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Abstract—Processing the full activity stream of a social net-

work in real time is oftentimes prohibitive in terms of both storage

and computational cost. One way to work around this problem

is to take a sample of the social activity and use this sample to

feed into applications such as content recommendation, opinion

mining, or sentiment analysis. In this paper, we study the problem

of extracting samples of authoritative content from a social activity

stream. Specifically, we propose an adaptive stream sampling

approach, termed Rhea, that processes a stream of social activity

in real-time and samples the content of users that are more likely

to provide influential information. To the best of our knowledge,

Rhea is the first algorithm that dynamically adapts over time

to account for evolving trends in the activity stream. Thus,

we are able to capture high quality content from emerging

users that contemporary white-list based methods ignore. We

evaluate Rhea using two popular social networks reaching up

to half a billion posts. Our results show that we significantly

outperform previously proposed methods in terms of both recall

and precision, while also offering remarkably more accurate

ranking.

I. INTRODUCTION

The tremendous scale of content generation in online social
networks brings several challenges to applications such as
content recommendation, opinion mining, sentiment analysis,
or emerging news detection, all of which have an inherent need
to mine this content in real time. As an example, the daily
volume of new tweets posted by users of Twitter surpasses
500 million.1 However, not all generated online social activity
is useful or interesting to all applications. Using Twitter

again as an example, more than 90% of its posts is actually
conversational and of interest strictly limited to a handful of
users, or spam [10]. Therefore, applications such as emerging
news detection that operate on the entire stream, spend a lot
of computational cycles as well as storage in processing posts
that are not very useful.

One way to solve this problem is, instead of processing
the social activity stream in its entirety, to take a sample of
the activity and operate on the sample. Through sampling,
our goal is to still capture the important and interesting parts
of the activity stream, while reducing the amount of data
that we would have to process. To this end, one obvious
approach is to perform random sampling, i.e., randomly pick
a subset of the activity stream and use that in the respective
application. A more effective approach however, is to sample
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content published in the activity stream only from the users
that are considered authoritative (or authorities).2 By sampling
the posts of authoritative users from the stream, we are
reportedly [24] more likely to produce samples that are of high-
quality, with limited conversational content and less spam.

The challenge in sampling high quality content from a
social activity stream lies therefore in identifying authoritative
users. Existing work deploys white-lists of users that are
likely to produce authoritative content [9], [10], [20], [24] and
samples their activity. Although such approaches have been
shown to work well for certain applications, we will show
experimentally that they are unable to cope with the dynamic
nature of a social activity stream where, for example, new
users emerge as authorities and old ones fade out. Other prior
efforts on identifying authoritative users in social networks
(not streams) have focused on computing a relative ranking
of users based on network attributes [2], [4], [5], [11], [16],
[25]. We build on the findings of such approaches to identify
authorities likely to produce useful content; our approach is
different however, as we cannot presume that the complete
structure of the social network is available, nor that we can
afford to process the network offline.

We operate with the more practical assumption that we
have incomplete access to the social network. In other words,
we do not know which users exist in the network but we simply
observe some partial activity from a social activity stream. Our
goal is to produce high quality samples from such streams that
will still be as useful as possible compared to being able to
access the entirety of the social network and the activity within.

We propose Rhea,3 an adaptive algorithm for sampling
authoritative social activity content. Rhea forms a network
of authorities as it processes a stream and includes in its
sample only the content published by the top-K authorities
in this network. Given a social activity stream with user
interactions (e.g., answers in Q&A sites or mentions in the case
of Twitter) we create a weighted graph used to quantify
user authoritativeness. To deal with the potentially enormous
amount of items that we encounter in the stream and limit
memory blowup, we construct a highly compact, yet extremely
efficient sketch-based novel data structure to maintain the
authoritative users of the network. Our experimental results
with half a billion posts from two popular social networks
show significant improvements with regard to various binary

2We use terms authoritative users and authorities interchangeably.
3Rhea was the Titaness daughter of the earth goddess Gaia and the sky

god Uranus. Her name stands for “she who flows”.



and ranked retrieval measures over previous approaches. Rhea
is able to sample significantly more relevant documents, with
higher precision and remarkably more accurate ranking com-
pared to sampling based on static white-lists of authoritative
users. Our approach is generic and can be used with any online
social activity stream, as long as we can observe indicators of
authoritativeness in the stream.

In summary, we make the following contributions:

1) We propose Rhea, a stream sampling algorithm, that
employs network-based measures to dynamically elicit
authoritative content of social activity. To the best of our
knowledge, this is the first work that addresses the prob-
lem of dynamically sampling the posts of authoritative
users from a social activity stream.

2) We evaluate Rhea with datasets reaching up to half a
billion posts from two popular social networks and show
that it outperforms contemporary approaches with regard
to precision, recall, and ranking accuracy.

3) We empirically demonstrate that static white-lists cannot
always capture temporal changes in rankings of au-
thorities, and thus, are not an appropriate choice when
sampling authoritative content from streams.

II. IDENTIFYING AUTHORITIES IN STREAMS

A. Network of Authorities from Social Activity

Streams of social activity reveal very little about the
respective network structure. Depending on the social network,
users may perform certain actions like “posting” messages
or “liking” content other users have posted. For example in
Twitter, tweets may mention another user’s @username,
in Facebook users may tag another user, in Linkedin

users can make endorsements, while in Q&A sites such as
StackOverflow, users can provide answers to other users’
questions. The aforementioned actions (mentions, endorse-
ments, answers, etc.) as well as their direction may often be
considered as indications of importance, and can be used to
form a network of authorities from the respective stream. More
specifically, users receiving numerous mentions or regularly
providing answers, without reciprocating these actions with
the same frequency, may be deemed as important in the
network [22].

