
Effective Change Detection using Sampling

Junghoo Cho Alexandros Ntoulas

UCLA Computer Science Department
Los Angeles, CA 90095

{cho, ntoulas}@cs.ucla.edu

Abstract

For a large-scale data-intensive environment,
such as the World-Wide Web or data warehous-
ing, we often make local copies of remote data
sources. Due to limited network and compu-
tational resources, however, it is often difficult
to monitor the sources constantly to check for
changes and to download changed data items
to the copies. In this scenario, our goal is to
detect as many changes as we can using the
fixed download resources that we have. In this
paper we propose three sampling-based down-
load policies that can identify more changed
data items effectively. In our sampling-based
approach, we first sample a small number of
data items from each data source and down-
load more data items from the sources with
more changed samples. We analyze the ef-
fectiveness of the sampling-based policies and
compare our proposed policies to existing ones,
including the state-of-the-art frequency-based
policy in [7, 10]. Our experiments on synthetic
and real-world data will show the relative mer-
its of various policies and the great potential of
our sampling-based policy. In certain cases, our
sampling-based policy could download twice as
many changed items as the best existing policy.

1 Introduction
Many applications often make local copies of remote
data sources. For instance, a data warehouse may copy
remote sales and transaction records for local analysis.
Similarly, a Web search engine copies a subset of the
Web and indexes them to help users access Web pages.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the VLDB copyright notice and the title of the publica-
tion and its date appear, and notice is given that copying is by permis-
sion of the Very Large Data Base Endowment. To copy otherwise, or
to republish, requires a fee and/or special permission from the Endow-
ment.

Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

In many cases, the remote sources are updated indepen-
dently of the local copies, so we must periodically poll
and download data from the sources to detect changes
and incorporate them to the copies.

Change detection and download is often performed
in batch at a regular interval, typically during off-peak
hours, to avoide interference with the main tasks that
the sources and/or clients perform. As the size of the
data grows, however, detecting changes and incorporat-
ing them to the copies become increasingly difficult. Due
to limited network and computational resources, we may
not be able to check every data item in the data sources
within the limited time window, so we may miss certain
changes at the sources.

In this paper, we address some of the challenges that
arise in this context: How can we detect and download
as many changed data items as we can, when the source
data is updated independently and when we have limited
resources? In this scenario, it is important exactly what
item we decide to download and check, because we may
waste a significant portion of our resources, if we repeat-
edly download unchanged items.

As we will discuss in more detail later, our main idea
is to use sampling. That is, we first download a small
number of data items from each data source as samples,
and use the samples to decide which sources we down-
load more data items from. While the idea is simple, our
later analysis and experiments will show that sampling-
based policies have great potential and lead to significant
improvement.

Although the problem of change detection and down-
load arises in various contexts, our work is mainly mo-
tivated by our need to manage Web data. In our Web-
Archive project [20], we try to store multiple versions of
Web pages over time, so that users can access the Web
of, say, 10 years ago. Due to our limited network re-
sources, however, we cannot constantly download every
page to check for changes, so we need to carefully select
what pages to download and check. A similar service is
currently provided by the WayBack Machine [19]. Web
search engines also have to address the same problem,
because they have to periodically revisit Web pages in
order to maintain their indexes up-to-date. This task is
typically performed by a program, called a Web crawler.

Recently, Cho et al. [7] and Coffman et al. [10] stud-

ied how a crawler can detect more changes by predict-
ing page change frequencies. That is, the crawler con-
stantly estimates how often a page changes based on the
past change history of the page, and uses this estimate
to decide how often it will revisit the page in the fu-
ture. Differently from the existing work, this paper stud-
ies how we can detect more changes using sampling. As
our later experiments will show, our sampling-based pol-
icy leads to significant improvement from the frequency-
based policy in many cases. In an experiment on real
Web data, our sampling-based policy detected twice as
many changes as the frequency-based policy in certain
cases!

In order to design and implement a good sampling-
based policy, there are many questions to address. For
example, how many samples should a crawler take from
each data source? Can a crawler dynamically adjust the
sample size to improve effectiveness? How should a
crawler use the results from sampling? Can we com-
bine a sampling-based policy with the change-frequency-
based policy? To address these questions, we organize
the rest of the paper as follows:
• In Section 2, we present a framework to study the

change detection and download problem. We dis-
cuss various change-detection policies and present
evaluation metrics to compare different policies.

• In the first half of Section 3, we propose two
sampling-based policies, proportional and greedy,
and analyze their effectiveness. We derive the opti-
mal sample size that maximizes the effectiveness of
a sampling-based policy.

• In the second half of Section 3, we propose an
adaptive-sampling policy that can dynamically ad-
just the sample size, based on the changes detected
so far. We also study the scenario where we cannot
sample enough pages from each data source due to
our very limited download resources.

• Finally in Section 4, we experimentally compare
our sampling-based policy to others, including the
state-of-the-art frequency-based policy. Our exper-
iments will show that our sampling policy is often
significantly better than existing ones. The exper-
iments will also reveal the respective merits of our
sampling-based policy and the frequency-based pol-
icy. To the best of our knowledge, our work is the
first one to study the effectiveness of the frequency-
based policy experimentally on real data. The re-
sults will shed light on how we may use various
policies in an actual system.

2 Framework
In this paper, we assume that the sources are updated au-
tonomously and independently of the local copy. That is,
we assume a pull model where the local copy needs to pe-
riodically check the data sources to detect and download
changes. This model is in contrast to a push model where
the data sources are cooperative and willing to push their
updates to the local copies. Recently, Olston et al.[17]

started investigating the push model, but we believe the
pull model is more suitable for many existing applica-
tions, including the World-Wide Web.

We also assume that the local copy downloads data
items periodically in batch, say, every weekend. That
is, every weekend, we download a fixed number of data
items from the sources and update the local copy using
the downloaded items. We call this interval – in this case
one week – as a download cycle. Our goal is to download
as many changed items as possible in each download
cycle, using the same fixed download resources. This
assumption is valid for an environment like the World-
Wide Web, where we maintain a large number of data
items residing in many different sources, and we do not
have enough resources to update them all in a short pe-
riod of time. The following example illustrates a typical
scenario that we assume.

Example 1 We maintain local copies of 10 million Web
pages downloaded from 10,000 sites. The 10,000 sites
do not inform us of any changes, so we need to peri-
odically download pages to detect and save changes in
our copies. Since many users heavily access these pages
during weekdays, we can download the pages only on
weekends. Given our network bandwidth we can down-
load up to one million pages every weekend. We want
to use our limited download resources effectively so that
we can download as many changed pages as possible in
each week. �

2.1 Download policies

When we can download only a subset of data items in
each download cycle, we need to carefully decide what
data item to download. There exist a multitude of ways
for this decision, including the following:

1. Round-robin: We download data items in a round-
robin fashion in each download cycle. In case of
Example 1, for instance, we download the first 1
million pages in the first week, the second 1 million
pages in the second week, etc. Because we maintain
10 million pages locally, every page will be updated
exactly once every 10 weeks in this policy.

2. Change-frequency-based: Based on the past change
history of a data item, we estimate how often the
item changes and decide how often to revisit the
item. For instance, if we have downloaded an item
once every month for one year, and if we detected
4 changes, we may estimate that the item changes
once every 4 months and revisit the item accord-
ingly. For more detailed description of this policy,
see references [7, 10].

