detection. Lastly, we propose two enhancements
to our algorithm, that greatly improve its effectiveness and
efficiency.

2.1 Problem formulation

Consider a streaming sequence of unique unordered
pairs of nodes e = {u, v}. Over time such a stream
S = he1, e2, . . . , emi naturally defines an undirected un-
weighted graph G = {V,E}, where V is a set of ver-
tices {v1, v2, . . . , vn} and E is a set of undirected edges
{e1, e2, . . . , em}. Given a few exemplary members of some
community, i.e., a community seed-set K = {k1, k2, . . . , kl}
where each ki 2 V , our goal is to extend K to the target
community C . Figure 1 shows such a graph stream with
three visible arriving edges, and three seed-sets that are to
be extended to communities.

A community is generally thought of as a set of graph
nodes that are tightly connected to each other and exhibit
limited cohesion with the rest of the graph’s nodes [5]. How-
ever, there is no universal definition of what communities
are, and thus, there exists a plethora of different approaches
in detecting them. A widely used quality function in the
field of community detection is the conductance of a commu-
nity [9], [10], [15], [23]. More specifically, the conductance
�(C) of a community C is formally defined as:

�(C) =
adj(C, V \ C)

min{adj(C, V),adj(V \ C, V)} , (1)

where adj(A,B) = |{(u, v) 2 E : u 2 A, v 2 B}|.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. YY, XXX. ZZ 3

Several methods attempt to detect communities exhibit-
ing low conductance, in an effort to come up with a set of
nodes with a limited number of ties to nodes outside the
community. Moreover, there do exist approaches that offer
in-memory approximations of evolving subgraphs that can
be used in computing and tracking the conductance of these
subgraphs as edge-activations arrive [24]. However, local
community detection approaches based on conductance [15]
need to calculate the corresponding conductance for each of
the possible subsets of an expanded community. Such an
approach is impractical in a streaming setting.

We introduce here the community participation cp(u, t)
of a node u in a community at time-step t, as a means to
pragmatically measure node’s u participation level in this
community. We assume that the stream elements arrive in
successive and distinct time-steps.

Definition 1. The community participation of node u in
community C at time-step t is defined as:

cp(u, t) =

8
<

:

1, if u 2 K
|{(u, v) 2 St : v 2 Ct�1}|

|St|
, otherwise

(2)
where K is the seed-set for target community C , St is the
set of elements of the stream S that have arrived at time-
step t and Ct�1 comprises the set of nodes in community
C at time-step t� 1.

We employ cp(u, t) to approximate, for each node, the
fraction of its neighbors in the graph that are part of a
community we seek to expand. Our intuition is that includ-
ing nodes exhibiting high values of cp to a community C
will result to a low value of conductance for the community.
To this end, we employ Eq. (2) to detect communities. We
note, however, that the use of a particular quality function,
such as conductance or community participation, does not
hinder in any way the evaluation of our approach against
community detection methods using different quality func-
tions. Such an evaluation is possible, as there exist publicly
available networks with ground-truth communities. Our
experimental setting features numerous such networks that
allow us to verify the efficiency of different approaches.

2.2 Space complexity

Real-world networks may reach voluminous sizes that cause
serious challenges to classical analysis algorithms [18]. One
approach to process such networks is using graph stream
algorithms. The latter handle a stream comprising the edges
of the graph –in the order in which these edges arrive over
time– using limited memory.

In the context of community detection, prior streaming
approaches are shown to successfully reveal the community
structure of graph streams with limited memory require-
ments [21], [22]. However, all previous approaches impose
additional constraints on the order in which the edges of
the stream arrive. In particular, Yun et al. [22] consider a
data stream model in which rows of the adjacency matrix
of the graph are revealed sequentially. In such a setting we
must be aware at any moment of all neighbors of certain
nodes. Thus, [22] applies community detection with partial

information as the subgraphs are revealed. Memory require-
ments are kept low as at each step all information that was
made available in earlier steps can be discarded. SCoDa [21]
considers a setting in which the edges of the graph stream
arrive as if we picked them uniformly at random. This
allows for estimating whether a newly arriving edge is an
intra-community or an inter-community edge and enables
SCoDa to achieve space complexity that is linear to the
number of the graph’s nodes. However, picking an edge
of the graph uniformly at random requires that we already
possess the graph in its entirety; this assumption is not true
for graph streams.

In this paper, we consider a more practical scenario of
a streaming setting in which the edges of a graph arrive at
no particular order. Thus, we cannot discard information in
ways similar to the techniques in [21], [22]. Our approach
aims at estimating the participation level of each node of
the graph in each of the communities we examine, using Eq.
(2). In this context, we need to keep track of the following
information as we process a graph stream:

1) communities: the set of nodes that comprise each com-
munity we examine,

2) degrees: the degree of each node in the graph, i.e.,
the total number of nodes each node in the graph is
adjacent to, and

3) community degrees: the degree of each node in the
subgraph induced by each community we examine,
considering the communities in the form they have at
the time we process the stream.

Essentially, if |C 0| is the number of communities we
examine, the above information can be kept in-memory
using |C 0| sets (one set for each community we examine),
and |V |(|C 0| + 1) integers. Specifically, for each node in
the graph we need one integer to hold its degree and
another to hold its community degree in each community
we examine, which gives a total of |C 0| + 1 integers. Given
that the number of communities we examine can be very
large, we opted for using COUNT-MIN sketches to store the
|V |(|C 0|+ 1) integers efficiently in main memory.

The COUNT-MIN sketch [25] is a well-known sublin-
ear space data structure for the representation of high-
dimensional vectors. COUNT-MIN sketches allow funda-
mental queries to be answered efficiently and with strong
accuracy guarantees. They are particularly useful for sum-
marizing data streams as they are capable of handling
updates at high rates. A COUNT-MIN sketch uses a d ⇥ w
matrix where w = d e

✏ e, d = dln 1
� e, e is Euler’s number (the

base of the natural logarithm), and the error in answering a
query is within a factor of ✏ with probability �. A total of d
pairwise independent hash functions is also used, each one
associated with a row of the array.

Figure 2 illustrates the update process of a COUNT-MIN
sketch for our specific problem. Consider that an edge (u, v)
arrives at the stream and as v 2 C we need to increase the
number of adjacent nodes u has in community C . Thus, we
form a unique pair using the labels of the community (C)
and the node (u) and create an update (C:u, 1), indicating
that the count of C:u should be incremented by 1. The array
count is updated as follows: For each row i of count we
apply the corresponding hash function to obtain a column
index j = hi(C:u) and increment the respective value of the

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. YY, XXX. ZZ 4

+1

+1

+1

+1

h1

h2

hd

.

.

.