To illustrate the process of deriving a network of authorities
from social activity, we provide an example of a stream
featuring the three tweets depicted in Figure 1. In the first
element of the stream, @user1 creates a mention to user
@SLAM by retweeting a post of that user regarding the injury
of a basketball player. Then, the same user retweets some
additional information on the same story from the same source.
These posts appear in the feeds of the users that follow @user1.
Soon, @user2 posts a reply to @user1 and reports that another
source (@SI) has also confirmed the story. Overall, there are 4
mentions in this stream, most of which offer valuable evidence
regarding user importance. However, one of the mentions
(to @user1) is actually only a reply; the respective tweet is
conversational and the user simply intends to notify another
user. Similarly, in a Q&A site, providing answers is usually an
indication of authoritativeness, even though some answers may
be inaccurate.

Fig. 1: Deriving a network of authorities from a social activity
stream. Potential authorities may be identified by applying
measures on the resulting weighted directed graph.

Figure 1 also depicts the actual process of forming a
network of authorities out of this particular social activity
stream. The network is represented as a directed weighted
graph. For each mention in the stream we create an edge from
the source node (i.e., user) to the receiving node. If the edge
is already present, we increase the respective weight by 1.
Using the 3 tweets of our example we can detect a total of
4 nodes. We observe that one of the nodes stands out with
regard to weighted in-degree (@SLAM). However, we also see
that based on weighted in-degree alone, we cannot differentiate
between receiving mentions indicating importance and replies.
To this end, we can additionally utilize the weighted out-degree
to quantify the extent to which these actions are reciprocated,
as we discuss next.

B. Ranking the Authorities

Numerous prior efforts have utilized network structure to
identify authorities and exploit the content they produce [2],
[4], [11], [25]. Although in our setting we cannot recover the
complete network structure, there are usually indications of
expertise inherent in the social activity stream that we can
utilize. When a user mentions another user in Twitter she
is either acknowledging the authority of the latter, or trying to
engage in a conversation. Both these actions typically imply
that the initiating user considers herself less authoritative than
the target user. On the other hand, receiving a mention is
often an indicator of importance for the recipient. Similarly,
asking questions in Q&A sites is usually a negative indicator
of authoritativeness, whereas providing answers is a positive
one. Therefore, one way to capture this balance is to compute
the fraction of the difference between these indicators of
importance.

Zhang et al. [25] focus on Q & A communities and
propose z-score, a measure that builds on positive and negative
predictors of expertise. The z-score of user u is formally
defined as:

z(u) =
a(u)� q(u)p
a(u) + q(u)

(1)

where, a(u) is the number of questions u has answered and
q(u) is the number of questions u has asked. Through crowd-
sourcing Zhang et al. show that z-score outperforms measures
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(a) Precision@K results.
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(b) Spearman’s ⇢ results.

Fig. 2: Precision@K (a) and Spearman’s ⇢ (b) results for the authorities extracted from the tweets of September 2009, using the
rankings resulting from the tweets of the three subsequent months. Both metrics reveal that the correlation between rankings of
authorities according to the tweets of subsequent months weakens significantly with time.

such as the in-degree as well as sophisticated approaches
based on PageRank [13] and HITS [12] when identifying
distinguished users in social networks. We build on this finding
and propose auth-value, a generalized version of z-score for a
wide range of social networks, that we formally define as:

auth(u) =
in(u)� out(u)p
in(u) + out(u)

(2)

where, in(u) is the weighted in-degree of u in the network of
authorities and out(u) is her respective weighted out-degree.
Thus, our auth-value measure enables us to extract the au-
thoritative users of a network in which social activity does not
necessarily imply user expertise. As the effectiveness of z-score
against other measures has been previously exhibited [25], we
rely on Eq. (2) to measure authoritativeness and our focus is
on applying it effectively in a streaming setting.

Taking into account both positive and negative predictors
of importance through Eq. (2) allows us to differentiate be-
tween authorities and frequent posters. In particular, users who
are frequently mentioned in conversational tweets or provide
(possibly incorrect) answers to numerous questions, are also
expected to make a lot of mentions to other users or frequently
ask questions, and will be penalized by Eq. (2) for doing so.
More specifically, such users are expected to a exhibit an auth-
value that is negative or close to zero. In contrast, authoritative
users who receive much more mentions than they give or
answer significantly more questions than they ask will exhibit
high auth-values. We note, that auth(u) is susceptible to spam-
farms that may attempt to boost the values of certain users;
however, this is the case with alternative network measures as
well, e.g., in-degree, PageRank, or HITS. Thus, we consider
that fighting web-spamming is beyond the scope of our work.
Moreover, we use the notion of authoritativeness to describe
influential contributors of a network regardless of the diversity
of topics discussed. Our focus is on the entire activity and thus,
our goal is to distinguish the highly influential players overall,
as the case is with prior stream sampling efforts [10].

TABLE I: Top-10 authorities for the tweets of 3 months.