3. Sampling-based: We first sample a small number
of data items from each data source (e.g., a Web
site) and estimate how many items in that source
have changed. We then allocate download resources
to each data source accordingly, based on the es-
timates. For instance, in case of Example 1, we
may download 10 pages from each of the 10,000

Web sites as samples (a total of 100,000 page sam-
ples) and count how many pages in the samples have
changed. (For now, we assume that we need to ac-
tually download a page to see whether the page has
changed or not.) Then based on the counts, we allo-
cate the remaining 900,000 download resources to
each Web site accordingly. Later in Section 3, we
will discuss this policy in more detail.

The above three policies have their own merits and
advantages. The round-robin policy is currently being
used by many systems [5, 14] due to its simplicity. It
also guarantees that every data item is downloaded at a
regular interval. The frequency-based policy has the fol-
lowing advantages and disadvantages:

• Advantage: The frequency-based policy is proven
to be optimal when we can estimate the change fre-
quencies of data items accurately [7].

• Disadvantage: 1) It is very difficult to estimate the
change frequency of a data item accurately. Unless
we have a long change history of a data item, ex-
isting estimation methods often lead to unreliable
predictions [8], which in turn lead to an undesirable
download policy. In addition, the change frequency
itself may change over time, but we may not realize
that it has changed.

2) In order to estimate the change frequencies, we
need to keep track of the change history of every
data item. When we maintain a large number of
items, this tracking may incur significant storage
and maintenance overhead

A sampling-based policy does not have the drawbacks
mentioned above, because it makes a download decision
purely based on the samples taken in the current down-
load cycle. It does not need to keep track of the previous
change history of data items. Later in Section 4, we will
compare the effectiveness of the frequency-based policy
and the sampling-based policy using real Web data.

At this point, some of the readers may expect that
a sampling-based policy would work only when the
changes of the data items in the same source are cor-
related. However, we emphasize that this is not the case.
If we can take random samples from each data source,
we are guaranteed that the fraction of changed items in
the samples is proportional – in a probabilistic sense –
to the fraction of changed items in the data source. So a
sampling-based policy does not assume any correlation
between changes of data items. We should only be able
to take random samples from each data source.

We also note that it is possible to combine two or more
policies to achieve desirable properties. For example, we
may use half of our download resources in a round-robin
fashion and use the remaining half for a sampling-based
policy. This way, we can detect more changes than a sim-
ple round-robin policy, while downloading every item at
least at a certain interval. Our study will help us employ
a combined policy better, through better understanding
of the sampling-based policy.

2.2 Evaluation metrics

In order to compare various download policies, we need
an evaluation metric. We list three potential evaluation
metrics in this subsection:

1. ChangeRatio metric: Informally, the ChangeRatio
metric counts how many changed items we down-
load in a download cycle and uses this number as
its performance. More precisely, the ChangeRatio
metric is defined as the number of downloaded and
changed items in a download cycle over the total
number of downloaded items in the cycle. For ex-
ample, if we downloaded 1 million items and de-
tected 700,000 changed items, the ChangeRatio is
0.7. Since the ChangeRatio may vary in different
download cycles, we take its average over multiple
download cycles. Our goal is to maximize the aver-
aged ChangeRatio.

Note that in certain cases data items may have dif-
ferent “importance,” and we may want to detect
more changes from more “important” items. To for-
malize this notion, we may extend the simple defini-
tion of ChangeRatio by assigning weight wi to each
item oi and define

ChangeRatio =
∑
i∈R

wi · 1(oi)

Here, 1(oi) is an indicator function whose value is 1
when the item oi has changed and 0 when it has not.
R is the set of items that have been downloaded.
wi’s are normalized so that

∑
i∈R wi = 1. When all

wi’s are equal, this definition reduces to the simple
definition.

The ChangeRatio metric is particularly useful when
we want to store the change history of data items,
such as for the WebArchive project [20]. Because
our goal is to store as complete change history
as possible, we want to maximize the number of
detected changes. A similar definition was used
in [12].

2. Freshness and Age metrics: In [7], we proposed two
other metrics, called freshness and age. The fresh-
ness of item oi at time t is defined as

F (oi; t) =
{

1 if oi is up-to-date at time t
0 otherwise.

(Up-to-date means that the locally stored image of
the item is the same as the image at the source) and
the freshness of the entire local copy at time t is

F (U ; t) =
1
|U |

∑
oi∈U

F (oi; t).

Here, U is the set of all locally stored items. In-
formally, the freshness metric represents the frac-
tion of data items that are up-to-date. For exam-
ple, if we maintain 100 pages and if 70 pages are

up-to-date at t, its freshness is 0.7. Our goal is to
maximize the time-averaged freshness under our re-
source constraints.

The second metric, the age of item oi at time t, is
defined as

A(oi; t) =

0 if oi is up-to-date at time t
t − modification time of oi

otherwise

and the age of the entire local copy is

A(U ; t) =
1
|U |

∑
oi∈U

A(oi; t).

The age represents “how old” the local copy is. For
example, if the source data item changed one day
ago, and if we have not downloaded the item since
then, the age of our local item is one day. Our goal
is to minimize the time-averaged age using limited
resources. Similarly to the ChangeRatio metric, we
can incorporate different “importance” of objects,
by assigning weight wi’s to items and taking an
weighted average.

The freshness and age metrics are suitable when we
need to keep the local items as up-to-date as pos-
sible. However, note that the metrics are hard to
measure exactly in practice. That is, in order to esti-
mate freshness (or age), we need to instantaneously
compare the source items to the local ones, which is
often very difficult when we maintain a large num-
ber of data items. In addition, we want to opti-
mize the time-averaged freshness and age values,
but the time average can be obtained only when we
know the entire change history of every data item.
Therefore, most of the studies on freshness and age
are conducted through theoretical analysis, assum-
ing some stochastic models for data changes.

3. Divergence metric: In [17], Olston et al. proposed
a very general “staleness” metric called divergence.
Intuitively, a divergence value represents how dif-
ferent a local data item is from the source item.
For example, in a stock-market-monitoring appli-
cation – where we locally copy stock prices – we
may define the divergence of a stock quote as the
difference between its current price and the locally-
stored value. In general, a divergence metric can
be defined as any monotonically-increasing func-
tion [17].

In this paper, we mainly use the ChangeRatio as our
evaluation metric. We made this choice because 1) it
is easy to measure in practice on real data and 2) high
ChangeRatio indirectly implies high freshness, low age,
and less divergence.

3 Sampling-based policies
In this section, we discuss sampling-based download
policies in more detail. We start our discussion by clari-

fying our cost model for sampling.

3.1 Sampling cost model

A sampling-based policy needs to sample a few data
items from each data source in order to estimate how
many items in the source have changed. During sam-
pling, we assume that we need to download an entire
data item to check whether the item has changed or not.
That is, we assume that the cost for sampling an item is
the same as the cost for actually downloading the item.
For example, if we can download 100,000 data items in
each download cycle and if we sample a total of 10,000
data items, we can download 90,000 more data items
in that cycle. We also assume that we do not need to
download a sampled item again in the same download
cycle, because the item was already downloaded during
sampling. This assumption makes our discussion simple,
and it is straightforward to extend our current model to
the case where sampling cost is lower than downloading
cost. For instance, if sampling cost is only 10% of actual
downloading cost, we may assume that we can download
99, 000 (= 100, 000 − 0.1 · 10, 000) more data items for
the above scenario.