C : u d

w

count

Fig. 2: COUNT-MIN Sketch update process.

array by 1, i.e., count[i, j]+=1. This allows us to retrieve
at any time for a pair C:u an (over)estimation of its count
ˆaC:u, using the least value in the count array for C:u, i.e.,
ˆaC:u = mini{count[i, hi(C:u)]}.

2.3 Our CoEuS Algorithm for Streaming Community
Detection
In this section, we detail our algorithm for streaming com-
munity detection, termed COEUS. Algorithm 1 provides the
pseudocode of COEUS.
Input/Output: COEUS takes two parameters as input.
The first is a family of community seed-sets K 0 =
{K1,K2, ...,Ks} and each Ki = {k1, k2, . . . , kl} ✓ V .
The second is a stream S = he1, e2, . . . , emi, where each
ei 2 E, and E is the set of edges of the undirected graph
G = {V,E} resulting from S. COEUS processes the edges
of the graph stream to extend each of the seed-sets in K 0

to a community. Thus, the output of COEUS is the set of
communities C 0 = {C1, C2, ..., Cs}, with community Ci

corresponding to seed-set Ki. The resulting communities
are accessible on-demand at all times as we process the
stream.
Initialization: The first step of COEUS is to initialize the two
COUNT-MIN sketches (Lines 2-3) and a set C 0 that will hold
references to the communities and will be the output of the
algorithm (Line 4). Next, we initialize the targeted commu-
nities using the seed-sets (Lines 5-10). This phase creates an
additional set for each of the community seed-sets, to hold
the nodes of the respective communities. The seed-sets and
the community sets enable us to query efficiently at any time
whether a node is a seed or a member of a community. Using
Figure 1 as an example, consider that we wish to detect three
communities. COEUS is initiated with three seed-sets that
designate these communities, namely {2, 5, 8}, {3, 6, 8}, and
{1, 4, 7}. In this setting, COEUS creates three community
sets that comprise these nodes, as we are certain that the
seeds of a community are part of the community (Line 8).
Additionally, we maintain an index I that allows for efficient
retrieval of the communities a node is part of (Line 9).
Stream processing: After initializing the communities,
COEUS is ready to process the elements of the stream
(Lines 11-28). Our working assumption is that maintaining
the whole graph is prohibitive. Instead, we focus on the
degree of each node in the graph, the node’s degree in each
community, and the nodes that comprise each community.
Algorithm 1 additionally maintains the communities each
node is part of, which helps effectively eliminate computa-
tion overheads; however, this information is not necessary
for COEUS.

Algorithm 1: COEUS(K 0, S)
input : Set of community seed-sets K0,

graph stream S.
output : Set of communities C0.
parameters : Window size W , pruning size s.

1 begin

2 degreeV CMS;
3 degreeC CMS;
4 C0 {};
5 foreach K 2 K0

do

6 C {};
7 foreach k 2 K do

8 C C [{k};
9 I[k] I[k] [{C};

10 C0 C0 [{C};
11 processedElements 0;
12 while 9(u, v) 2 S do

13 degreeV [u]+ = 1;
14 degreeV [v]+ = 1;
15 foreach C 2 (I[u] [I[v]) do

16 if u 2 C then

17 degreeC [v]+ = 1;
18 if v 2 C then

19 degreeC [u]+ = 1;
20 if u 2 C then

21 C C [{v};
22 I[v] I[v] [{C};
23 if v 2 C then

24 C C [{u};
25 I[u] I[u] [{C};
26 processedElements + = 1;
27 if processedElements mod W == 0 then

28 C pruneComm(C, s, degreeV , degreeC);
29 return C’

For each incoming edge of the stream, we first increment
the degree of each of the adjacent nodes in the graph by 1
(Lines 13-14). Then, for each community that the adjacent
nodes are part of (Line 15), we examine whether each of the
two involved nodes is a member of the community (Lines
16 & 18). If this is the case, we increment the community
degree of the other node (Lines 17 & 19). After we update
the community degrees, we can examine whether we should
add the node to the community (Lines 21 & 24), and the
community to the node’s communities (Lines 22 & 25). Note
that we cannot merge Line 16 with Line 20 nor Line 18 with
Line 23, as this would alter the branch evaluations.

Going back to the example of Figure 1, with the arrival
of edge {9, 8}, COEUS will first increment the degree of
both nodes 8 and 9 by 1. Then, COEUS will examine the
communities that nodes 8 and 9 belong to. Node 8 is
featured in two communities whereas node 9 is not included
in any. Therefore, COEUS will increment the community
degree of node 9 by 1 for both communities node 8 is part
of. In addition, COEUS will add node 9 to both communities
that node 8 belongs to, and the two communities will be
added to the community index of node 9.

As the diameters that real-world networks exhibit are
small and in many cases decrease as the network grows [26],
the communities COEUS detects through the above process
often grow considerably in size. We wish to focus on nodes
that are tightly connected to each other for each community.
To this end, we additionally consider a window of size

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. YY, XXX. ZZ 5

Algorithm 2: pruneComm
1 Function pruneComm (C, s, degreeV , degreeC)
2 minheap [];
3 foreach v 2 C do

4 cp degreeC [v]
degreeV [v] ;

5 if size(minheap) < s then

6 minheap.push(v,cp);
7 else if cp > minheap[0] then

8 minheap.pop();
9 minheap.push(v,cp);

10 return set(minheap);

W . During a window, the communities may grow freely in
size, as new edges arrive. When the window closes, COEUS
prunes all communities and keeps only the s most highly
involved nodes of each community (Lines 27-28).

The above process is detailed by Algorithm 2. Here,
the pruneComm function uses Eq. 2 to evaluate each node’s
participation level to community C . For each node v 2 C we
calculate cp for the current time-step (Line 4). Then, we use
a min-heap to hold the nodes with the highest community
participation values. If the size of the min-heap is currently
below s, i.e., the size at which we want to prune the com-
munity, we push the node and its community participation
value to the min-heap (Lines 5-6). Otherwise, we examine
whether the community participation value of the current
node is higher than that of the minimum value in the min-
heap (Line 7). If so, we pop the latter out of the min-heap,
and push in the current node (Lines 8-9). The function out-
puts a set comprising the nodes that remained in the min-
heap after examining all the nodes of the community (Line
10). For brevity, we omit the respective updates to index I
that allows for efficient retrieval of the communities each
node participates in. COEUS prunes communities to a size
s = 100, as related studies state that quality communities do
not surpass 100 nodes [27]. This value of parameter s can be
configured depending on the size of targeted communities.
Moreover, COEUS uses a window of 10,000 edges, a value
derived via extensive exploratory testing that consistently
works well, as we discuss later on.
Termination: COEUS can be stopped at any time, as the
member nodes of each community are available at any
moment. The output of Algorithm 1 is the set C 0 that
holds references to all targeted communities that are up-
dated during the stream processing. All community nodes
are associated with a community participation value that
COEUS may include in its output. The higher this value is,
the more certain we are that the respective node is part of a
community. In the pseudocode of Algorithm 1, we consider
a finite stream and so, COEUS terminates when all elements
of the stream have been processed. Evidently, COEUS can
handle infinite streams as well.