October 2009 November 2009 December 2009

user u auth(u) user u auth(u) user u auth(u)
1 justinbieber 393.885 justinbieber 448.815 justinbieber 433.185
2 donniewahlberg 358.286 donniewahlberg 249.988 nickjonas 249.558
3 tweetmeme 263.103 revrunwisdom 242.807 revrunwisdom 222.571
4 revrunwisdom 237.964 tweetmeme 195.379 donniewahlberg 202.996
5 mashable 229.650 addthis 186.282 tweetmeme 183.603
6 addthis 212.325 ddlovato 181.720 jonasbrothers 182.882
7 ddlovato 204.910 luansantanaevc 167.514 addthis 181.403
8 jordanknight 191.045 jordanknight 167.197 omgfacts 154.136
9 jonasbrothers 175.054 jonasbrothers 165.520 mashable 153.616
10 lilduval 174.616 mashable 164.496 johncmayer 147.241

C. Limitations of Static Lists of Authorities

Previous approaches on sampling the activity of authorita-
tive users from social streams employ white-lists of authorities
extracted from user annotated content [9], [10], [20], [24]. In
particular, social networks often enable users to create lists that
group together distinguished users. We can form a white-list of
authorities by including users with considerable appearances in
such user-generated lists [9]. Although this approach can work
well in some cases, static white-lists may often be outdated,
featuring inactive accounts or users that are no longer receiving
attention. Activity in social networks is highly dynamic and
authorities tend to rise and fall with time. To quantify how
dynamic social activity is, we used Twitter posts from 3
consecutive months. We created a white-list for each month,
that comprises the most authoritative users according to their
auth-values, and examined the similarity of these white-lists.

Table I shows the top-10 authorities for these 3 months. We
observe that even at the first 10 positions user rankings vary
across different months. For instance, user ddlovato4 started
from the 7th spot in October, moved up to the 6th spot in
November, before dropping off from the list in December.

4ddlovato is the account of American singer/actress Demi Lovato:
https://twitter.com/ddlovato.



This is an example of a user that receives increasing attention
over time before eventually being surpassed by other emerging
users later on. Similarly, user luansantanaevc5 appeared in
the first 10 positions only for the tweets of November. This
is an example of a user that received attention temporarily.
More importantly, this user started posting tweets using a
second account (luansantana) on January 19th, 2011, without
deactivating the first account. Hence, we observe that white-
lists can be unstable and quickly become out-of-date.

To further quantify the volatility of rankings in white-
lists, we examined their similarity over time based on the
percentage of the users appearing in the list of September 2009
that also appeared in the lists of the 3 subsequent months.
More specifically, we consider the ranking resulting from the
tweets of September to be the ground-truth, and calculate the
Precision@K achieved in the following 3 months. Figure 2(a)
depicts the Presicion@K results for 100  K  1,000 for
October, November, and December, respectively. For October
(the immediately following month), less than 70% of the au-
thorities of September are also identified as authorities, for all
values of K examined. As expected, Precision@K deteriorates
very quickly in the following months. For the same range of
K, we get that 0.57 < Precision@K  0.61 for November,
and 0.50 < Precision@K  0.51 for December. Overall,
Precision@K remains relatively stable as we increase K and
deteriorates as we increase the time interval from the ground
truth. We additionally measure the rank correlation using
Spearman’s ⇢ with the similar setting of considering September
as the ground truth. Figure 2(b) illustrates Spearman’s ⇢ results
for the same pairs of months. There is moderate correlation
between the rankings of users, which remains stable as we
increase K. However, the rank correlation also weakens as we
increase the time interval from the ground-truth.

Our findings strongly suggest that white-lists are inap-
propriate when extracting authoritative users from streams,
as social activity is dynamic; instead, we need an adaptive
algorithm. We proceed by presenting such an algorithm and
measuring its effectiveness against contemporary white-list
based approaches.

III. RHEA: STREAM SAMPLING
FOR AUTHORITATIVE CONTENT

In this section we present Rhea, an adaptive sampling
algorithm for authoritative content from social activity streams.
More formally, Rhea seeks to produce a sample Ŝ of a stream
S such that 8s 2 S whose respective user is in the top-K
authorities of the network according to Eq. (2), s 2 Ŝ.

This endeavor involves three main challenges: 1) Online
social networks are ever increasing and users publishing
content may surpass 1 billion [6]. Hence, maintaining user
information as we process the stream may be costly in both
memory requirements and computational time. 2) Ranking
users according to their authoritativeness and classifying their
content as relevant or non-relevant, often requires reckoning
in multiple measures. 3) Finally, many elements we opt to
include in the sample as we process the stream may actually
be published by non-authorities. Thus, we need to filter out

5luansantanaevc is the old account of Brazilian singer Luan Santana:
https://twitter.com/luansantanaevc.
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posts that mistakenly lurked in our sample. In this section, we
discuss the individual pieces of Rhea that address these three
challenges and then present our algorithm.

A. Maintaining User Information

1) Frequent Items: Rhea maintains a limited view of the
social network based on the social activity stream. In particular,
Rhea is aware of the weighted in- and out-degrees of each user
in the stream, as depicted in the weighted directed graph of
Figure 1. In practice, we expect that an enormous number of
users will participate in the activity stream of an online social
network. Efficiently mapping their respective weighted in- and
out- degrees with structures such as hash tables would require
memory that far surpasses that of a modern day computer.
Moreover, resizing such hash tables would be necessary to
maintain new users encountered in the stream, and would
eventually cause serious bottlenecks in terms of CPU cycles.

The COUNT-MIN sketch [7] is a well-known and widely-
used [1], [18] sublinear space data structure for the representa-
tion of high-dimensional vectors. COUNT-MIN sketches allow
fundamental queries to be answered efficiently and with strong
accuracy guarantees. It is particularly useful for summarizing
data streams as it is capable of handling updates at high rates.
The sketch uses a two-dimensional array of w columns and d

rows, where w = d e
✏ e, d = d ln(1)

� e, and the error in answering
a query is within a factor of ✏ with probability �. A total
of d pairwise independent hash functions is also used, each
one associated with a row of the array. Figure 3 illustrates
the update process of a COUNT-MIN sketch for our specific
problem. Consider that an update (i, c) arrives, indicating that
user’s i count should be incremented by c. The array count

is updated as follows: for each row j of count we apply
the corresponding hash function to obtain a column index
k = hj(i) and increment the value in row j, column k of the
array by c, i.e., count[j, k]+ = c. This allows for retrieving at
any time an (over)estimation of the count of an event i using
the least value in the array for i, i.e., âi = minjcount[j, hj(i)].

Rhea keeps track of both positive and negative indicators
of importance. Thus, we employ two COUNT-MIN sketches
to compactly maintain both these indicators for all users
appearing in a stream.

2) Reducing the Processing Overhead through Sampling:
Palguna et al. [17] show that a uniform random sample with
replacement of enough size is able to guarantee with strong
accuracy that i) elements that occur with frequency more than
✓ in the stream occur with frequency more than (1� ✏

2 )✓ in the
sample and ii) elements that occur with frequency less than



Algorithm 1: put(Top-K-Heap, key, value)
input : A Top-K-Heap structure and a key associated with a

value to be inserted in the Top-K-Heap.
output : The updated Top-K-Heap.

1 begin

2 if Top-K-Heap.size() < K then

3 if Top-K-Heap.contains(key) then

4 Top-K-Heap.replace(key, value);

5 else

6 Top-K-Heap.push(key, value);

7 else

8 if Top-K-Heap.contains(key) then

9 Top-K-Heap.replace(key, value);

10 else if value > Top-K-Heap.low() then

11 Top-K-Heap.pop();
12 Top-K-Heap.push(key, value);

13 return Top-K-Heap;

(1� ✏)✓ in the stream occur with frequency less than (1� ✏
2 )✓

in the sample, where ✓ 2 [0, 1] and ✏ 2 [0, 1]. In addition,
they experimentally show that the behavior of the Bernoulli
sampling scheme is very similar and primarily influenced by
the sample size alone. Obviously, we are unable to use uniform
random sample with replacement, as elements of the stream
are only seen once. However, we can employ the Bernoulli
sampling scheme. In particular, we can include each element
of the stream in our authorities’ network formation process
with probability p and exclude the element with probability
1 � p, independently of other elements, where p 2 (0, 1].
This allows us to reduce the computational overhead of Rhea
without sacrificing its effectiveness. We thoroughly investigate
the impact of p in our evaluation to come up with the size of
the sample that will facilitate our set requirements.

B. Ranking Authorities

COUNT-MIN sketches provide answers to point and dot
product queries with strong accuracy guarantees. Using two
such sketches, we are able to approximate the number of
positive and negative indicators of importance a user exhibits.
This is enough to provide us with an approximation of a user’s
auth-value through Eq. (2). However, we are not interested in
the absolute value of auth(u). Rather, we wish to know at
any time whether a user’s value is among the top-K overall.
To this end, we employ a structure we term Top-K-Heap

to hold user elements with associated auth-values. A Top-K-
Heap puts an element in the structure if its value is larger than
the minimum value currently on the structure or the structure
holds less than K elements. In case the element is already
inserted, we update its value accordingly; otherwise, we first
remove the element with the smallest value. Thus, a Top-K-
Heap holds a maximum of K elements. In addition, duplicate
values are allowed, as users may exhibit the same auth-value.

A min-heap [3] allows for duplicate values and enables us
to examine the minimum element of our structure in constant
time. In addition, min-heaps support insertion of elements
or removal of the minimum element in logarithmic time.
Therefore, if the element is not present in the structure, we
can place it in a min-heap and remove the root holding the
minimum value in logarithmic time. However, examining if an

element is already in a min-heap takes linear time. To alleviate
this problem, we additionally employ a hash-table to hold the
inserted elements, which allows for examining the presence
of an element in our Top-K-Heap in constant time. We note
that K is insignificant compared to the total number of users,
and the cost of using an additional hash-table is negligible.

Algorithm 1 details the insertion in a Top-K-Heap. Lines
2-6 concern the case when the Top-K-Heap holds less than
K elements. If the new element is already inserted we replace
its value (Line 4), i.e., we remove the old element from the
min-heap and the hash-table and insert the new one with the
updated value (O(logn)). If the new element is not in the
structure, we simply place it inside (Line 6), i.e., we insert
it to both the min-heap and the hash-table (O(logn)). Lines
7-12 are executed in the case when the Top-K-Heap holds
exactly K elements. If the latter is true and the element to be
added is already inserted, we replace its value as before (Line
9). However, if the new element is not already in the Top-
K-Heap, we examine if its value is larger than the minimum
value on the Top-K-Heap (Line 10), and remove the root of
the Top-K-Heap before inserting it. This requires us to access
the minimum value (O(1)), remove the root of the min-heap
(O(logn)) and the respective element in the hash-table (O(1)),
and then insert the new element in the min-heap (O(logn)) and
the hash-table (O(1)). We note that Eq. (2) may both increase
or decrease as elements appear in the stream. Therefore, when
we update an element in the Top-K-Heap with a value that is
smaller than the one previously held, it might be the case that
the element should no longer be part of the top-K. However, as
we update the Top-K-Heap with every element that appears
on the stream, the element that would actually belong to the
top-K will claim its position at its next appearance, and will
be included in the sample.

C. Filtering-out Non-relevant Activity

Rhea makes decisions based on what appears to be optimal
at the time. During stream processing, Rhea may deem as a
top-K authority a user that temporarily exhibits a high auth-
value but is actually not among the top-K overall for the
particular stream. Thus, posts of non-authorities may end up in
our sample, i.e., we lose in precision. Similarly, Rhea might
stumble upon posts of an authority that is not yet identified
as such. This will lead to relevant posts being excluded from
our sample, i.e., we lose in recall. For this latter case, we are
unable to improve our recall at a later stage, as the elements
that we discard from the stream are lost. However, for the
former case we can perform a post-processing step to filter-out
non-relevant posts using the more refined classification model
that is formed after seeing a good portion of the stream. For
each document included in our sample, Rhea examines the
respective user that published it. If the user is contained in our
Top-K-Heap, we keep the document in the sample; otherwise,
we discard it. In our evaluation, we investigate the impact of
this technique in detail.

D. The Proposed Rhea Algorithm

Algorithm 2 outlines our proposed Rhea method for
stream sampling. Rhea processes a stream S with elements
of social activity. Each element contains some content and is
associated with a user and a timestamp. Rhea takes as its



Algorithm 2: Rhea(S,K, p)
input : A stream S, a parameter K > 0 and a probability

p 2 (0, 1].
output : A set Ŝ ⇢ S containing elements whose respective users

are likely to be among the top-K w.r.t. to the auth-value.
1 begin

2 Top-K-heap ;;
3 CMSin ;;
4 CMSout ;;
5 foreach s 2 S do

6 if random(0, 1] < p then

7 (in, out) extractIndicators(s.message) ;
8 CMSin[in]+ = 1 ;
9 CMSout[out]+ = 1 ;

10 authuser  CMSin[s.user]�CMSout[s.user]p
CMSin[s.user]+CMSout[s.user]

;

11 if authuser > Top-K-heap.low() then

12 put(Top-K-heap, user, authuser);
13 Ŝ.put(s);

14 foreach s 2 Ŝ do

15 if s.user /2 Top-K-heap then

16 Ŝ.remove(s);

17 return Ŝ;

input parameters K and p, that specify the amount of author-
ities whose activity we wish to sample, and the probability
according to which we process an element in the stream to
form our network of authorities, respectively. The output is a
sample of S containing elements whose respective users are
likely among the top-K w.r.t. the auth-value.

Rhea begins by initializing the structures to be used while
processing the stream (Lines 2-4), i.e., a Top-K-Heap to hold
the current K users with the highest auth-value in the stream,
and two COUNT-MIN sketches to maintain the weighted in-
and out-degree of each user. Then, we process the elements of
the stream (Line 5), a phase that involves two actions:

Creating the Network of Authorities (Lines 6-9):

We apply a Bernoulli sampling scheme and use an element of
the stream with probability p 2 (0, 1] to extract positive and
negative indicators of importance (Line 6-7). The extracted
indicators are used to update the two COUNT-MIN sketches
(Lines 8-9).6 Hence, sketches CMSin and CMSout keep track
of the weighted in- and out-degrees of the users of the formed
authorities’ network, respectively.

Stream Sampling for Authoritative Content (Lines 10-13):

First, we derive an approximation of the auth-value of the
respective user of the current element of the stream (Line 10).
Then, we compare with the lowest value in the Top-K-Heap

to decide whether the current user is an authority, and thus,
her activity must be sampled or not (Line 11). If the user is
classified as an authority, we update the Top-K-Heap with
the auth-value of the user (Line 12), and include the element
in our sample (Line 13).

Finally, Rhea features a post-processing step to improve
the quality of the sample by filtering-out elements that were

6Depending on the stream an element may contain more than one positive
or negative indicators of importance. We consider this in our implementation
but we omit it from the presentation of our algorithm for simplicity.

wrongly considered as relevant while we were processing the
stream (Lines 14-16). This step processes the elements of the
sample and removes all those whose respective users are not
in the Top-K-Heap.

IV. EXPERIMENTAL EVALUATION

We implemented7
Rhea using Java. Our evaluation is

based on two datasets: i) one that comprises 467 million tweets
from 20 million users of Twitter (T), covering a period from
June 2009 to December 2009 [23], and ii) one that consists of
263,540 answers to 83,423 questions posted by 26,752 users of
StackOverflow (SO), between February 18, 2009 and June
7, 2009 [8]. We first present the details of our experimental
setting. Then, we proceed with the evaluation of Rhea by
answering the following questions:

1) How does Rhea compare against white-list based sam-
pling in terms of recall, precision, and F1-score?

2) Is Rhea able to assess the ranking relevance of the
sampled documents?

3) What is the impact of the parameters involved in the
execution of Rhea?

A. Experimental Setting

For our Twitter dataset we include in our stream all
tweets published during August 2009 – December 2009,
i.e., |S| = 411,778,304. Similarly, |S| = 131,768 for our
StackOverflow dataset. We did not use all available ele-
ments for the stream, as we also needed a sufficiently large part
of the dataset to create static white-lists for a method based
in [10] that we compare against. We created the white-lists
using the auth-value rankings that result from all the available
user activity occurring before the activity of the stream. The
respective approach decides to sample elements from the
stream based on a single criterion: whether the user publishing
the element is part of the white-list or not. For the rest of
this work we will refer to this method as WhiteList. The
elements of both our datasets are timestamped which enables
us to replay them chronologically. Unless stated otherwise,
Rhea is initialized using the following parameters: i) p = 0.2,
to use 20% of the stream’s elements to extract mentions, and
ii) d = 7, w = 20,000, which gives us 99% confidence that
✏ < 0.0001.

B. Recall, Precision, and F1-score Comparison

We commence our evaluation by comparing the perfor-
mance of Rhea against WhiteList with regard to recall,
precision and F1-score measures. For each element (tweet
or answer) we include in our samples, we make a binary
assessment concerning the user who posted it. If the user is
among the top-K according to the ground-truth, we mark the
element as relevant; otherwise, we consider the element to be
non-relevant.

We observe in Figure 4(a) that Rhea significantly outper-
forms WhiteList with regard to recall for both datasets.
That is, Rhea is able to include more relevant documents than
WhiteList in its sample. In particular, more than 74% of
the relevant documents is included in the sample of Rhea for

7Source code and reproducible tests: https://github.com/panagiotisl/rhea
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Fig. 4: Recall, precision, and F1-score comparison between our approach and a baseline for our two datasets (T, SO) when
querying for the tweets of the top-100, 250, 500, 750, and 1, 000 authorities of the stream.

both datasets even for K = 1,000, whereas, WhiteList’s
recall drops as low as 0.55. Figure 4(b) illustrates the precision
achieved by Rhea and WhiteList. Rhea behaves much
better than WhiteList for the StackOverflow dataset,
achieving almost perfect precision. For Twitter, we observe
that both methods initially behave similarly. This is because
a few very active non-authorities that are mistakenly taken
as authorities may heavily impact precision for small values
of K. However, as K grows Rhea significantly outperforms
WhiteList for Twitter as well. Finally, we illustrate the
results of both methods regarding F1-score, i.e., the harmonic
mean of precision and recall, in Figure 4(c). We observe
that our approach achieves an F1-score that is above 0.8 for
StackOverflow and close to 0.8 for Twitter regardless
of K. In contrast, using a static white-list, the F1-score is
much lower and ranges between 0.54 and 0.7.

C. Evaluation of Ranked Retrieval Results

Recall, precision, and F1-score measures are appropriate
for sets of documents that have no ranking information as-
sociated to them. The binary assessment we make to classify
an element as relevant or non-relevant does not consider the
significance of the element with regard to its respective user’s
authoritativeness. However, we are keenly interested in ranking
quality. To this end, we employ two additional measures that
take under consideration the level of relevance of each element,
namely Spearman’s ⇢ and Normalized Discounted Cumulative
Gain (NDCG).

1) Evaluation using Spearman’s ⇢: We first investigate the
rank correlation between the ground-truth auth-values resulting
from all the elements of the stream and the auth-values derived
from each of the two methods examined in this paper. Figure 5
depicts the Spearman’s rank correlation for the top-K users
of the ground-truth with their respective rankings for Rhea
and WhiteList. In particular, we assigned the rank of 1
to the user with the highest auth-value in the ground-truth
and increased the rank as we proceeded to users with lower
auth-value, until the K

th user. Then, we created pairs with
the rankings of the users that occur when using Rhea and
WhiteList. We observe that there is an extremely strong
correlation for Rhea, i.e., our approach is able to adapt and
derive the order of the top-K authorities very accurately. In
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Fig. 5: Comparison of Rhea and WhiteList on Spearman’s
⇢ for Twitter (T) and StackOverflow (SO).

contrast, WhiteList exhibits moderate to weak correlation.
These results do exhibit in unambiguous terms the superiority
of Rhea over contemporary white-list methods, as in addition
to higher precision and recall, our adaptive algorithm captures
much more accurately the level of importance of each user.

2) Evaluation using NDCG: Next, we use NDCG, a mea-
sure, suitable for situations of non-binary notions of rele-
vance [14]. NDCG is evaluated over some number K of top
results. We consider reli to be the graded relevance of the
result at position i. Then, the discounted cumulative gain
(DCG) at K is defined as:

DCGK = rel1 +
KX

i=2

reli

log2(i)
(3)

From Eq. (3) we observe that DCG reduces the graded
relevance value of each result logarithmically proportional
to its respective position in the ranking, to penalize highly
relevant documents that appear lower than their actual po-
sition [21]. Our goal is not only to retrieve a ranked listed
of users according to their authoritativeness, but also retrieve
their social activity. Therefore, for our purpose we propose an
extension of Eq. (3) that considers the recall for each user i:

DCGK = rel1 ⇤ recall1 +
KX

i=2

reli ⇤ recalli
log2(i)

(4)
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Fig. 6: Comparison of Rhea and WhiteList on NDCG for
Twitter (T) and StackOverflow (SO).

NDCG results after normalizing the cumulative gain at each
position for a given K as follows:

NDCGK =
DCGK

IDCGK
(5)

where IDCGK is the maximum possible (ideal) DCG for the
given set of relevances:

IDCGK = rel1 +

|REL|X

i=2

reli

log2(i)
(6)

and |REL| stands for the ordered list of relevant documents
up to position K.

We consider that the elements of user i have a relevance
reli = K + 1 � rank(i), where rank(i) is the ranking of
the users according to their ground-truth auth-value. Thus,
the elements of the user with the highest auth-value have a
relevance of K, whereas those of the user with the K

th highest
ground-truth ranking have a relevance of 1.

Figure 6 illustrates the results of Rhea and WhiteList

with regard to NDCG for different values of K. We observe
that Rhea again significantly outperforms the WhiteList

method for both datasets. The latter performs poorly with re-
gard to NDCG as its value is penalized severely when assigning
low rankings to highly relevant users. A vital observation here
is the improved performance of Rhea on NDCG compared to
recall (Fig. 7(a)). From this we can induce that the few relevant
documents that Rhea is unable to retrieve, are usually not of
high relevance. If that was the case, the NDCG results would
be worse than those measuring recall. This is particularly
important; we are interested in sampling the elements of the
top-K users in the stream, and thus, we are generally more
keen on retrieving the elements of the most relevant users.
Figure 6 shows that Rhea is very effective in doing so.

D. Impact of Techniques and Parameters

In this section, we investigate the impact of Rhea’s tech-
niques and parameters using the largest of our two datasets,
namely Twitter. First, we examine the performance of
Rhea when altering the probability p of examining a tweet
of the stream S to extract mentions and form the network of
authorities. Second, we quantify the importance of the filtering
step of the Rhea algorithm (Lines 14-16 of Algorithm 2).
Third, we vary the size of the Top-K-Heap to examine its
impact on F1-score. Our findings are in agreement with those

that come up using the StackOverflow dataset, but we omit
the latter due to limited space.

1) Varying the Value of Probability p: Rhea involves a
random sampling subprocedure, that selects to use with some
probability p 2 (0, 1] an element of the stream to form the
network of authorities. This process significantly reduces the
computational overhead of Rhea as we use |S| ⇤ p elements
of the stream, instead of |S|. We examine here the impact
this probability has on the results of Rhea with regard to
NDCG. Figure 7(a) depicts the performance of our algorithm
in settings where p is equal to 0.01, 0.05, 0.1, 0.2, and 1,
respectively. We observe that using a sample of 20% of the
stream’s elements we are able to achieve performance that is
almost as good as that of using the entire stream. Moreover,
we observe negligible differences when reducing p to 0.1 or
0.05. In fact, the impact of probability p is noticeable only
when p is extremely low. Finally, even though using 1% of
the elements leads to worse performance, the NDCG results
we get for Rhea still outperform WhiteList significantly.
We note that using p = 0.2 instead of p = 1 greatly reduces
processing time. For example, we drop from 3,844 to 2,533
seconds for K = 100. For p = 0.01 Rhea terminates after
2,189 seconds, slightly over WhiteList that needs 2,040
seconds.

2) Removing the Filtering Step: Rhea samples elements
from the stream in a greedy fashion. Therefore, elements of
users that are only temporarily part of the top-K authorities
manage to end up in our sample. However, when the sampling
process is over, we are aware of a final set of top-K authorities,
that we have experimentally shown to be a very accurate
representation of the actual list of authorities. Hence, we are
able to filter-out the elements that in retrospect should not have
been collected, by iterating over the sampled elements. We
note that Ŝ ⌧ S, so this operation is inexpensive. Figure 7(b)
compares the performance of Rhea when the filtering step is
on (Rhea) and off (Rhea-NF). We opt to report the precision
value, as recall, Spearman’s ⇢, and NDCG results are all
unaffected by this modification. We observe that the difference
in precision performance is indeed significant. In particular, the
difference is over 25 percentage points for K = 1,000, and is
never less than 10 percentage points for any K examined.

3) Impact of the Capacity of the Top-K-Heap: We complete
our exploration on the parameters of Rhea by examining the
impact of the size of the structure we use for holding the
stream’s current list of authorities. Rhea maintains a heap of
authorities induced from the social activity occurring in the
stream. This heap has a maximum capacity that enables us to
decide on whether to temporarily include an element in our
sample or permanently discard it. The size of this heap in our
experiments is set to K, i.e., the number of authorities whose
activity we aim to include in our sample.

We investigate here an approach that may potentially
increase our recall. Our intuition is that some authoritative
users are “late bloomers”, i.e., their importance is not visible
until later than expected. Rhea is unable to recover the entire
activity of such users as it is unaware at the time of sampling of
the final ranking of each user. However, we may opt to include
the activity of more users while sampling, and eventually hold
on to the elements produced by those who we believe are the
top-K authorities. Figure 7(c) illustrates a comparison of the
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Fig. 7: Impact of probability p on NDCG (a), of the filtering step of Rhea on precision (b), and of the capacity of the Top-K-
Heap on F1-score (c).

performance of Rhea when using a Top-K-Heap of capacity
K and 2K, respectively. We use the F1-score measure as the
capacity of this structure impacts both recall and precision. We
observe that the F1-score of Rhea when using a capacity of
2K is slightly worse. More specifically, our recall is improved
as we include the activity of more users during sampling.
However, using a larger capacity also leads to including more
false positives in our sample. Therefore, we do indeed notice an
improvement in recall, but it is accompanied with significantly
worse precision.

V. RELATED WORK

Our work lies in the intersection of social activity stream
sampling and authoritative social network users identification.
Here, we briefly discuss pertinent efforts in these two areas.

Social Activity Stream Sampling: Related research efforts
have mainly focused on the Twitter microblogging service
due to its immense popularity and low latency access to its
stream of activity. Ghosh et al. [10] compare random samples
of Twitter with samples that are taken using a white-list of
users. Their motivation is to avoid the large amount of spam,
non-topical and conversational tweets that random sampling
preserves. The first set of tweets was acquired through the
Streaming API, while the second is created using tweets
from half million white-listed users. The white-list is derived
using Twitter Lists [9], i.e., user generated lists of
prominent Twitter accounts. The random sample features a
substantially larger population of users, whereas the white-
list sample’s tweets are extremely more popular. Moreover,
the quality of the tweets of the white-listed users is found to
be superior. In particular, about 90% of the random sample’s
tweets are conversational, whereas 43% of the white-list sam-
ple’s tweets contain useful information on a certain topic. Our
work is similar to [10] as we also sample streaming social
activity content. However, our work does not rely on static
white-lists and our focus is not on a specific social network.

Palguna et al. [17] come up with a theoretical formulation
for sampling Twitter data. They investigate the number
of tweets that is needed to come up with a representative
sample using random sampling with replacement. To decide
on how representative a sample is, they examine how the

frequency of elements in the streams correlates in the sample
and the original data. In addition, they examine the case of
going through tweets one-by-one and sampling each tweet
independent of others with probability p. They show that this
behaves similarly to random sampling with replacement and
is primarily influenced by the size of the sample. We build on
this very last result to speed-up the formation of our network
of authorities.

Research efforts have also focused on the quality of the
samples offered directly from Twitter. Morstatter et al.
[15] perform a comparison of Twitter’s Streaming API

sample and Twitter’s Firehose to examine the impact
of the sampling technique of the first. They compare the top
hashtags of the two datasets, as well as those of random
samples taken from the Firehose dataset, and find that
the random samples find the top hashtags more consistently
than the Streaming API. Moreover, a comparison of topics
in the two datasets is performed, using LDA, which shows
that decreased coverage in the Streaming API data causes
variance in the discovered topics.

Mining streams of social activity is challenging due to the
implicit network structure within the stream that ought to be
considered along with the content. Aggarwal and Subbian [1]
focus on clustering and event detection using social streams.
They show that using both the content and the linkage infor-
mation has numerous advantages. Node counts for individual
clusters are handled by employing Count-Min sketches [7].
We also apply COUNT-MIN sketches to summarize counting
information of social streams. However, we do not deal with
clustering or event detection; rather, we focus on sampling
content published by authorities.

Authoritative Users in Online Social Networks: Zhang et
al. [25] investigate different network-based ranking algorithms
to identify prominent users in a online social network. They
show that relative expertise can be automatically determined
through structural information of the network, as they find
that network-based algorithms perform nearly as good as
crowd-sourcing. In addition, they report that simple measures
behave at least as good as complex algorithms. In particular,
they come up with z-score, a measure that considers both
the question and answer patterns of a user in a Q & A



community, that best captures the relative expertise of users
in a network. In this paper, we rely on the findings of [25]
on the effectiveness of z-score and propose a generalized
version of this measure to identify the top-K authorities in
any social activity stream. Agichtein et al. [2] exploit various
kinds of community feedback to export high quality content
from social media. Among else, they use quality ratings on
the content. Pal and Counts [16] use probabilistic clustering
and a within-cluster ranking procedure to identify topical
authorities on Twitter. In an effort to exclude users with
high visibility they use nodal features, such as the in-degree.
In [5], Bozzon et al. focus on finding topical experts in various
popular social networking sites. Their approach takes into
account user activity as well as profile information. We operate
on a streaming setting and decide whether new content is
useful as it becomes available. Therefore, certain aspects of
the aforementioned approaches, such as exploiting user ratings,
in-degrees, and profile information are not applicable. Ghosh
et al. [9] propose Cognos, which distinguishes authoritative
Twitter users using the frequency at which they are included
in Twitter Lists. This approach assumes the presence of
user annotated information indicating importance, whereas in
this paper we consider the task of sampling a stream without
any prior knowledge. Moreover, we show that static white-list
approaches get outdated very quickly and are unable to identify
newly emerging authorities. Rybak et al. [19] also point out
that authoritativeness is not static. However, they do not deal
with stream sampling. Instead, they focus on a co-authorship
network and create timestamped profiles of user importance.

VI. CONCLUSION

In this paper, we propose and implement Rhea, the first
reported effort to realize adaptive behavior for sampling au-
thoritative content from social activity streams. We commence
by exposing the dynamic nature of this task which calls
for approaches different from employing static white-lists
of authoritative users. Then, we proceed by addressing the
challenges involved in our dynamic approach. Rhea employs
COUNT-MIN sketches to compactly maintain both positive
and negative indicators of importance of all users appearing
in a social activity stream. We additionally propose a novel
structure termed Top-K-Heap, to efficiently query for the
top-K authoritative users in the stream, using their relative
ranking resulting from their auth-value. The latter allows for
identifying authoritative users independently of the underlying
social network. To reduce the processing overhead of ex-
tracting indicators of importance from social activity streams,
Rhea opts to include in this process each element of the stream
with probability p. Finally, Rhea features a post-processing
step that reevaluates content included in the sample, using the
more refined classification model that is available after reading
the whole stream.

We compare Rhea with a static white-list approach using
two datasets reaching up to half a billion posts. We show that
Rhea exhibits significantly improved performance with regard
to both recall and precision. The superiority of Rhea is even
more evident when comparing on ranking accuracy, using the
Spearman’s ⇢ and NDCG measures. Finally, we investigate
the effect of various parameters of Rhea and ascertain its
improved efficiency and effectiveness.
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