3.2 Greedy and proportional policies

We now discuss two sampling-based policies, greedy and
proportional. To make our discussion concrete, we use
the following as our running example.

Example 2 We locally mirror two Web sites A and B.
Each Web site has 100 pages. We can download 100
pages every weekend. To estimate how many pages have
changed, we sample 10 pages from each site. Out of the
10 samples, 7 pages changed in A and 2 pages changed
in B. We need to decide how to allocate the remaining
80 (= 100 − 2 · 10) page download resources to A and
B. We assume that every page is equally important. �

Given the sampling results, we may allocate the
download resources to A and B either proportionally or
greedily.

1. Proportional policy: We allocate the remaining re-
sources to a site proportionally to its number of
changed samples. That is, we download 80 · 7

7+2 =
62 pages from site A and 80 · 2

7+2 = 18 pages from
site B.

2. Greedy policy: We start from the site that has the
most changed samples and download all pages in
the site. If we still have remaining download re-
sources, we download more pages from the second-
most changed site. We continue this process until
we run out of download resources. In the above ex-
ample, we use all 80 remaining resources for site A,
because A has more changed samples than B.

In both policies, we allocate more download resources
to the sites with more changed samples, hoping that we
will detect more changes. While both policies are rea-
sonable, we can see that the greedy policy is expected
to yield better ChangeRatio than the proportional policy
from the following simple analysis.

Probabilistically, 7
10 = 70% of the pages in site A

would have changed and 2
10 = 20% of B pages would

have changed. Therefore, the proportional policy is ex-
pected to detect 0.7 · 62 + 0.2 · 18 = 47 changes from
page downloads. Including the 9 (= 7+2) page changes
detected during sampling, we detect 56 changes in total
(i.e., the ChangeRatio is 56/100 = 0.56). In contrast,
the greedy policy is expected to detect 0.7 · 80 + 9 = 65
changes in total (ChangeRatio of 0.65).

In general, it is straightforward to prove that the ex-
pected ChangeRatio of the greedy policy is the highest
among all sampling-based policies.

Theorem 1 (Optimality of Greedy Policy) We sample
the same number of random pages from each data source
and allocate remaining download resources based on
the sampling results. In this scenario, the greedy pol-
icy is expected to give the highest ChangeRatio out of all
sampling-based policies. �

Proof See Appendix. �

The above theorem shows that the greedy policy
yields better ChangeRatio on average than the propor-
tional policy. However, the greedy policy may have
larger variation in its performance, because the greedy
policy aggressively allocates all of its resources to the
site with more estimated changes. When the estimation
is correct, this choice yields very high ChangeRatio, but
when the estimation is incorrect, it also yields very low
ChangeRatio. In contrast, the proportional policy down-
loads pages from every site, so even when the estimation
is inaccurate, it still shows relatively high performance.
Later in Section 4, we will investigate this issue experi-
mentally.

3.3 Optimal sample size

In a sampling-based policy, the size of samples affects
performance significantly. In this section, we study the
optimal sample size that yields the highest ChangeRatio.
In order to understand the impact of sample size, let
us consider a scenario similar to Example 2, but now
assume that we sample 50 pages from each site (in-
stead of 10). In this case, we use all of our 100 down-
load resources just for sampling, so we cannot download
any more pages from the site with more changed pages.
Therefore, the performance of a sampling-based policy
would be similar to that of the round-robin policy, be-
cause we download random pages during sampling. At
the other extreme, if we sample only one or two pages
from each site, there is a high chance that the estimated
number of changes from samples is inaccurate and we
make a wrong download decision.

Figure 1 illustrates this issue more precisely. We ob-
tained the graph assuming that there are two sites, A and
B, with 100 pages each, and we download 100 pages
in one download cycle. We also assumed that 70 pages
changed in site A and 20 pages changed in site B. The
horizontal axis shows the sample size that a policy uses
and the vertical axis shows the expected ChangeRatio of

10 20 30 40 50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Round−robin
Proportional
Greedy

Sample size

ChangeRatio

Figure 1: Expected ChangeRatio for various sample
sizes

the round-robin, greedy and proportional policies at the
given sample size. The graph was obtained analytically.

Note that the greedy and the proportional policies
show the same expected ChangeRatio, 0.45, as the
round-robin policy when the sample size is either 0 or 50.
This is because when the sample size is 0, both policies
select a random site for download, and when the sam-
ple size is 50, both policies use all its resources just for
sampling. Also note that the proportional and the greedy
policies show similar performance when sample size is
small (≤ 2). This little difference is because the greedy
policy is more likely to make an inaccurate download de-
cision with small samples. It needs to sample “enough”
pages to make a good decision. From the graph, we can
see that the greedy policy shows the optimal performance
when it samples about 5 pages from each site.

In general, we can derive the optimal sample size for
the greedy policy analytically. To help derivation, we
first introduce some notation.

We assume that all Web sites have the same number of
Web pages, N . In practice, different Web sites may have
different numbers of pages, but in this case, we may in-
terpret N as the average number of pages in overall sites.
We use r to represent the ratio of our download resources
to the total number of pages that we maintain. For exam-
ple, if we maintain 200 pages and if we can download
100 pages in each download cycle, r is 0.5. We use ρi

to represent the fraction of changed pages in site Si. For
instance, if site S1 has 100 pages and if 70 pages have
changed, ρ1 = 0.7. When sites have different ρi values,
we can plot the histogram of ρi values as in Figure 2 and
approximate it by a continuous density function f(ρ).
The goal of the greedy policy is to download pages only
from the sites whose ρi values are the highest 100 · r%
(say, the gray region in the figure). We use ρt to repre-
sent the threshold ρ value: The sites whore ρ values are
higher than ρt belong to the top 100 · r% sites. We use ρ̄
to represent the average ρ values over all sites. We use ρ̄r

to represent the average ρ values of the sites in the gray
region (the sites whose ρ values are above ρt). In Table 1,
we summarize our notation. Some of the notation in the
table will be introduced later.

Under this notation, we can expect that the optimal

0.5 1

f(ρ)

ρt
ρ

Figure 2: Histogram of ρi values of sites

Notation Meaning

N Average number of pages in all sites
R Available download resources
r Ratio of download resources to the total number

of pages we maintain
s Sample Size
k Granularity (sample size) of adaptive policy
α Confidence value of adaptive policy
ρi Fraction of changed pages in site Si

f(ρ) Density function of all web sites’ ρ values
ρt Threshold ρ value. If ρi > ρt for some Si, then Si

belongs to the highest 100 · r% sites
ρ̄ Average ρ values over all web sites
ρ̄r Average ρ value of web sites having ρi > ρt

Table 1: Notation used throughout the paper.

sample size will depend on the distribution f(ρ), our re-
source constraints, and the number of pages in the Web
sites. The following theorem shows how these parame-
ters affect the optimal sample size.

Theorem 2 (Optimal sample size) The optimal sample
size, s, under the greedy policy is approximately

s ≈
√

Nrf(ρt)
6(ρ̄r − ρ̄) �

Proof Due to its length and complexity, we give the
proof in the appendix. �

Intuitively, we can understand the result of Theorem 2 as
follows: First, when r is large (i.e., when we have rel-
atively large download resources compared to the num-
ber of pages that we maintain) we can use more of our
resources for sampling, because we can still download
many pages from high ρ sites using the remaining re-
sources. Second, when N is large (i.e., when Web sites
have more pages), we need to sample more pages from
the sites to predict their ρ values better.