2.4 Reckoning in edge quality w.r.t. each community

Algorithm 1 examines for every edge of a graph stream
whether its two adjacent nodes belong to a community.
If this is the case, COEUS increments the respective com-
munity degree of the other node by 1. This procedure
takes into consideration only the number of internal links

each node has in a community. All nodes included in a
community provide increments of 1 to all of their adjacent
nodes, regardless of how well-established the former are in the
community.
Proposition 1. The sum of increments some node u will

contribute to the community degrees of other nodes
for some community C , given that window W ! 1,
depends solely on the number of edges incident on u
that are processed after u has become part of C .

Proof: Assume that there is a set of n edges that
are incident on u and are processed after u is included in
community C . Since window W ! 1, u belongs in C
during the processing of all n edges, and will contribute
an increment of 1 to the community degree of each one
of its n neighbors for community C . Therefore the sum of
increments that u contributes is n.

Instead of incrementing by 1 the community degrees of
all neighbors of a node that have become part of a commu-
nity, as devised by Eq. (2), we propose here a variation for
COEUS. It employs the network’s link structure to improve
over the above in-degree-like measure, applying recursively
the idea of community participation. We term our variation
as recursive community participation and we define its value
for a node based on the community participation of this
node’s neighbors, as follows:

rcp(u, t) =

8
>><

>>:

1, if u 2 KP
8v:(u,v)2St and v2Ct�1

cp(v, tv)

|St|
, otherwise

(3)
where K is the seed-set for target community C , St is the set
of elements of the stream S that have arrived at time-step
t, Ct�1 comprises the set of nodes in community C at time-
step t � 1, and tv is the time-step that edge (u, v) appeared
in the stream.

Obviously, our variation employs Eq. (2), which is equal
to the fraction of the neighbors of a node that are also
members of the community in question. This fraction is an
estimation of the probability that a one-step random walk
starting from the node will lead to a node that is a member
of the community in question. Therefore, the value of Eq. (2)
for each node grows with its involvement in the community,
as we show below with Proposition 2.
Proposition 2. Using our variation, the expected sum of

increments some node u contributes to the community
degrees of other nodes for a community C , given that
window W ! 1, depends on the number of edges
incident on u that are processed after u is included in
C , and while those nodes are not part of C .

Proof: Assume that there is a set of m + n edges,
m,n � 0, that are incident on u and are processed after
u is included in community C . Assume further that for m of
these edges, their other endpoint belongs in C when they are
being processed, whereas for the rest n their other endpoint
does not belong in C when they are being processed. By
definition, degreeC [v] = 0 for any node v that does not
belong in C . Without loss of generality, we assume that
degreeC [v]
degreeV [v] = 1 for any node v among the m neighbors of
u that belong in C . Since window W ! 1, u belongs in C

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. YY, XXX. ZZ 6

Algorithm 3: addToCommByEdgeQuality
1 Procedure addToCommByEdgeQuality
2 foreach C 2 (I[u] [I[v]) do

3 if u 2 C then

4 degreeC [v]+ = degreeC [u]
degreeV [u] ;

5 if v 2 C then

6 degreeC [u]+ = degreeC [v]
degreeV [v] ;

7 if u 2 C then

8 C C [{v};
9 I[v] I[v] [C;

10 if v 2 C then

11 C C [{u};
12 I[u] I[u] [C;

when all m+n edges are being processed and will contribute
an increment of degreeC [u]

degreeV [u] to the community degrees of all
(m+ n) neighbors of u for community C .

Moreover, assume that initially degreeC [u]
degreeV [u] =

k
l , for k  l.

When one of the m edges is processed, both degreeC [u] and
degreeV [u] are increased by 1, whereas when one of the n
edges is processed, only degreeV [u] is increased by 1.

Let us denote the random variable that expresses the
contribution of u to its i-th neighbor degree by Du,i. Then

E(Du,i) =
Pi

j=0

�i
j

�Qi�j
⇢=1(m�⇢+1)·

Qj
⇢=1(n�⇢+1)

Qi�1
⇢=0(m+n�⇢)

k+i�j
l+i

or, simply,

E(Du,i) =
k

l + i
+

i m

(m+ n)(l + i)

derived by mathematical induction based on the previous
equation.

When E(Du,i) is high, the probability that a neighbor
of u is a member of the community is also high. Thus,
using Eq. (2) instead of value 1 to increment the community
degree of a node, we remain vitally focused in the community.

Algorithm 3 details the above outlined approach, and
can replace Lines 15-25 of Algorithm 1. The difference in
functionality is in Lines 4 and 6 of Algorithm 3, which
increment the participation level of a node in the community
using Eq. (2). This results in using Eq. (3) instead of Eq. (2)
in Algorithm 3, where we estimate the community partici-
pation of each node (Line 4). Our variation favors nodes that
are adjacent to well-established members of the community,
as such nodes receive a significant increment to their com-
munity degree. In contrast, nodes that exhibit low values of
Eq. (2) provide insignificant increments to the participation
levels of their adjacent nodes. Thus, we prevent irrelevant
nodes from shifting the focus of a community.

2.5 Size of the community
COEUS associates each node included in the expanded
community with a community participation value. How-
ever, the size of an actual community might be smaller
than the one COEUS examines. Therefore, COEUS needs
to effectively address the issue of determining the size of
a community automatically and to remove any irrelevant
nodes or less significant nodes.

Algorithm 4: dropTail
1 Procedure dropTail
2 Ĉ reverseSort(C);
3 totalDifference 0;
4 previous 0;
5 foreach v 2 Ĉ do

6 if previous > 0 then

7 totalDifference cp(v)� previous;
8 previous cp(v);
9 averageDifference totalDifference

size(Ĉ)�1
;

10 previous 0;
11 foreach v 2 Ĉ do

12 if previous > 0 then

13 difference cp(v)� previous;
14 previous cp(v);
15 if difference < averageDifference then

16 Ĉ Ĉ \ {v};
17 else

18 break;

 0

 0.01

 0.02

 0.03

 0.04

 25 50 75 100

rc
p

Rank

community nodes
tail nodes

Fig. 3: Ranking of nodes w.r.t. Eq. (3) and the partitioning
that Algorithm 4 makes for a community of dblp.

Algorithm 4 proposes dropTail, a procedure that identifies
nodes irrelevant to the community formed with COEUS and
removes them. In this regard, dropTail utilizes the commu-
nity participation values of the nodes included in the com-
munity, and allows for fully automatic, on-demand removal
of irrelevant nodes. More specifically, irrelevant nodes ex-
hibit weak ties to the actual community and thus, their
respective community participation values are insignificant
when compared to the values of other nodes included in
the community. This is evident in Figure 3 that illustrates
the community participation values of nodes included in a
community of a real-world graph, as derived by COEUS. We
observe that ordering nodes according to their community
participation values results to a clearly visible tail. The distri-
bution of community participation values varies, depending
both on the graph and the community in question. Thus,
setting a constant threshold value and discarding nodes that
exhibit lower community participation values to remove
such tails is not an option.