Another factor, ρ̄r − ρ̄, indicates that we can sample
less pages when ρ̄r − ρ̄ is high (i.e., when the ρ values
of the top 100 · r% Web sites are much higher than the
average ρ value.) This is because when the ρ values are
very different among the sites, the estimated ρi values
from samples will be very different, so it becomes easier
to identify the high ρ sites from the others.

The final factor f(ρt) indicates that we need to sam-
ple more pages when the value of the density function
f(ρ) is high at ρt. This is because when many Web sites
have ρ values close to ρt (i.e., when f(ρt) is large), it
is more difficult to tell exactly which sites have ρ values
higher/lower than ρt.

Using the formula in Theorem 2, we can estimate the
optimal sample size when we know the distribution of ρ
values. In certain cases, however, the distribution may
be unknown, and we may not compute the optimal sam-
ple size accurately. Even in this scenario, we believe the
result of Theorem 2 is still useful, because it shows that
the optimal sample size s is proportional to the square
root of Nr. As a rule of thumb, therefore, when we do
not know the exact distribution of ρ values, we may use√

Nr as a rough approximation for the optimal sample
size. Clearly, other factors are important to determine
the exact optimal size, but this approximation will be
roughly in the same range as the optimal size, different
only by a constant factor. Later in the experiment sec-
tion, we will verify the result of this section using real
Web data.

3.4 Adaptive sampling

The policies that we have discussed so far are two-stage
policies. That is, we first take a fixed number of samples
from each site at a sampling stage, and then we down-
load more pages from high ρ sites at a download stage.
Instead of a two-stage policy, we now discuss an adap-
tive sampling policy that tries to adjust the sample size
dynamically and adaptively.

Our new adaptive policy is essentially based on the
greedy policy: After sampling some pages from each
site, if we are certain that the ρ value of a site is very
high, we download all pages from the site. The differ-
ence is that the sample size is not determined in advance
under the adaptive policy.

To illustrate, let us assume that we maintain local
copies of 4 Web sites, S1 through S4. Their ρ values
are ρ1 = 0, ρ2 = 0.45, ρ3 = 0.55, ρ4 = 1, and each site
has 100 pages. We can download a total of 200 pages in
each download cycle. Roughly, our goal is to identify the
two Web sites with high ρ values that we will download
pages from.

Given the high ρ value of the site S4, we can expect
that the samples from S4 will have much more changes
than the other samples. Therefore, it is relatively safe to
pick S4 for page download early in our sampling. Simi-
larly, it is safe to discard S1 early on, because of its low ρ
value. Compared to S1 and S4, S2 and S3 require larger
samples, because their ρ values are similar and it is diffi-
cult to tell which one has a higher ρ value. Based on this
intuition, we propose the policy described in Figure 3.

The algorithm takes two input parameters, α and
k, whose intuition is given later. Roughly, the algo-
rithm proceeds as follows: It samples k pages from each
Web site, and based on the samples it estimates the ρi

value and its 100 · α% confidence interval for each site
(Steps [3] through [6]). Given the distribution of the es-

Algorithm 3.1 Adaptive-sampling policy
Parameters:

α: confidence level (a value between 0 and 1)
k: number of pages to sample in each iteration

Procedure
[1] S = {S1, S2, . . . Sn} // Set of sites to be sampled
[2] Loop while we have download resources
[3] For each site Si ∈ S
[4] Sample k pages from Si

[5] ρi = Estimate of ρ value for Si base on the samples so far
[6] (li, hi) = 100 · α% confidence interval for ρi

[7] Compute threshold ρt from the distribution of estimated ρi’s
[8] For each Web site Si in S
[9] If (hi < ρt) S = S - Si

// ρi too low. We do not download from Si

[10] If (ρt < li) download all pages in Si and S = S - Si

// ρi very high. We download pages from Si

Figure 3: Algorithm of the adaptive-sampling policy

timated ρi values, it can predict the threshold ρt value
(Step [7]). For example, if we can download about half
of the sites in each download cycle, and if half of the
estimated ρi’s are above 0.6, ρt = 0.6.

After estimating ρt, it compares the confidence inter-
vals of ρi to the threshold. If the confidence interval for
Si is strictly lower than the threshold (hi < ρt), it stops
sampling from the site (Step [9]); It has enough evidence
that the ρi of Si is below the threshold. Similarly, if the
confidence interval of Si is strictly above the threshold
(ρt < li), it downloads all pages from the site (Step [10]).

The α and k values are configuration parameters set
by the user. When the α value is low, the algorithm
makes a download/discard decision “aggressively” and
picks a site for download (or discard) even with low con-
fidence. Thus, it allocates less resources to sampling and
more resources to page downloads. The k value deter-
mines the granularity of sampling adjustment. When
k is small, the algorithm re-estimates ρi values more
frequently and makes a download (or discard) decision
more often. Thus, the algorithm may show better perfor-
mance but it may require more processing power. Later
in Section 4, we will study the impact of α and k values
on the effectiveness of the policy. We will try to identify
good α and k values that yield high performance.

3.5 Subset sampling under low download resources

So far, we have implicitly assumed that we have a suffi-
ciently large amount of download resources, so that we
can sample a reasonable number of pages from each site
and still download more pages from high ρ sites. In cer-
tain cases, however, this assumption may not be valid.
We may not be able to sample enough pages from each
site, due to our limited resources available. In this sec-
tion, we study how we should handle low-resource sce-
narios.

Generally, there is an interesting relationship be-
tween the download resource size and the performance
of a sampling-based policy. At one extreme, when we
have few download resources and cannot sample enough
pages from each site, a sampling-based policy would per-
form similarly to the round-robin policy: after sampling

0.2 0.4 0.6 0.8 1

0.25

0.5

0.75

1

1.25

1.5

1.75

2

Performance ratio

r

Figure 4: Comparison of the round-robin policy and a
sampling policy for various resource constraints

a couple of pages from each site, we cannot download
any more pages from high ρ sites, and we end up vis-
iting a small but different portion of the pages in each
cycle, just like the round-robin policy. (Because we take
random samples, we will visit different pages in differ-
ent cycles with high probability.) At the other extreme,
if we have enough resources to download every page in
each download cycle, a sampling-based policy will per-
form similarly to the round-robin policy again, because
both policies will download all pages in every cycle.

Figure 4 shows a hypothetical graph that illustrates
this relationship. The horizontal axis shows the resource
ratio r (the number of download resources to the num-
ber of total pages we maintain). When r is 1, we can
download all pages in each download cycle, and when
r is 0, we can download no page. The vertical axis
shows the performance ratio of a sampling-based policy
to the round-robin policy (ChangeRatio of a sampling-
based policy over ChangeRatio of the round-robin pol-
icy). When the sampling-based policy performs better
than the round-robin policy, this ratio is higher than 1.
In the graph, a sampling-based and the round-robin poli-
cies show similar performance (the performance ratio is
1) when resource ratio r is close to either 0 or 1, because
of the reasons discussed above. In between these two
extremes, a sampling-based policy shows better perfor-
mance than the round-robin policy.

To improve performance for the scenario of very lim-
ited resources (r ≈ 0), we propose that a sampling-based
policy should select a small subset of its data in each
download cycle, and sample and download pages only
from the subset:

• Subset sampling under low download resources:
When the download resources are too limited to
sample enough pages from each site, we group the
sites into m subsets. In each download cycle, we
pick one subset and sample and download pages
only from the sites in the subset. We revisit the sub-
sets in a round-robin manner over multiple down-
load cycles.

For instance, consider the following example:

Example 3 We maintain local caches of Web pages
from 1000 sites. Each Web site has 100 pages. Every
weekend, we can download 500 pages in total. In this

scenario, our simple greedy (or adaptive) policy cannot
work effectively, because we can sample less than one
page from each site.

To handle this scenario, we may use the subset-
sampling policy. First, we divide the sites into groups of,
say, 10 sites. Every week, we select a group of 10 sites
and sample, say 10 pages from each of the 10 sites. As-
suming we use the greedy-policy, we can use the remain-
ing 400 (500− 10 · 10) download resources to download
pages from high ρ sites. �

When we need to use the subset-sampling policy, one
important question is how many sites we should put in
each subset. Should we sample 10 sites in one download
cycle, sampling all 1000 sites over 100 cycles? Or should
we sample 20 sites in each cycle? The answer depends
on the amount of available resources and the distribution
of ρ values among the sites. Although we cannot derive a
closed formula for the optimal number of sites to sample,
we believe that the number should be determined such
that we can download all pages from high ρ sites after
sampling.

For example, if the ρ values follow the distribution of
Figure 2, and if roughly 30% of the sites belong to the
grey region (high ρ region), we should be able to down-
load all pages from these top 30% sites in each down-
load cycle. If our subset is too small and if we have to
download pages from lower ρ sites (given our download
resources), performance would degrade. If our subset is
too large and if we “waste” most of our resources for
sampling, performance would also suffer. Later in Sec-
tion 4, we experimentally study the effectiveness of the
subset-sampling policy.

3.6 Is Greedy too greedy?

While the greedy (and adaptive) policy can improve the
overall ChangeRatio, it may be possible that some pages
are never downloaded, because the policy downloads
pages only from the high ρ sites. The following theorem
proves that this is not the case.

Theorem 3 When every page changes at some points of
time, every page is eventually downloaded. �

Proof See Appendix. �

Although the theorem proves that every page will even-
tually be downloaded, it does not guarantee that pages
are downloaded within a “reasonable” period of time. It
also does not address the case when some of the pages
does not change at all. In the extended version of this
paper [9], we examine how often each page is down-
loaded on real Web data under the greedy policy. The
results show that most of the changed pages are down-
loaded within a reasonable period. We also note that
if it is important to download every page within a cer-
tain interval, we may decide to combine the round-robin
policy with the greedy (or other sampling-based) policy.
For example, we may want to use, say, 30% of download
resources in a round-robin fashion and use the remaining
70% for the greedy policy.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.

20

40

60

80

100

No. of Sites

ρ

Figure 5: Histogram of ρi values in the dataset.

4 Experiments
Following on from our theoretical analysis, we con-
ducted a number of experiments in order to study the
behavior and performance of the aforementioned poli-
cies. Most of our experiments were conducted on real
data collected from the Web. The dataset contained 6-
month change history of approximately 353, 000 Web
pages distributed among 252 Web sites. The data was
collected by our WebArchive crawler, which visited the
Web sites once every month for a period of 6 months.
Since changes could be detected only from the second
visit (in the first visit, we do not know whether a page
has changed or not), we had a total of 5 change history
data for each page. Thus, our experiments could run up
to 5 download cycles.

It may seem that 5 download cycles is relatively small,
but as we will see in the following sections it is enough
to bring up the potential of the sampling policies. Also,
when it is necessary to run experiments on a longer
change history, we assumed that our 5 cycle data would
repeat over time. That is, if we detected changes from
a page in the 2nd and 5th cycles, we assumed that we
detect changes in 7th, 10th, 12th, 15th cycles, etc. Our
dataset is publicly available from our Web site [20].

We should emphasize that our later experiments did
not actually crawl and download pages. All experiments
were conducted on the same data collected by our We-
bArchive crawler. This setup enables a fair comparison
among policies. Also, throughout experiments, we as-
sume that the cost for sampling a page is the same as the
cost for actually downloading it.

4.1 Distribution of ρ values

We start our discussion by investigating the properties of
our dataset. In particular, we show the distribution of ρ
values of the sites (Section 3.3) in Figure 5. The hori-
zontal axis represents ranges of ρ values, and the verti-
cal axis shows the number of Web sites with the given ρ
value. Label 0.1 on the horizontal axis means the range
of 0 to 0.1. Note that the ρ value of a site may vary be-
tween download cycles. However, we could not detect
any meaningful fluctuation in ρ values between cycles
from our dataset. We plotted the histogram using the av-
erage ρ value of a site over all 5 download cycles.

This figure shows that in our data, there exist quite

RR Prp Frq Grd Adp

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ChangeRatio

Visiting Policy
Figure 6: Comparison of the various download policies.

a few Web sites whose pages change very frequently.
About 18% of the sites has ρ values between 0.9 and
1. Also, a lot of sites are static and remain (almost) un-
altered throughout our experiment. More than 35% of
the sites has ρ values between 0 and 0.1 This fact intu-
itively suggests that 1) it can be relatively easy to detect
the high and low ρ sites using sampling and 2) if we can
identify the Web sites with very high and low ρ values
and allocate our download resources appropriately, we
may observe a significant improvement in the number of
detected changes.

While our data indicates that the ρ values of Web sites
follow a V-shaped distribution, it will be also interesting
how various download policies perform for different dis-
tributions. For this reason, in the extended version of
this paper [9], we report some of our results on synthetic
data whose ρ values follow a normal distribution. The re-
sults from the synthetic data strongly indicate that while
the exact numbers are different, the general trend that we
observed from the real data is still valid even for a normal
distribution.

4.2 Rough comparison of download policies

In this section, we conduct a rough comparison of vari-
ous policies using our real data. For the experiments, we
assumed that each policy can download R = 100, 000
pages in each download cycle. The greedy and propor-
tional policies used sample size s = 10 and the adaptive
policy used k = 10 (discussed in Section 3.4) and a con-
fidence level α = 0.9. Note that we did not try to opti-
mize these parameters. We selected the numbers rather
arbitrarily for this experiment. However, we believe that
the results from this experiment would show the relative
potential of various algorithms. In later sections we will
be examining the impact of the various parameters more
thoroughly.

Figure 6 shows the results. The horizontal axis corre-
sponds to various policies and the vertical axis shows the
ChangeRatios of the policies (averaged over 5 download
cycles). The frequency-based policy that we used in the
experiment is the one proposed in reference [7]. From
a first glimpse at this figure, the reader can observe that
our greedy (Grd) and adaptive (Adp) policies perform
surprisingly well compared to the round-robin (RR) and
even the frequency-based (Frq) policy. Their Change-
Ratios are almost twice as high as the frequency-based

policy! Since their ChangeRatios are around 0.75, even
if we could design a hypothetical oracle policy, which
could magically download only changed pages, the im-
provement would be less than 25%. The performance of
the proportional (Prp) policy is similar to that of the fre-
quency policy, and the performance difference between
the greedy and the adaptive policy is marginal.

While the results strongly indicate that the greedy
and the adaptive policies are very effective, we note that
the frequency-based policy could not show its full po-
tential in this experiment, due to our small number of
download cycles. Since the frequency-based policy did
not know how often pages change, it visited every page
once in a round-robin manner in the beginning, until the
first half of the 4th cycle.1 Only after that, the policy
started to adjust revisit frequencies based on estimated
change frequencies. Therefore, in the first three vis-
its, the frequency-based policy showed the same perfor-
mance as the round-robin policy and only from the sec-
ond half of the 4th download cycle, it started to show
some improvement.