Instead, we need to adjust to each particular commu-
nity and isolate the nodes that belong to the tail through

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. YY, XXX. ZZ 7

clustering. To do so, Algorithm 4 calculates the average
distance between two consecutive nodes with regard to their
ranking by their associated community participation values
(Lines 5-9). Then, we iteratively examine the value distance
of two nodes in this ranking, starting from the last node.
When this distance is found to be larger than the average
distance of nodes, Algorithm 4 stops, as it has spotted a
significant gap between the values of two consecutive nodes
(Lines 11-18). Figure 3 illustrates the result of this process
in the context of an experiment on a real-world network.
The average distance between consecutive nodes w.r.t. the
ranking by community participation value is 0.00043. The
first node from the end that exhibits a gap larger than
that from its predecessor is the one ranked 35th. Therefore,
Algorithm 4 considers that the tail of irrelevant nodes begins
from the 35th node (depicted using red crosses), and the
actual community is formed by the first 34 nodes (depicted
using green dots).

We note that seed nodes exhibit relatively large commu-
nity participation values and their inclusion in this process
is experimentally found to include more relevant nodes in
the tail. Thus, Algorithm 4 does not consider seed nodes.

3 EXPERIMENTAL EVALUATION

We proceed by evaluating the performance of COEUS on a
range of networks from various domains. Our experiments
measure the impact of the novel techniques of our algorithm
and feature comparisons against state-of-the-art community
detection approaches that use the entire graph. We first dis-
cuss the specification of our experimental setting. Then, we
evaluate our COEUS algorithm by answering the following
questions:

• What is the impact of employing the edge quality vari-
ation of COEUS with regard to its accuracy in detecting
communities?

• Can COEUS automatically determine the size of a de-
tected community using our novel dropTail clustering
procedure?

• Is the accuracy of COEUS comparable to that of state-of-
the-art local community detection methods that operate
on the entire graph?

• What are the benefits of COEUS with regard to execution
time as well as space efficiency when compared to prior
efforts?

• How do the number of communities sought, the net-
work’s average degree and the error guarantees of
COEUS impact its effectiveness and efficiency?

3.1 Experimental Setting
Our dataset comprises the 6 publicly available social
(youtube, livejournal, orkut, friendster), co-authorship (dblp),
and co-purchasing (amazon) networks listed in Table 12 and
three synthetic networks created using the Lancichinetti-
Fortunato-Radicchi (LFR) benchmark [28]. The respective
graphs reach up to 1.8 billion edges and possess ground-
truth communities which allow for quantifying the accu-
racy of community detection algorithms. To ensure a fair
comparison against earlier approaches, we have adopted

2https://snap.stanford.edu/data/#communities

TABLE 1: Graphs of our dataset reaching up to 1.8 billion
edges.

Graphs Nodes Edges

Amazon 334, 863 925, 872
DBLP 317, 080 1, 049, 866
Youtube 1, 134, 890 2, 987, 624
LiveJournal 3, 997, 962 34, 681, 189
Orkut 3, 072, 441 117, 185, 083
Friendster 65, 608, 366 1, 806, 067, 135

the experimental setting of a state-of-the-art algorithm [15]
–that also focuses on the networks of Table 1– and use the
top-5000 ground-truth communities of each network that
possess the highest quality according to [29], after enforcing
a minimum community size of 20.

The experiments were carried out on a machine with an
Intel® CoreTM i5-4590, with a CPU frequency of 3.30GHz, a
6MB L3 cache and a total of 16GB DDR3 1600MHz RAM and
the Linux Xubuntu 18.04.3 x86 64 OS. Our implementation,
as well as execution tests that enable the reproducibility
of our results are publicly available.3 To maintain node
and community degrees, we employ in all our experiments
COUNT-MIN sketches. The latter are initialized with the
following parameters: i) d = 7, and ii) w = 200,000, so that
we obtain 99% confidence that ✏ < 10�5. Our evaluation
assumes that 3 random nodes of each ground-truth commu-
nity are provided to each algorithm as an input seed-set. To
measure the accuracy of each algorithm we use the average
F1-score achieved for the communities of each graph. All
results reported are averages of multiple executions (for
various random seed-sets and permutations of the order
of edges) and are accompanied with their respective 95%
confidence intervals.

3.2 Impact of the Edge Quality Variation
We first examine the behavior of COEUS when considering
our two different techniques of incrementing the commu-
nity degree of a node. As COEUS1, we denote the baseline
version of our algorithm, in which the community degree
of each node is incremented by 1 for every adjacent node
found in the community, and the community participation
is estimated using Eq. (2). As COEUScp, we designate our
proposed approach, in which the community degree of each
node is incremented using Eq. (2) and thus, the community
participation is estimated using Eq. (3).

We can clearly see in Figure 4 that COEUScp achieves
an increased F1-score compared to COEUS1 for all graphs
included in our dataset. Evidently, the edge quality variation
we introduce with COEUScp heavily impacts the ability
of our algorithm to accurately retrieve the members of a
community. The improvement for graphs dblp, livejournal,
and friendster is particularly impressive, increasing from 0.263
to 0.469 (78%), from 0.402 to 0.656 (63%), and from 0.15 to
0.464 (209%), respectively. Significant improvements with
regard to F1-score are also achieved for graphs orkut, amazon,
youtube.

These results emphatically verify that using Eq. (3) we
successfully favor nodes that are actual members of the com-
munity in question, and penalize nodes that exhibit weak ties

3https://github.com/panagiotisl/CoEuS

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. YY, XXX. ZZ 8

 0

 0.2

 0.4

 0.6

 0.8

 1

Amazon

DBLP
Youtube

LiveJournal

Orkut
Friendster

F1
-s

co
re

Graph

CoEuS1
CoEuScp

CoEuScp-auto
LEMON

LOSP

Fig. 4: F1-score comparison for COEUS1, COEUScp,
COEUScp-auto, LEMON, and LOSP.

with the community, when incrementing their respective
community degrees. Thus, the resulting communities are
much more accurate than the ones detected when relying
entirely on Eq. (2).

We note that this experiment considers as size of each
resulting community the size of the respective ground-
truth community, for both COEUS1 and COEUScp. We next
discuss the evaluation of our automatic size determination
clustering algorithm (Algorithm 4), as we cannot assume
that the size of a community is known a priori.