Because of this fact, the comparison of the frequency-
based policy and our sampling-based policies may not be
fair, but we note that this is the situation in any practical
system. Any system has to estimate page change fre-
quencies in order to use the frequency-based policy, so it
will suffer from poor performance in the beginning. In
contrast, our sampling-based policies perform well with-
out any change history data. Later on, we will compare
the long term performance of the frequency-based policy
and our greedy policy.

4.3 Optimal sample size

In this subsection, we examine the impact of the sam-
ple size on the performance of sampling-based policies.
For this purpose, we ran the greedy and the proportional
policies on our data set, keeping the resource size con-
stant to 100,000 pages and varying the sample size from
1 to 400. The outcome of this experiment is drawn in
Figure 7. The horizontal axis represents the sample size
and the vertical axis shows the ChangeRatio at the given
sample size. From the graph, we can confirm the trend
that we discussed before:
• When the sample size is too small, a sampling-

based policy shows poor performance. It often
makes a poor download decision. This degradation
is particularly noticeable for the greedy policy.

• When the sample size becomes too large, perfor-
mance also degrades, because sampling-based poli-
cies waste more resources for sampling than they
ought to.

We can see that the optimal sample size for the greedy
policy is around 10–50. This range matches well with the
prediction of Theorem 2. In Section 3.3 we argued that√

Nr is a good rule of thumb for the optimal sample size

1We had 353, 000 pages and we visited 100, 000 pages in each
download cycle. Therefore, we need 3 1

2
cycles to visit every page

once.

100 200 300 400

0.3

0.4

0.5

0.6

0.7

0.8

ChangeRatio

Greedy

Proportional

Sample Size
Figure 7: Performance of the greedy and proportional
policies over various sample sizes.

50000 100000 150000 200000 250000 300000

0.2

0.4

0.6

0.8

1

ChangeRatio

Oracle

Greedy

RoundRobin

Resource Size

Figure 8: Performance of oracle, greedy and round-robin
policies over various resource sizes.

when we do not know the exact distribution of ρ values.
Given our parameters (N = 353, 000/252 ≈ 1, 400 and
r = 100, 000/353, 000 ≈ 0.28), this formula predicts
that the optimal sample size is

√
Nr ≈ 20, which is in

the range that we observe from our experiment.
From the graph we can see that for all sample sizes,

the greedy policy shows better average ChangeRatio than
the proportional policy. We expected this result from our
discussion in Section 3.2, but we also discussed that the
greedy policy may have a larger variation in Change-
Ratio than the proportional policy. To compare their
variations, we measured the standard deviation (s.t.d.) of
ChangeRatio between download cycles for both policies.
From this estimation, we could see that the s.t.d. of the
greedy policy is larger than that of the proportional pol-
icy (e.g., 0.027 vs. 0.023 for sample size 1). However,
because the variation is very small (∼ 0.02) compared to
average ChangeRatio (∼ 0.75), we believe that the vari-
ation issue is of negligible importance.

4.4 Resource size and subset sampling

We now study the effect of varying resource size on the
performance of the greedy policy. For the experiments,
we ran the greedy and the round-robin policies on our
data set. The greedy policy used the sample size 10 and
we varied the resource size R from 3,000 to 300,000
pages.

Figure 8 shows the results from this experiment. The
horizontal axis corresponds to the resource size and the
vertical axis shows the ChangeRatio at the given re-

5000 10000 15000 20000

0.6

0.7

0.8

0.9

SubsetSampling

Greedy

ChangeRatio

Resource Size

Figure 9: Comparison of ChangeRatio for Greedy and
SubsetSampling for low number of resources.

source size. The oracle policy is the one that can mag-
ically download only the changed pages. We show its
performance for comparison purposes. Note that the
ChangeRatio of the oracle policy goes below 1 for R >
100, 000. This is because in each download cycle, only
about 100, 000 pages changed and if our resource size
is larger than 100, 000, the oracle policy starts to down-
load unchanged pages. For most of resource sizes, the
greedy policy shows much better performance than the
round-robin policy.

The graph confirms our earlier discussion (Sec-
tion 3.5): When the resource size is large, the perfor-
mance of all policies become similar, because all poli-
cies download every page. When the resource size is
too small, the performance of the greedy policy degrades.
This degradation starts at R < 20, 000.

To study the impact of the subset sampling policy,
we divided sites into small subsets and sampled pages
only from one subset in each download cycle when
R < 20, 000. The size of each subset was selected so
that we can download about 18% of the pages in the
subset in each download cycle. For example, when we
have 10, 000 download resources, each subset had about
60, 000 pages. We selected 18% because about 18% of
the sites in our dataset belonged to the right peak of the
V-shaped distribution (Figure 5). The result from this
experiment is shown in Figure 8. From the graph, we
can see that the subset sampling policy improves the ef-
fectiveness of the greedy policy when the resource size
is small. For instance, when R = 5, 000 the Change-
Ratio improves from 0.73 to 0.89 when we used the sub-
set sampling policy.

4.5 Long-term performance of the frequency policy

The results in Section 4.2 showed that the performance
of the greedy policy is significantly better than the
frequency-based policy in a short term. In this section,
we study the long-term performance of the frequency-
based policy and compare it to the greedy policy.

Towards this goal, we ran the frequency and the
greedy policies for longer download cycles, by assuming
that the observed change history of the pages repeats for-
ever. For example, if we detected changes from a page
in the 2nd and 5th cycles, we assumed that we detect
changes in 7th, 10th, 12th, 15th cycles, etc. Figure 10

100 200 300 400 500

0.6

0.7

0.8

ChangeRatio

Greedy

Frequency

Download Cycle

Figure 10: Performance of the frequency and the greedy
policies over time

shows the results. The horizontal axis corresponds to a
download cycle, and the vertical axis shows the Change-
Ratio at the given download cycle. The dashed line is the
result of the greedy policy and the solid line with wide
fluctuation is the result of the frequency-based policy.

The wide fluctuation in the frequency-based policy
is mainly because it periodically downloads pages that
rarely change. Even if a page has never changed, we can-
not be sure that its change frequency is zero, so we have
to periodically go and check the page for change. The
dips in the graph correspond to the points when the pol-
icy downloaded infrequently changing pages. Note that
the interval between these dips increases steadily over
time. This is because as we accumulate more change
history data, we can be more confident that the page does
not change, and thus need to check the page less often.

From the graph, we can clearly see that the perfor-
mance of the frequency-based policy improves steadily
over time. Its performance is significantly lower than the
greedy policy in the beginning, but from around 100th
download cycle, it starts to show better performance.
Therefore, in the long run, the frequency policy can be
better than the greedy policy However, keep in mind
that 100 download cycles is a long period of time. Be-
cause we downloaded pages once every month, 100 cy-
cles roughly correspond to 10 years!

4.6 Adaptive policy

We now study the impact of the k and α values (in-
troduced in Figure 3) on the performance of the adap-
tive policy. To study their impact, we ran the adaptive-
sampling policy for various k and α values. Figures 11
and 12 show the result. Figure 11 shows the Change-
Ratio of the adaptive policy for various k values (the hor-
izontal axis) when α = 0.9. From the graph, we can see
that the performance decreases as k increases. (There are
small fluctuations, but we believe they are experimental
variations.) This result is expected because when k is
small, we try to re-estimate ρi values after small number
of samples, and thus make a download decision more fre-
quently with more accurate ρi values. From the figure,
we can see that the performance decrease is relatively
small until k = 10.

Figure 12 shows the ChangeRatio for various α val-
ues (the horizontal axis). From the graph, we can see

5 10 15 20 25 30

0.72

0.74

0.76

0.78

0.8

ChangeRatio

Sample Size

Figure 11: Performance of Adaptive over various sam-
ple sizes k.

0.5 0.6 0.7 0.8 0.9 1

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

k=10
k=5
k=1

ChangeRatio

Confidence Level

Figure 12: Performance of Adaptive over various confi-
dence values α.

that the confidence interval does not affect the perfor-
mance of the policy significantly. We could not detect
any meaningful difference in ChangeRatio for most of
α values. One thing to note is that the performance for
k = 1 is worse than others (k = 5, 10) when α is small
(α ≤ 0.75). This is because when α is small and k = 1,
the policy started to pick (or discard) a site for download
after it took only 2 samples: Because it selected a site for
download (or discard) too aggressively and too early, it
often made wrong decisions. In other cases (k = 5 or
10, or α is large), these early decisions did not happen,
because the policy had to sample 5 or more pages when
k = 5 or k = 10, or because it made a download (or
discard) decision conservatively when α is large.

Based on the results, we believe k = 10 and α ≈ 0.9
are good parameters to use for a scenario similar to our
Web data.

5 Related work

References [7, 10] study how a crawler should down-
load pages to maintain its index “up-to-date.” Assum-
ing that the crawler knows the exact change frequen-
cies of pages, the references present an optimal algo-
rithm. As we learned from our experiments, this change-
frequency-based algorithm performs relatively well once
it collects a large amount of history data. However, his-
tory collection incurs significant overhead, and until it
collects enough data, the algorithm performs poorly. Our
sampling-based policies do not need to track any change
history, and it shows significant improvement without

any history data. Reference [12] proposes another down-
load algorithm based on linear programming. The al-
gorithm shows promising results, but because algorithm
becomes more complex over time, the authors report
that the algorithm has to periodically “reset” and “start
from scratch;” The algorithm takes (practically) infinite
amount of time to finish after a certain number of down-
load cycles. In contrast, the complexity of our sampling-
based algorithms stay the same over time.

A lot of work has been done to maintain the consis-
tency of replicated data [3, 1, 11, 15, 16]. This work stud-
ies the tradeoff between data consistency and read/write
performance. In most of the existing work, however, re-
searchers have assumed a push model, where the sources
notify the replicated data of the updates. For example,
Olston et al. [17] proposed a new architecture in which
data sources can notify caches of important changes. In
many contexts, particularly for the Web, this push model
is not applicable, because data sources often do not in-
form others of their changes.

Sampling is a popular technique that has been used in
multiple disciplines for various optimizations [13, 22, 21,
6]. The contribution of this paper is to apply sampling
techniques to the context of change detection, and study
a variety of issues arising in this context.

The multi-armed bandit problem is well known in the
statistics and AI community. The problem is to iden-
tify the slot machine with the highest chance of winning
through exploration and exploitation. The problem is
proven to be NP-hard [4], and people have proposed a
range of approximation algorithms [2]. The setting of
the multi-armed bandit problem is slightly different from
ours, because bandit-problem assumes that the user can
play the best slot machine infinitely. In contrast, we can
download only a limited number of pages from each data
source, so we need to find the top r% sources, not just
the top source. This difference makes the policies take
quite different forms.

6 Conclusion and future work
In this paper, we studied how we can detect changed
data items effectively using sampling. We proposed
three sampling-based policies, greedy, proportional and
adaptive, and evaluated their performance analytically
and experimentally. We also compared the sampling-
based policies to other existing policies. Our experi-
ments showed that the greedy policy is easy and simple
to implement and shows one of the best performance in
many scenarios. Given its simplicity and performance,
we believe that the greedy policy is good for practical
systems. Its complexity is similar to the widely-popular
round-robin policy, while its performance is close to (or
even better than) the frequency-based policy. Also, we
learned that the frequency-based policy is not very effec-
tive in certain cases, because it takes a long time to es-
timate the change frequencies of pages. We now briefly
discuss a few avenues of future work.
• If we want to maximize performance, we may

want to combine a sampling-based policy with the

change-frequency-based policy. That is, we start
with a sampling-based policy in the beginning, and
once we collect enough change history data, we
start using the frequency-based policy. When we
should start this transition? What can we do if the
change frequency itself may change over time?

• In this paper, we assumed that we sample a few
pages from each Web site or each data source. But
there is no inherent reason to sample at the level of
a site. What if we sample a few pages from each
directory? What if we group Web pages based on
their contents and sample a few pages from each
group? Would we get better performance?

References
[1] R. Alonso, D. Barbara, and H. Garcia-Molina. Data caching is-

sues in an information retrieval system. ACM TODS, Sep 1990.
[2] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. Gam-

bling in a rigged casino: The adversarial multi armed bandit prob-
lem. In Proc. of FOCS, pages 322–331, May 1995.

[3] P. Bernstein and N. Goodman. The failure and recovery problem
for replicated distributed databases. ACM TODS, Dec 1984.

[4] D. A. Berry and B. Fristedt. Bandit problems: sequential alloca-
tion of experiments. Chapman and Hall, 1985.

[5] S. Brin and L. Page. The anatomy of a large-scale hypertextual
web search engine. In Proc. of WWW conf., April 1998.

[6] S. Chaudhuri, R. Motwani, and V. R. Narasayya. On random
sampling over joins. In Proc. of SIGMOD conf., 1999.

[7] J. Cho and H. Garcia-Molina. Synchronizing a database to im-
prove freshness. In Proc. of SIGMOD conf., May 2000.

[8] J. Cho and H. Garcia-Molina. Estimating frequency of change.
Technical report, DB Group, Stanford University, Nov 2001.

[9] J. Cho and A. Ntoulas. Effective change detection using sampling
(extended version). Technical report, UCLA Computer Science
Department, 2002.

[10] E. Coffman, Jr., Z. Liu, and R. R. Weber. Optimal robot schedul-
ing for web search engines. Journal of Scheduling, 1(1):15–29,
June 1998.

[11] L. S. Colby, A. Kawaguchi, D. F. Lieuwen, and I. S. Mumick.
Supporting multiple view maintenance policies. In Proc. of SIG-
MOD conf., 1997.

[12] J. Edwards, K. McCurley, and J. Tomlin. An adaptive model for
optimizing performance of an incremental web crawler. In Proc.
of WWW conf., 2001.

[13] P. J. Haas, J. F. Naughton, S. Seshadri, and L. Stokes. Sampling-
based estimation of the number of distinct values of an attribute.
In Proc. of VLDB conf., pages 311–322, 1995.

[14] A. Heydon and M. Najork. Mercator: A scalable, extensible web
crawler. Word Wide Web, 2(4):219–229, December 1999.

[15] N. Krishnakumar and A. Bernstein. Bounded ignorance: A tech-
nique for increasing concurrency in a replicated system. ACM
TODS, 19(4), December 1994.

[16] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing high
availability using lazy replication. ACM Trans. Comput. Syst.,
November 1994.