3.3 Evaluation of Automatic Size Determination
Community detection via seed-set expansion calls for a
stopping criterion for the expanding process. COEUS em-
ploys two techniques to limit the expansion of communities:
The first, termed pruneComm and detailed in Algorithm 2, is
a pruning procedure that is periodically applied to reduce
the size of the community. The second, termed dropTail and
designated in Algorithm 4, is a novel clustering algorithm
that is applied on the resulting community of COEUS to sep-
arate the nodes that exhibit weak ties with the community
and should be removed. In this experiment, we evaluate
the effectiveness of our clustering algorithm by comparing
the average F1-score of COEUScp and COEUScp-auto; for
COEUScp we assume that the size of each community is
known a priori, whereas COEUScp-auto automatically derives
the size of a community using Algorithm 4.

We can see in Figure 4 that our COEUScp-auto offers
impressive performance, as the difference with the F1-score
of COEUScp is in most cases negligible. More specifically, the
difference in F1-score is under 0.1 for all networks of our
dataset and 0.05 on average. This result strongly highlights
the effectiveness of Algorithm 4 to determine the size of
a community automatically. We also note that Algorithm 4
is extremely efficient, both time- and space-wise, requiring
only two passes over each resulting community (about 100
nodes), without any access to the graph’s elements. In con-
trast, other size determination techniques such as the ones

employed in [15], [16] necessitate calculations of complex
community quality measures like that of Eq. (1) for every
possible size of each community and require the presence of
the entire graph.

3.4 Comparison against state-of-the-art non-streaming
local community detection algorithms
We now proceed with comparing our graph stream al-
gorithm against state-of-the-art non-streaming local com-
munity detection algorithms. Our comparison focuses on
LEMON

4 [15] and LOSP
5 [16] as they are shown to outperform

all prior approaches [10], [13], [30], whereas the more recent
SCODA [21] reports significantly lower F1-scores and does
not allow overlaps.

3.4.1 F1-score comparison
We begin the comparison of COEUScp-auto with earlier non-
streaming approaches as far as their accuracy on detecting
communities is concerned. We initialize LEMON and LOSP

with three random seeds of each ground-truth community
of our dataset and report averages of multiple executions.
Note, that we were unable to retrieve results for friendster
with either of the two algorithms due to memory require-
ments. Regarding LEMON, this is also the case for orkut; how-
ever, we include here the results reported for this network
in [15].

As we can see in Figure 4, our algorithm is extremely
competitive w.r.t. accuracy, despite the fact that it operates
on a graph stream setting using partial knowledge. LEMON
slightly outperforms COEUScp-auto for the four smaller
graphs of our dataset, with an average F1-score difference
of 0.089. Regarding orkut, COEUScp-auto is far more accurate
achieving an F1-score of 0.408 against LEMON’s 0.17. More-
over, LOSP is slightly better than COEUScp-auto for amazon,
youtube, livejournal, and orkut but much worse for dblp.
Finally, our algorithm is able to achieve the noticeable F1-
score of 0.417 for the largest graph of our dataset, which
both LEMON and LOSP fail to handle due to its size.

These results are particularly impressive as the graph
stream setting of COEUS, is much more restrictive than the
setting LEMON, LOSP and other prior seed-set expansion
methods operate on. COEUS processes each edge of the
graph as it becomes available and maintains rather lim-
ited information for each node and community. Hence, it
is indeed surprising that our algorithm achieves accuracy
comparable to or better than methods that utilize the entire
graph structure. Furthermore, it is evident in Figure 4 that
our effective novel graph stream techniques enable COEUS
to easily scale to large graphs, which other community
detection methods fail to handle.

3.4.2 Execution time and space efficiency comparison
Having shown that COEUScp-auto is competitive or better
than state-of-the-art non-streaming algorithms as far as ac-
curacy is concerned, we report results concerning execution
time and space efficiency in this section.

Table 2 illustrates a comparison on the execution
time between COEUScp-auto, LEMON and LOSP. Regarding

4https://github.com/YixuanLi/LEMON
5https://github.com/PanShi2016/LOSP Plus

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. YY, XXX. ZZ 9

TABLE 2: Execution time comparison.

Graphs COEUScp-auto LEMON LOSP

Amazon 0.01 sec 3.12 sec 1.233 sec
DBLP 0.011 sec 7.276 sec 4.828 sec
Youtube 0.085 sec 11.383 sec 9.189 sec
LiveJournal 0.543 sec 28.14 sec 45.291 sec
Orkut 2.076 sec � 60.8 sec
Friendster 31.449 sec � �

COEUScp-auto, we consider a streaming setting in which we
process every edge of each graph to update our structures
and expand the communities in question. For LEMON and
LOSPwe must read the entire graph in-memory, as only then
can we sequentially expand each community in question.
For our experimentation, we use only one CPU core as
parallel execution is not an option for LEMON and LOSP,
whose code is written in Python and MATLAB, respectively.
The results capture the average time needed for one commu-
nity of each network. Table 2 demonstrates our algorithm is
extremely fast. In particular, COEUScp-auto scales to networks
reaching billions of edges requiring only an impressive
average of 31.449 seconds for a community of the friendster
network. In contrast, LEMON and LOSP need equivalent time
to expand the communities of much smaller networks.

Even though these results clearly show that COEUS
is considerably faster than prior approaches, they are not
indicative of COEUS’s speed in a real streaming setting.
COEUS is able to return the communities in question on-
demand as we process the stream in real-time. The mea-
surements reported in Table 2 additionally consider edge
processing. In a real-life setting, we expect this processing to
execute faster than edges are made available. In this regard,
the actual response time of COEUS in a streaming setting
is in the order of milliseconds, regardless of the size of the
graph. Yet, the results of Table 2 indicate that COEUS is a
very attractive option even for non-streaming settings.

The space requirements of COEUS depend only on
the desired approximation quality of the two COUNT-MIN
sketches we employ and the number of communities in
question. The two sketches are configured to use in our ex-
periments the same space regardless of the graph. Thus, the
space requirements of COEUS are independent of the size
of the graph. In contrast, LEMON and LOSP need to maintain
in-memory the entire graph structure. The additional space
required by all three algorithms to hold the communities we
seek is linear to the number of the communities and fairly
insignificant compared to the graph structure.

Our measurements verify that the total space require-
ments of COEUS are remarkably low. The two sketches
we employ require just 21.36MB, and handle appropriately
even the largest graph of our dataset, reaching up to 1.8
billion edges. In contrast, the space requirements of LEMON
and LOSP grow with the number of edges of a graph.
The largest graph we are able to handle with LEMON is
livejournal with 34 million edges for which more than 2.5GB
are needed. Similarly, LOSP needs more 8GB to process orkut
with 117 million edges. Both algorithms result in memory
errors when processing larger graphs.

3.4.3 Impact of window W

One of the parameters of COEUS is the size of a window W ,
which determines how often the communities sought are
pruned. This step contributes to the efficiency of COEUS
as allowing communities to grow uncontrollably would
cause significant processing overhead. In our experiments,
W is set to 10,000 edges as we have found that using
larger values might slow down COEUS moderately. More
specifically, setting W = 15,000 causes on average 4.7%
execution time increase. Setting W = 5,000, also increases
execution time by 5.1% on average, due to the pruning step
which is executed twice as often. Note here, that this choice
of W corresponds to a maximum community size s = 100.
If one opts to use a different value of s, the choice of W
should be reconsidered.

Regarding accuracy, we have found the impact of W to
be negligible and no value would consistently outperform
setting W = 10,000 for the graphs of our dataset.

3.5 Experiments on Synthetic Networks
Our next set of experiments focuses on synthetic graphs.
We first investigate how the number of targeted commu-
nities impacts the processing time of COEUScp-auto. Then,
we discuss the respective impact caused by a network’s
average degree. Finally, we evaluate the effectiveness of
COEUScp-auto with regards to the error guarantees provided
by the COUNT-MIN sketches employed by the algorithm.

We create 3 synthetic networks of 1 million nodes each,
using the Lancichinetti-Fortunato-Radicchi (LFR) bench-
mark [28].6 The 3 networks are generated to exhibit an
average degree of 10, 20, and 30, respectively. For each syn-
thetic network we randomly select 4,000 of the generated
communities to use in this set of experiments.

3.5.1 Impact of the number of communities
Figure 5 illustrates the processing time–per–edge of
COEUScp-auto when varying both the number of communi-
ties we seek and the average degree of the network. We
observe that for a given average degree of the network,
increasing the number of communities we seek, results in
increased processing time–per–edge. That is, COEUScp-auto
scales almost linearly with the number of communities
sought, as we vary this number from 1,000 to 4,000.

3.5.2 Impact of the network’s average degree
Figure 5 also shows that for a given number of communities
we wish to uncover, the processing time of COEUScp-auto
remains relatively stable as we vary the network’s aver-
age degree. In particular, the processing time–per–edge of
COEUScp-auto ranges from 8.28 to 9.32 µs when seeking
1,000 communities, from 17.35 to 19.54 µs when seeking
2,000 communities, from 25.13 to 27.54 µs when seeking
3,000 communities, and from 36.01 to 40.7 µs when seek-
ing 4,000 communities. The slight increase reported when
increasing the network’s average degree is attributed to the
fact that the communities sought expand quicker as the net-
work’s average degree grows. However, due to the pruning
step of COEUScp-auto this impact becomes negligible.

6We use a mixing parameter of 0.1, a maximum degree of 100, and
communities with 20� 100 member nodes.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. YY, XXX. ZZ 10

Fig. 5: Impact of average degree and number of communi-
ties on the average processing time per edge (in µs).

3.5.3 Impact of error guarantees
We further investigate the performance of COEUScp-auto
regarding the effectiveness of the algorithm on detecting
the communities of synthetic networks. Figure 6 illustrates
the F1-score that COEUScp-auto achieves when varying the
network’s average degree and the number of communities
sought. We examine two variations of COEUScp-auto regard-
ing the COUNT-MIN sketches employed: i) a variation in
which the sketches provide 99% confidence that ✏ < 10�5,
and ii) a variation in which the sketches provide 99% confi-
dence that ✏ < 10�6. We note that ✏ < 10�5 requires 23MB
of memory, whereas ✏ < 10�6 needs 214MB of memory.

We observe in Figure 6 that both the number of com-
munities sought and the network’s average degree have an
effect on the accuracy of COEUScp-auto in detecting com-
munities. We first discuss the case of varying the number
of communities that appears to be more impactful. Using
sketches that provide 99% confidence that ✏ < 10�5, and for
an average degree of 10, when the number of communities
grows from 1,000 to 4,000, the F1-score drops from 0.823
to 0.621. Similarly, for average degrees of 20 and 30, the
F1-score drops from 0.867 to 0.592 and from 0.891 to
0.528, respectively. On the contrary, when the sketches of
COEUScp-auto provide 99% confidence that ✏ < 10�6, the
F1-score remains very stable, i.e., the standard deviation of
the F1-scores for a varying number of communities is below
0.003 for all cases of average degree we examine. Clearly,
using sketches with ✏ < 10�5 is not effective when searching
more than 1,000 communities in these networks. However,
COEUScp-auto can be easily set to use sketches that provide
better error guarantees and maintain the same effectiveness
as the number of communities grows.

The performance of COEUScp-auto also differentiates
when varying the network’s average degree. However, this
can be attributed to the topology and community structure
of the 3 different networks we examine. It is worth men-
tioning here that COEUScp-auto is very competitive against
LEMON as far as synthetic networks are concerned as well.
LEMON performs better for the two smaller networks –
with average F1-scores of 0.94 and 0.93 against 0.83 and

Fig. 6: Impact of COUNT-MIN sketches’ error guarantees on
F1-score, when varying the network’s average degree and
the number of communities sought.

0.87– whereas COEUScp-auto is better for the largest synthetic
network – with average F1-score 0.93 against 0.88.

4 RELATED WORK
Our work lies in the intersection of community detection in
stream graphs and local community detection via seed-set
expansion. Below, we outline relevant research efforts.
Local community detection via seed-set expansion: Nu-
merous recent approaches depart from the direction of
working with the entire graph structure. Instead, they focus
on detecting local communities in time functional to the
size of the community and are thus able to support large
scale graphs. Such approaches usually operate using a seed-
set of nodes which they expand to a community. Kloster
and Gleich [13] propose a deterministic local algorithm to
compute heat kernel diffusion and study the communities it
produces when initiated with seed nodes. LEMON [15] also
uses seeds to perform short random walks and forms an
approximate invariant subspace termed local spectra. Then,
LEMON looks for the minimum 1-norm vector in the span
of this local spectra such that the seeds are in its support.
To determine the size of the community, the authors of [15]
measure the conductance of the community as they increase
its size, and stop at the first relative minimum encountered.
LOSP [16] samples locally in the graph to get a small
subgraph containing most of the latent members. Then, a
family of local spectral approximation methods are used to
extract the local community from the sampled subgraph via
a Krylov subspace formed by short-random-walk diffusion
vectors. All three above approaches are similar to our setting
as they expand a seed-set of nodes into a community.
However, none of them is appropriate for graph streams.
LDLC [14] focuses on egonets of nodes in networks and
performs hierarchical link clustering to detect all the over-
lapping communities of a node. In addition, LDLC uses a
measure of dispersion to detect nodes that share multiple
communities and thus avoids to group together overlapping
parts of communities. Our COEUS is different as it uses a
seed-set of nodes and expands it into a single community.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. YY, XXX. ZZ 11

Streaming community detection: Yun et al. [22] consider
settings in which the size of the network is so large that
maintaining the respective graph is prohibitive. Thus, they
study the problem of clustering the nodes of a graph to
communities in a streaming setting where rows of the
adjacency matrix of the graph are revealed sequentially.
They propose an online algorithm with space complexity
that grows sub-linearly with the size of the network. Our
streaming setting does not assume that rows of the adja-
cency matrix are completely revealed to us. Instead, we
consider that edges involving any node of the graph may
arrive at any moment. Moreover, we are unaware of the
size of the graph, which grows with time. Zakrzewska and
Bader [31] propose a dynamic seed set expansion algorithm
for community detection. In particular, they consider that
edges may be inserted to or removed from the graph dy-
namically and detect the local community of a seed set by
incrementally adjusting to the changes of the graph. The
latter allows for faster execution compared to an algorithm
that requires re-computation after every update at the cost of
slightly worse community quality. Our approach is different
as we assume that we cannot maintain the entire graph
in-memory, whereas the incremental adjustments that [31]
performs do impose such a requirement. Moreover, we
suggest a significantly more cost-effective recomputation
of the local community at every step. Hollocou et al. [21]
consider an edge streaming setting and assign all the nodes
of a graph to non overlapping communities using only
two integers per node that hold: i) the node’s degree, and
ii) the current community index assigned to the node. Their
work is heavily based on the observation that if one picks
uniformly at random an edge of the graph, this edge is more
likely to link nodes of the same community, than nodes from
distinct communities. This is expected to be true as nodes
tend to be more connected within a community than across
communities, thus, if we process edges in a random order
we expect many intra-community edges to arrive before
the inter-community edges. However, this requires that we
already hold the graph in its entirety and we are able to
select its edges one by one uniformly at random. We operate
on a more practical assumption that the edges of the graph
arrive at no particular order.

Some earlier approaches focus on dynamic community
detection in graph streams. Wang et al. [32] transform a
content-based network into a multi-mode network, termed
NEI network. The evolution of communities is captured
by performing heterogeneous random walks in the NEI
network. Our approach is different as we consider that
maintaining the entire graph structure is prohibitive. Lai et
al. [33] propose the use of top-k neighbor and candidate lists
to maintain only the most useful information of an evolving
graph. Our data stream model setting is different as [33]
considers the use of an offline component that uses these
candidate lists to form communities. Duan et al. [34] present
an incremental algorithm to update the partition of a graph
segment when adding a new arriving graph. Community
detection is achieved through random walks with restart,
and requires maintaining the entire graph structure. Finally,
[35] maintains at each given moment the current graph of
interactions in main memory, and store previous graphs
of interactions on disk. This is different than our data

stream model setting which considers single pass access and
limited working memory.

A preliminary version of our work appeared in [36].
Here, we formulate and prove Propositions 1 and 2 that
justify the improved performance of our variation on Algo-
rithm 3. Additionally, we improve Algorithm 1 by introduc-
ing an additional index that helps improve our efficiency.
Lastly, we further evaluate COEUS by creating synthetic
networks and investigating the impact of the number of
communities sought, the network’s average degree, and
COEUS’s sketches error ✏.

5 CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we propose, develop and experiment with
COEUS, a novel graph stream community detection algo-
rithm that expands seed-sets of nodes into communities.
To the best of our knowledge COEUS is the first streaming
algorithm that performs community detection using space
sublinear to the number of edges without imposing any
restrictions in the order in which edges arrive in the stream.
COEUS processes a stream of edges and maintains lim-
ited information about the respective graph, concerning the
nodes’ degrees, the participation of nodes into communities
and the nodes that comprise each community we seek.
In addition, we propose two methods that enhance the
effectiveness of our approach significantly. The first method
places emphasis on the quality of an edge w.r.t. a community
and is able to better preserve the focus of a community
as the latter is expanding. The second technique allows
for automatic, on-demand determination of the size of a
community through a novel clustering technique, tailored
to the needs of COEUS.

We compare COEUS with a non-streaming local com-
munity detection method that reportedly outperforms other
recent approaches. Using large-scale real-world networks
from various domains, as well as synthetic networks, we
show that COEUS offers accuracy that is equivalent to or
better than that of methods exploiting the entire graph.
This holds true even though our approach operates on a
graph stream. The two additional methods we propose in
this paper, contribute to the effectiveness and efficiency of
COEUS, by improving its accuracy and allowing for real-time
determination of the size of each community. Furthermore,
we examine the requirements of COEUS and show that our
algorithm is clearly superior than prior approaches with
regard to both execution time and space used. Our COEUS
algorithm proves to be not only an extremely accurate graph
stream algorithm, but a very attractive option for large-scale
community detection in general.

A direction we wish to explore in the future is handling
graph streams that represent weighted networks. Further-
more, we will investigate and develop variations of COEUS
that will allow for processing both insertions and removals
of edges in the graph.

REFERENCES

[1] M. Girvan and M. E. Newman, “Community structure in social
and biological networks,” Proc. of the National Academy of Sciences,
vol. 99, no. 12, pp. 7821–7826, 2002.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. YY, XXX. ZZ 12

[2] S. Fortunato, “Community detection in graphs,” Physics Reports,
vol. 486, no. 3, pp. 75–174, 2010.

[3] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of Statistical
Mechanics: Theory and Experiment, vol. 2008, no. 10, p. P10008, 2008.

[4] A. Clauset, M. E. Newman, and C. Moore, “Finding community
structure in very large networks,” Physical review E, vol. 70, no. 6,
p. 066111, 2004.

[5] M. E. J. Newman and M. Girvan, “Finding and evaluating commu-
nity structure in networks,” Phys. Rev. E, vol. 69, no. 2, p. 026113,
Feb. 2004.

[6] P. Pons and M. Latapy, “Computing communities in large net-
works using random walks,” in Proc. of the 20th Computer and
Information Sciences Int. Symp., 2005, pp. 284–293.

[7] Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann, “Link communities reveal
multiscale complexity in networks,” Nature, vol. 466, no. 7307, pp.
761–764, 2010.

[8] T. Evans and R. Lambiotte, “Line graphs, link partitions, and
overlapping communities,” Physical Review E, vol. 80, p. 016105,
2009.

[9] D. F. Gleich and C. Seshadhri, “Vertex neighborhoods, low con-
ductance cuts, and good seeds for local community methods,” in
Proc. of the 18th ACM SIGKDD, 2012, pp. 597–605.

[10] J. J. Whang, D. F. Gleich, and I. S. Dhillon, “Overlapping commu-
nity detection using neighborhood-inflated seed expansion,” IEEE
Trans. Knowl. Data Eng., vol. 28, no. 5, pp. 1272–1284, 2016.

[11] J. Yang and J. Leskovec, “Community-affiliation graph model for
overlapping network community detection,” in Proc. of the 12th
IEEE ICDM, 2012, pp. 1170–1175.

[12] ——, “Overlapping community detection at scale: a nonnegative
matrix factorization approach,” in Proc. of the 6th ACM WSDM,
2013, pp. 587–596.

[13] K. Kloster and D. F. Gleich, “Heat kernel based community detec-
tion,” in The 20th ACM SIGKDD Int. Conf., 2014, pp. 1386–1395.

[14] P. Liakos, A. Ntoulas, and A. Delis, “Scalable link community
detection: A local dispersion-aware approach,” in Proc. of the 2016
IEEE Int. Conf. on BigData, Washington DC, pp. 716–725.

[15] Y. Li, K. He, K. Kloster, D. Bindel, and J. E. Hopcroft, “Local
spectral clustering for overlapping community detection,” ACM
Trans. on Know. Disc. from Data, vol. 12, no. 2, pp. 17:1–17:27, 2018.

[16] K. He, P. Shi, D. Bindel, and J. E. Hopcroft, “Krylov subspace
approximation for local community detection in large networks,”
ACM Trans. on Know. Disc. from Data, vol. 13, no. 5, pp. 52:1–52:30,
2019.

[17] P. Liakos, K. Papakonstantinopoulou, and A. Delis, “Realizing
memory-optimized distributed graph processing,” IEEE Trans.
Knowl. Data Eng., vol. 30, no. 4, pp. 743–756, 2018.

[18] A. McGregor, “Graph stream algorithms: a survey,” SIGMOD
Record, vol. 43, no. 1, pp. 9–20, 2014.

[19] S. Guha, A. McGregor, and D. Tench, “Vertex and hyperedge
connectivity in dynamic graph streams,” in Proc. of the 34th ACM
PODS, Melbourne, Australia, 2015, pp. 241–247.

[20] Z. Abbas, V. Kalavri, P. Carbone, and V. Vlassov, “Streaming graph
partitioning: An experimental study,” PVLDB, vol. 11, no. 11, pp.
1590–1603, 2018.

[21] A. Hollocou, J. Maudet, T. Bonald, and M. Lelarge, “A linear
streaming algorithm for community detection in very large
networks,” CoRR, 2017. [Online]. Available: http://arxiv.org/
abs/1703.02955

[22] S. Yun, M. Lelarge, and A. Proutière, “Streaming, memory limited
algorithms for community detection,” in Proc. of the 28th NIPS,
Montreal, Canada, 2014, pp. 3167–3175.

[23] M. W. Mahoney, L. Orecchia, and N. K. Vishnoi, “A local spectral
method for graphs: With applications to improving graph par-
titions and exploring data graphs locally,” J. Mach. Learn. Res.,
vol. 13, no. 1, pp. 2339–2365, Aug. 2012.

[24] S. Galhotra, A. Bagchi, S. Bedathur, M. Ramanath, and V. Jain,
“Tracking the conductance of rapidly evolving topic-subgraphs,”
PVLDB, vol. 8, no. 13, pp. 2170–2181, 2015.

[25] G. Cormode and S. Muthukrishnan, “An improved data stream
summary: the count-min sketch and its applications,” J. Algo-
rithms, vol. 55, no. 1, pp. 58–75, 2005.

[26] J. Leskovec, J. M. Kleinberg, and C. Faloutsos, “Graphs over
time: densification laws, shrinking diameters and possible expla-
nations,” in Proc. of the 11th ACM SIGKDD, 2005, pp. 177–187.

[27] J. Yang and J. Leskovec, “Structure and overlaps of ground-truth
communities in networks,” ACM Trans. on Intelligent Systems and
Technology, vol. 5, no. 2, p. 26, 2014.

[28] A. Lancichinetti, S. Fortunato, and F. Radicchi, “Benchmark graphs
for testing community detection algorithms,” Physical review E,
vol. 78, no. 4, p. 046110, 2008.

[29] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, “Sta-
tistical properties of community structure in large social and
information networks,” in Proc. of the 17th WWW, 2008, pp. 695–
704.

[30] I. M. Kloumann and J. M. Kleinberg, “Community membership
identification from small seed sets,” in The 20th ACM SIGKDD,
2014, pp. 1366–1375.

[31] A. Zakrzewska and D. A. Bader, “A dynamic algorithm for local
community detection in graphs,” in Proc. of the 2015 IEEE/ACM
ASONAM, pp. 559–564.

[32] C. Wang, J. Lai, and P. S. Yu, “Neiwalk: Community discovery in
dynamic content-based networks,” IEEE Trans. Knowl. Data Eng.,
vol. 26, no. 7, pp. 1734–1748, 2014.

[33] J. Lai, C. Wang, and P. S. Yu, “Dynamic community detection in
weighted graph streams,” in Proc. of the 13th SIAM Int. Conf. on
Data Mining, Austin, TX, 2013, pp. 151–161.

[34] D. Duan, Y. Li, Y. Jin, and Z. Lu, “Community mining on dynamic
weighted directed graphs,” in Proc. of the 1st ACM Int. Work. on
Complex Networks Meet Information & Knowledge Management, Hong
Kong, PRC, 2009, pp. 11–18.

[35] C. C. Aggarwal and P. S. Yu, “Online analysis of community
evolution in data streams,” in Proc. of the 2005 SIAM Int. Conf.
on Data Mining, Newport Beach, CA, pp. 56–67.

[36] P. Liakos, A. Ntoulas, and A. Delis, “COEUS: community detection
via seed-set expansion on graph streams,” in Proc. of the 2017 IEEE
Int. Conf. on Big Data, Boston, MA, 2017, pp. 676–685.

Panagiotis Liakos is a Postdoctoral researcher
at the University of Athens, where he obtained
his Ph.D. on distributed and streaming graph
processing techniques. His research interests
include graph mining and information retrieval,
with a particular focus on mining large scale
graphs and streams of social activity.

Katia Papakonstantinopoulou is a Lecturer of
Computer Science at the Department of Infor-
matics at the Athens University of Economics
and Business. She holds B.Sc., M.Sc., and Ph.D.
degrees from the University of Athens. Her re-
search interests are in Algorithmic Game Theory
and Social and Information Network Analysis.

Alexandros Ntoulas is an Assistant Professor
of Computer Science at the University of Athens.
He holds both a Ph.D. and an M.Sc. in Computer
Science from the University of California, Los
Angeles and a Diploma in Computer Engineer-
ing from the University of Patras. His reaserch
interests are in WWW and Big Data. He has
received a best paper award (ICDE 2005), a
best paper runner-up award (WWW 2009), and a
best applied data science reviewer award (KDD
2017).

Alex Delis is a Professor of Computer Science
at the University of Athens. His research inter-
ests are in Distributed and Virtualized Data Sys-
tems. He holds both a Ph.D. and an M.Sc. in
Computer Science from the University of Mary-
land at College Park and a Diploma in Computer
Engineering from the University of Patras. He is
a member of IEEE Computer Society, ACM, and
the Technical Chamber of Greece.

View publication statsView publication stats