[17] C. Olston and J. Widom. Best-effort cache synchronization with
source cooperation. In Proc. of SIGMOD conf., May 2002.

[18] D. D. Wackerly, W. Mendenhall, and R. L. Scheaffer. Mathemat-
ical Statistics With Applications. PWS Publishing, 1997.

[19] Internet Archive. http://www.archive.org.
[20] WebArchive Project. http://webarchive.cs.ucla.

edu.
[21] Y.-L. Wu, D. Agrawal, and A. E. Abbadi. Using the golden rule

of sampling for query estimation. In Proc. of SIGMOD conf.,
2001.

[22] Q. Zhu and P.-A. Larson. A query sampling method of estimating
local cost parameters in a multidatabase system. In Proc. of ICDE
conf., 1994.

A Rough sketch of the proofs for various
theorems

Theorem 1 We sample the same number of random
pages from each data source and allocate remaining
download resources based on the sampling results. In
this scenario, the greedy policy is expected to give the
highest ChangeRatio out of all sampling-based policies.

�

Proof We use ci to represent the number of changed
items in the samples from source Si. Without losing gen-
erality, we assume c1 is the highest and c2 is the second
highest and so on. We assume that we download Ri items
from source Si and the total of R items from all sources
(i.e.,

∑
i Ri = R). We assume each data source has N

data items.
When we take random samples and detect ci changed

items from s samples, we expect 100 · ci

s % items in
Si have changed. Therefore, we expect to detect ci

s Ri

changes from Si when we download Ri items from Si.
Then the total number of detected changes is expected to
be ∑

i

ci

s
Ri, where

∑
i

Ri = R

Our goal is to maximize the above value. From the equa-
tion, it is easy to see that the formula takes its maxi-
mum value when we assign N to Ri for low i values
(i = 1, 2, . . .), because ci values are the highest for low
i’s. That is, we have to start downloading data items from
the sources with the most changed samples. �

Theorem 2 The optimal sample size, s, under the
greedy policy is approximately

s ≈
√

Nrf(ρt)
6(ρ̄r − ρ̄) �

Proof To help our derivation, we first assume an ora-
cle greedy policy, which can magically identify the sites
with high ρ values and can directly download pages from
those sites without any sampling. We use Po(ρi) to de-
note the probability that the oracle greedy policy down-
loads a site Si when its ρ value is ρi. By the definition
of the oracle greedy policy, Po(ρ) = 1 when ρ > ρt and
Po(ρ) = 0 when ρ < ρt. We show the graph of Po(ρ) as
a dashed line in Figure 13.

We use the Pg(ρi) to represent the probability that our
greedy policy downloads a site Si when its ρ value is
ρi. We show its graph as a solid line in Figure 13. Be-
cause the greedy policy sometimes makes wrong deci-
sions, the graph Pg(ρ) is not a step function like Po(ρ).
It approaches 0 as ρ decreases, but when ρ is close to
ρt, Pg(ρ) is larger than 0 even if ρ < ρt because some
of the sites are mistakenly downloaded. Similarly, Pg(ρ)
approaches 1 as ρ increases, but when ρ is close to ρt,
Pg(ρ) is smaller than 1 even if ρ > ρt. As we increase

0 1

0.2

0.4

0.6

0.8

1
Probability

ρ

Po(ρ)
Pg(ρ)
Pa(ρ)

ρt

δ

Figure 13: Probability Po(ρ) and Pg(ρ)

the sample size s, the graph of Pg(ρ) will become similar
to that of Po(ρ), because the greedy policy makes more
accurate download decision with larger samples.

We now approximate the function Pg(ρ) by a piece-
wise linear function Pa(ρ) shown as a dotted line in Fig-
ure 13. The general form of Pa(ρ) can be represented
as

Pa(ρ) =

0 for ρ ∈ [0, ρt − δ]
1
2δ (ρ − ρt) + 1

2 for ρ ∈ (ρt − δ, ρt + δ)
1 for ρ ∈ [ρt + δ, 1]

(1)

and we need compute δ to find the approximation. Based
on the result of Lemma 1 (which is given later), we will
use 1/

√
s as the approximate δ value.

We now compute the expected performance of the
greedy policy. Under the greedy policy, we download s
sample pages from every site. Therefore, the expected
number of changes that we detect during sampling is
Msρ̄, where M is the total number of sites that we main-
tain and ρ̄ is the average ρ value for overall sites. Once
the greedy policy decides to download more pages from
site Si, the expected number of changes that we detect
from Si is (N − s)ρi. (Remember that we download
N − s more pages from Si, because we do not down-
load the sampled pages again.) Because the site Si is
downloaded with the probability Pg(ρi) under the greedy
policy, the total number of changes that we expect to de-
tect during actual download is

∫ 1

0
Pg(ρ)(N−s)ρf(ρ)dρ.

Therefore, the total number of changes that we detect
both from sampling and from actual download is

(N − s)
∫ 1

0

Pg(ρ)ρf(ρ)dρ + Msρ̄

≈ (N − s)
∫ 1

0

Pa(ρ)ρf(ρ)dρ + Msρ̄

Assuming f(ρ) ≈ f(ρt) for ρ ∈ (ρt − δ, ρt + δ), and
using the analytical form of Pa(ρ) in Equation 1, we can

compute the above integral, and the result is

(N − s)M
(

f(ρt)
6s

+ ρ̄r

)
+ Msρ̄

Our goal is to find the s value that maximizes the above
formula. It is straightforward to show that the above for-
mula takes its maximum when

s =

√
Nrf(ρt)
6(ρ̄r − ρ̄) �

Lemma 1 The δ value for Equation 1 can be approxi-
mated as 1/

√
s. �

Proof From Figure 13, we see that δ is a value where
Pg(ρt+δ) becomes close to 1. For this proof, we assume
that we pick the δ value such that

Pg(ρt + δ) = 0.95 (2)

We now try to approximate Pg(ρi), the probability
that we download more pages from site Si when its ρ
value is ρi.

The site Si is downloaded when its estimated ρi value
(denoted as ρ̂i) is greater than ρt. That is, Pg(ρi) =
Pr{ρ̂i > ρt}. To estimate the ρi value, we use X/s,
where X is the number of changed pages in the sam-
ple and s is the sample size. That is, ρ̂i = X/s. Be-
cause we take s random samples from Si where 100ρi%
of the pages changed, the random variable X follows
a binomial distribution with a success rate ρi, and we
can approximate ρ̂i = X/s by the normal distribution
with mean ρi and the standard deviation

√
ρi(1 − ρi)/s.

When we do not know ρi value, the standard deviation√
ρi(1 − ρi)/s is often approximated by 1

2
√

s
[18], so

we may assume that ρ̂i follows the normal distribution
N(ρi,

1
2
√

s
).

When ρ̂i follows this normal distribution, the proba-
bility Pr{ρ̂i > ρt} is 0.95 when ρt = ρi − 1.65 1

2
√

n
.

That is,

Pg(ρi) = 0.95 when ρi = ρt +
1.65
2
√

n
(3)

By comparing Equations 2 and 3, we can see that

δ =
1.65
2
√

n
≈ 1√

n
�

Theorem 3 When every page changes at some points of
time, every page is eventually downloaded. �

Proof The proof is straightforward. Let us select a ran-
dom page that belongs to site Si. Because every page
changes, there exists a time t where all pages in Si have
changed. Then, in the download cycle after t, the site Si

will be downloaded under the greedy policy, because all
sample pages in Si have changed. �

