
Organizing User Search Histories
Heasoo Hwang, Hady W. Lauw, Lise Getoor, and Alexandros Ntoulas

Abstract—Users are increasingly pursuing complex task-oriented goals on the web, such as making travel arrangements, managing

finances, or planning purchases. To this end, they usually break down the tasks into a few codependent steps and issue multiple

queries around these steps repeatedly over long periods of time. To better support users in their long-term information quests on the

web, search engines keep track of their queries and clicks while searching online. In this paper, we study the problem of organizing a

user’s historical queries into groups in a dynamic and automated fashion. Automatically identifying query groups is helpful for a number

of different search engine components and applications, such as query suggestions, result ranking, query alterations, sessionization,

and collaborative search. In our approach, we go beyond approaches that rely on textual similarity or time thresholds, and we propose

a more robust approach that leverages search query logs. We experimentally study the performance of different techniques, and

showcase their potential, especially when combined together.

Index Terms—User history, search history, query clustering, query reformulation, click graph, task identification.

Ç

1 INTRODUCTION

AS the size and richness of information on the web grows,
so does the variety and the complexity of tasks that

users try to accomplish online. Users are no longer content
with issuing simple navigational queries. Various studies on
query logs (e.g., Yahoo’s [1] and AltaVista’s [2]) reveal that
only about 20 percent of queries are navigational. The rest are
informational or transactional in nature. This is because
users now pursue much broader informational and task-
oriented goals such as arranging for future travel, managing
their finances, or planning their purchase decisions. How-
ever, the primary means of accessing information online is
still through keyword queries to a search engine. A complex
task such as travel arrangement has to be broken down into a
number of codependent steps over a period of time. For
instance, a user may first search on possible destinations,
timeline, events, etc. After deciding when and where to go,
the user may then search for the most suitable arrangements
for air tickets, rental cars, lodging, meals, etc. Each step
requires one or more queries, and each query results in one or
more clicks on relevant pages.

One important step toward enabling services and
features that can help users during their complex search
quests online is the capability to identify and group related
queries together. Recently, some of the major search engines

have introduced a new “Search History” feature, which
allows users to track their online searches by recording their
queries and clicks. For example, Fig. 1 illustrates a portion
of a user’s history as it is shown by the Bing search engine
on February of 2010. This history includes a sequence of
four queries displayed in reverse chronological order
together with their corresponding clicks. In addition to
viewing their search history, users can manipulate it by
manually editing and organizing related queries and clicks
into groups, or by sharing them with their friends. While
these features are helpful, the manual efforts involved can
be disruptive and will be untenable as the search history
gets longer over time.

In fact, identifying groups of related queries has
applications beyond helping the users to make sense and
keep track of queries and clicks in their search history. First
and foremost, query grouping allows the search engine to
better understand a user’s session and potentially tailor that
user’s search experience according to her needs. Once query
groups have been identified, search engines can have a
good representation of the search context behind the
current query using queries and clicks in the corresponding
query group. This will help to improve the quality of key
components of search engines such as query suggestions,
result ranking, query alterations, sessionization, and colla-
borative search. For example, if a search engine knows that
a current query “financial statement” belongs to a {“bank of
america,” “financial statement”} query group, it can boost
the rank of the page that provides information about how to
get a Bank of America statement instead of the Wikipedia
article on “financial statement,” or the pages related to
financial statements from other banks.

Query grouping can also assist other users by promoting
task-level collaborative search. For instance, given a set of
query groups created by expert users, we can select the ones
that are highly relevant to the current user’s query activity
and recommend them to her. Explicit collaborative search
can also be performed by allowing users in a trusted
community to find, share and merge relevant query groups
to perform larger, long-term tasks on the web.

912 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 5, MAY 2012

. H. Hwang is with the Samsung Advanced Institute of Technology,
Yongin-si, Gyeonggi-do 446-712, South Korea.
E-mail: heasooh@gmail.com.

. H.W. Lauw is with the Institute for Infocomm Research, 1 Fusionopolis
Way, #21-01 Connexis (South Tower), Singapore 138632.
E-mail: hwlauw@i2r.a-star.edu.sg.

. L. Getoor is with the Department of Computer Science, University of
Maryland, AV Williams Bldg, Rm 3217 College Park, MD 20742.
E-mail: getoor@cs.umd.edu.

. A. Ntoulas is with the Microsoft Research, Silicon Valley, 1065 La Avenida
St, SVC-6/1040, Mountain View, CA 94043.
E-mail: antoulas@microsoft.com.

Manuscript received 20 Mar. 2010; revised 4 Oct. 2010; accepted 12 Nov.
2010; published online 21 Dec. 2010.
Recommended for acceptance by R. Kumar.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2010-03-0169.
Digital Object Identifier no. 10.1109/TKDE.2010.251.

1041-4347/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

In this paper, we study the problem of organizing a user’s
search history into a set of query groups in an automated and
dynamic fashion. Each query group is a collection of queries
by the same user that are relevant to each other around a
common information need. These query groups are dyna-
mically updated as the user issues new queries, and new
query groups may be created over time. To better illustrate
our goal, we show in Fig. 2a a set of queries from the activity
of a real user on the Bing search engine over the period of one
day, together with the corresponding query groups in

Fig. 2b: the first query group contains all the queries that
are related to saturn automobiles. The other groups,
respectively, pertain to barbados vacation, sprint phone,
financials, and Wii game console.

Organizing the query groups within a user’s history is
challenging for a number of reasons. First, related queries
may not appear close to one another, as a search task may
span days or even weeks. This is further complicated by the
interleaving of queries and clicks from different search tasks
due to users’ multitasking [3], opening multiple browser
tabs, and frequently changing search topics. For instance, in
Fig. 2a, the related queries “hybrid saturn vue” and “saturn
dealers” are separated by many unrelated queries. This
limits the effectiveness of approaches relying on time or
sequence to identify related queries. Second, related queries
may not be textually similar. For example, in Fig. 2b, the
related queries “tripadvisor barbados” and “caribbean
cruise” in Group 2 have no words in common. Therefore,
relying solely on string similarity is also insufficient.
Finally, as users may also manually alter their respective
query groups, any automated query grouping has to respect
the manual efforts or edits by the users.

To achieve more effective and robust query grouping, we
do not rely solely on textual or temporal properties of
queries. Instead, we leverage search behavioral data as
captured within a commercial search engine’s log. In
particular, we develop an online query grouping method
over the query fusion graph that combines a probabilistic
query reformulation graph, which captures the relationship
between queries frequently issued together by the users, and
a query click graph, which captures the relationship between
queries frequently leading to clicks on similar URLs. Related
to our problem, are the problems of session identification [4],
[5] and query clustering [6], [7] that have also used similar
graphs in the past. We extend previous work in two ways.
First, we use information from both the query reformulation
graph and the query click graph in order to better capture

HWANG ET AL.: ORGANIZING USER SEARCH HISTORIES 913

Fig. 2. Search history of a real user over the period of one day together with the query groups.

Fig. 1. Example of search history feature in Bing.

various important signals of query relevance. Second, we
follow an unsupervised approach where we do not require
training data to bootstrap our model.

In this paper, we make the following contributions:

. We motivate and propose a method to perform

query grouping in a dynamic fashion. Our goal is to

ensure good performance while avoiding disruption
of existing user-defined query groups.

. We investigate how signals from search logs such as
query reformulations and clicks can be used together

to determine the relevance among query groups. We

study two potential ways of using clicks in order to

enhance this process: 1) by fusing the query

reformulation graph and the query click graph into

a single graph that we refer to as the query fusion

graph, and 2) by expanding the query set when

computing relevance to also include other queries
with similar clicked URLs.

. We show through comprehensive experimental
evaluation the effectiveness and the robustness of
our proposed search log-based method, especially
when combined with approaches using other signals
such as text similarity.

The rest of the paper is organized as follows. In Section 2,

we state the goal of our paper, identifying query groups in a

search history, and provide an overview of our solution. In

Section 3, we discuss how we can construct the query

reformulation graph and the query click graph from search

logs, and how to use them to determine relevance between

queries or query groups within a user’s history. In Section 4,

we describe our algorithm to perform query grouping using

the notion of relevance based on search logs. In Section 5,

we present our experimental evaluation results. In Section

6, we review the related work and we conclude with a

discussion on our results and future research directions in

Section 7.

2 PRELIMINARIES

2.1 Goal

Our goal is to automatically organize a user’s search history
into query groups, each containing one or more related
queries and their corresponding clicks. Each query group
corresponds to an atomic information need that may
require a small number of queries and clicks related to
the same search goal. For example, in the case of
navigational queries, a query group may involve as few
as one query and one click (e.g., “cnn” and www.cnn.com).
For broader informational queries, a query group may
involve a few queries and clicks (e.g., Group 5 queries in
Fig. 2b are all about where to buy Wii console and games).
This definition of query groups follows closely the defini-
tion of search goals given in [4].

Definition 2.1 (Query Group). A query group is an ordered
list of queries, qi, together with the corresponding set of clicked
URLs, clki of qi. A query group is denoted as s ¼ hfq1;
clk1g; . . . ; fqk; clkkgi.

The specific formulation of our problem is as follows:

. Given: a set of existing query groups of a user, S ¼
fs1; s2; . . . ; sng, and her current query and clicks,
fqc; clkcg,

. Find: the query group for fqc; clkcg, which is either
one of the existing query groups in S that it is most
related to, or a new query group sc ¼ fqc; clkcg if
there does not exist a query group in S that is
sufficiently related to fqc; clkcg.

Below, we will motivate the dynamic nature of this
formulation, and give an overview of the solution. The core
of the solution is a measure of relevance between two
queries (or query groups). We will further motivate the
need to go beyond baseline relevance measures that rely on
time or text, and instead propose a relevance measure based
on signals from search logs.

2.2 Dynamic Query Grouping

One approach to the identification of query groups is to first
treat every query in a user’s history as a singleton query
group, and then merge these singleton query groups in an
iterative fashion (in a k-means or agglomerative way [8]).
However, this is impractical in our scenario for two reasons.
First, it may have the undesirable effect of changing a user’s
existing query groups, potentially undoing the user’s own
manual efforts in organizing her history. Second, it involves
a high-computational cost, since we would have to repeat a
large number of query group similarity computations for
every new query.

As in online clustering algorithms [9], we perform the
grouping in a similar dynamic fashion, whereby we first
place the current query and clicks into a singleton query
group sc ¼ fqc; clkcg, and then compare it with each existing
query group si within a user’s history (i.e., si 2 S). The
overall process of identifying query groups is presented in
Fig. 3. Given sc, we determine if there are existing query
groups sufficiently relevant to sc. If so, we merge sc with the
query group s having the highest similarity �max above or
equal to the threshold �sim. Otherwise, we keep sc as a new
singleton query group and insert it into S.

914 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 5, MAY 2012

Fig. 3. Algorithm for selecting the query group that is the most similar to
the given query and clicked URLs.

2.3 Query (or Query Group) Relevance

To ensure that each query group contains closely related
and relevant queries and clicks, it is important to have a
suitable relevance measure sim between the current query
singleton group sc and an existing query group si 2 S. There
are a number of possible approaches to determine the
relevance between sc and si. Below, we outline a number of
different relevance metrics that we will later use as baselines
in experiments (see Section 5). We will also discuss the pros
and cons of such metrics as well as our proposed approach
of using search logs (see Section 3).

Time. One may assume that sc and si are somehow
relevant if the queries appear close to each other in time in
the user’s history. In other words, we assume that users
generally issue very similar queries and clicks within a
short period of time. In this case, we define the following
time-based relevance metric simtime that can be used in
place of sim in Fig. 3.

Definition 2.2 (Time). simtimeðsc; siÞ is defined as the inverse
of the time interval (e.g., in seconds) between the times that qc
and qi are issued, as follows:

simtimeðsc; siÞ ¼
1

jtimeðqcÞ � timeðqiÞj
:

The queries qc and qi are the most recent queries in sc and si,
respectively. Higher simtime values imply that the queries are
temporally closer.

Text. On a different note, we may assume that two
query groups are similar if their queries are textually
similar. Textual similarity between two sets of words can
be measured by metrics such as the fraction of overlapping
words (Jaccard similarity [10]) or characters (Levenshtein
similarity [11]). We can thus define the following two text-
based relevance metrics that can be used in place of sim in
Fig. 3.

Definition 2.3 (Jaccard). simjaccardðsc; siÞ is defined as the
fraction of common words between qc and qi as follows:

simjaccardðsc; siÞ ¼
jwordsðqcÞ \ wordsðqiÞj
jwordsðqcÞ [wordsðqiÞj

:

Definition 2.4 (Levenshtein). simeditðsc; siÞ is defined as
1� disteditðqc; qiÞ. The edit distance distedit is the number of
character insertions, deletions, or substitutions required to
transform one sequence of characters into another, normalized
by the length of the longer character sequence (see [11] for
more details.)

Although the above time-based and text-based relevance
metrics may work well in some cases, they cannot capture
certain aspects of query similarity. For instance, simtime

assumes that a query is always followed by a related query.
However, this may not be the case when the user is
multitasking (i.e., having more than one tabs open in her
browser, or digressing to an irrelevant topic and then
resuming her searches). Similarly, the text-based metrics,
simjaccard and simedit, can capture the relevance between
query groups around textually similar queries such as

“ipod” and “apple ipod,” but will fail to identify relevant
query groups around queries such as “ipod” and “apple
store,” since they are not textually similar. Additionally, the
text-based metrics may mistakenly identify query groups
around, say, “jaguar car manufacturer” and “jaguar animal
reserve” as relevant, since they share some common text.

Therefore, we need a relevance measure that is robust
enough to identify similar query groups beyond the
approaches that simply rely on the textual content of
queries or time interval between them. Our approach makes
use of search logs in order to determine the relevance
between query groups more effectively. In fact, the search
history of a large number of users contains signals
regarding query relevance, such as which queries tend to
be issued closely together (query reformulations), and
which queries tend to lead to clicks on similar URLs (query
clicks). Such signals are user generated and are likely to be
more robust, especially when considered at scale. We
suggest measuring the relevance between query groups
by exploiting the query logs and the click logs simulta-
neously. We will discuss our proposed relevance measure
in greater detail in Sections 3 and 4.

In fact, the idea of making use of signals in query logs to
measure similarity between queries has been explored in
previous work, although not to the same extent as our
proposed approach. Here, we outline two such methods,
Co-Retrieval (CoR) and Asymmetric Traveler Salesman
Problem (ATSP), which will also be compared against in
our experimental section (see Section 5).

CoR. CoR is based on the principle that a pair of queries
are similar if they tend to retrieve similar pages on a search
engine. This approach is similar to the ones discussed in
[12], [13].

Definition 2.5 (CoR). simcorðsc; siÞ is the Jaccard coefficient of
qc’s set of retrieved pages retrievedðqcÞ and qi’s set of retrieved
pages retrievedðqiÞ and is defined as:

simcorðsc; siÞ ¼
jretrievedðqcÞ \ retrievedðqiÞj
jretrievedðqcÞ [retrievedðqiÞj

:

Unlike [12] which relies on textual comparison, we
compare two queries based on the overlap in pages
retrieved. We consider a page to be retrieved by a search
engine if it has not only been shown to some users, but has
also been clicked at least once in the past one year. Notice
that this is a stronger definition that favors CoR as a
baseline because of the relevance signals in the form of
clicks. Differently from our approach, CoR makes use of
neither reformulation signals (whether one query fre-
quently follows another) nor click signals (whether queries
frequently lead to clicks on similar pages).

ATSP. This technique is based on the principle that two
queries issued in succession in the search logs are closely
related. In [5], the authors present a solution that first
reorders a sequence of user queries to group similar queries
together by solving an instance of the ATSP. Once the
queries are reordered, query groups are generated by
determining “cut points” in the chain of queries, i.e., two
successive queries whose similarity is less than a threshold
�. Note that ATSP needs to operate on the whole set of

HWANG ET AL.: ORGANIZING USER SEARCH HISTORIES 915

queries that we are interested in grouping as it involves an
initial reordering step.

Definition 2.6 (ATSP). simATSP ðsc; siÞ is defined as the
number of times two queries, qc and qi, appear in succession
in the search logs over the number of times qc appears. More
formally

simATSP ðsc; siÞ ¼
freqðqc; qiÞ
freqðqcÞ

:

In our work we consider both query pairs having
common clicked URLs and the query reformulations
through a combined query fusion graph.

3 QUERY RELEVANCE USING SEARCH LOGS

We now develop the machinery to define the query relevance
based on web search logs. Our measure of relevance is
aimed at capturing two important properties of relevant
queries, namely: 1) queries that frequently appear together
as reformulations and 2) queries that have induced the
users to click on similar sets of pages. We start our
discussion by introducing three search behavior graphs
that capture the aforementioned properties. Following that,
we show how we can use these graphs to compute query
relevance and how we can incorporate the clicks following a
user’s query in order to enhance our relevance metric.

3.1 Search Behavior Graphs

We derive three types of graphs from the search logs of a
commercial search engine. The query reformulation graph,
QRG, represents the relationship between a pair of queries
that are likely reformulations of each other. The query click
graph, QCG, represents the relationship between two queries
that frequently lead to clicks on similar URLs. The query
fusion graph, QFG, merges the information in the previous
two graphs. All three graphs are defined over the same set
of vertices VQ, consisting of queries which appear in at least
one of the graphs, but their edges are defined differently.

3.1.1 Query Reformulation Graph

One way to identify relevant queries is to consider query
reformulations that are typically found within the query logs
of a search engine. If two queries that are issued consecu-
tively by many users occur frequently enough, they are
likely to be reformulations of each other. To measure the
relevance between two queries issued by a user, the time-
based metric, simtime, makes use of the interval between the
timestamps of the queries within the user’s search history. In
contrast, our approach is defined by the statistical frequency
with which two queries appear next to each other in the
entire query log, over all of the users of the system.

To this end, based on the query logs, we construct the
query reformulation graph, QRG ¼ ðVQ; EQRÞ, whose set of
edges, EQR, are constructed as follows: for each query pair
ðqi; qjÞ, where qi is issued before qj within a user’s day of
activity, we count the number of such occurrences across all
users’ daily activities in the query logs, denoted
countrðqi; qjÞ. Assuming infrequent query pairs are not
good reformulations of each other, we filter out infrequent
pairs and include only the query pairs whose counts exceed

a threshold value, �r. For each ðqi; qjÞwith countrðqi; qjÞ � �r,
we add a directed edge from qi to qj to EQR. The edge

weight, wrðqi; qjÞ, is defined as the normalized count of the

query transitions

wrðqi; qjÞ :¼ countrðqi; qjÞP
ðqi;qkÞ2EQR countrðqi; qkÞ

:

3.1.2 Query Click Graph

A different way to capture relevant queries from the search
logs is to consider queries that are likely to induce users to

click frequently on the same set of URLs. For example,

although the queries “ipod” and “apple store” do not share
any text or appear temporally close in a user’s search

history, they are relevant because they are likely to have

resulted in clicks about the ipod product. In order to
capture such property of relevant queries, we construct a

graph called the query click graph, QCG.
We first start by considering a bipartite click-through

graph, CG ¼ ðVQ [VU ; ECÞ, used by Fuxman et al. [14]. CG has
two distinct sets of nodes corresponding to queries, VQ, and

URLs, VU , extracted from the click logs. There is an edge

ðqi; ukÞ 2 EC, if query qi was issued and URL uk was clicked
by some users. We weight each edge ðqi; ukÞ by the number

of times qi was issued and uk was clicked, countcðqi; ukÞ. As

before, we filter out infrequent pairs using a threshold �c. In
this way, using the CG, we identify pairs of queries that

frequently lead to clicks on similar URLs.
Next, from CG, we derive our query click graph,

QCG ¼ ðVQ; EQCÞ, where the vertices are the queries, and a
directed edge from qi to qj exists if there exists at least one

URL, uk, that both qi and qj link to in CG. The weight of edge

ðqi; qjÞ in QCG, wcðqi; qjÞ, is defined as the weighted
asymmetric Jaccard similarity [10] as follows:

wcðqi; qjÞ ¼
P

uk
minðcountcðqi; ukÞ; countcðqj; ukÞÞP

uk
countcðqi; ukÞ

:

This captures the intuition that qj is more related to qi if more
of qi’s clicks fall on the URLs that are also clicked for qj.

3.1.3 Query Fusion Graph

The query reformulation graph, QRG, and the query click

graph, QCG, capture two important properties of relevant
queries, respectively. In order to make more effective use of

both properties, we combine the query reformulation

information within QRG and the query-click information
within QCG into a single graph, QFG ¼ ðVQ; EQF Þ, that we

refer to as the query fusion graph. At a high level, EQF
contains the set of edges that exist in either EQR or EQC. The
weight of edge ðqi; qjÞ in QFG, wfðqi; qjÞ, is taken to be a

linear sum of the edge’s weights, wrðqi; qjÞ in EQR and

wcðqi; qjÞ in EQC, as follows:

wfðqi; qjÞ ¼ �� wrðqi; qjÞ þ ð1� �Þ � wcðqi; qjÞ:

The relative contribution of the two weights is controlled by

�, and we denote a query fusion graph constructed with a
particular value of � as QFGð�Þ. The effects of varying � is

explored further in Section 5.

916 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 5, MAY 2012

3.2 Computing Query Relevance

Having introduced the search behavior graphs in the
previous section, we now compute the relevance between
two queries. More specifically, for a given user query q, we
compute a relevance vector using QFG, where each entry
corresponds to the relevance value of each query qj 2 VQ to q.

The edges in QFG correspond to pairs of relevant
queries extracted from the query logs and the click logs.
However, it is not sufficiently effective to use the pairwise
relevance values directly expressed in QFG as our query
relevance scores. Let us consider a vector rq, where each
entry, rqðqjÞ, is wfðq; qjÞ if there exists an edge from q to qj in
QFG, and 0 otherwise. One straightforward approach for
computing the relevance of qj to q is to use this rqðqjÞ value.
However, although this may work well in some cases, it will
fail to capture relevant queries that are not directly
connected in QFG (and thus rqðqjÞ ¼ 0).

Therefore, for a given query q, we suggest a more generic
approach of obtaining query relevance by defining a
Markov chain for q, MCq, over the given graph, QFG, and
computing the stationary distribution of the chain. We refer
to this stationary distribution as the fusion relevance vector of
q, relFq , and use it as a measure of query relevance
throughout this paper.

In a typical scenario, the stationary probability distribu-
tion of MCq can be estimated using the matrix multi-
plication method, where the matrix corresponding to MCq
is multiplied by itself iteratively until the resulting matrix
reaches a fixpoint. However, given our setting of having
thousands of users issuing queries and clicks in real time
and the huge size of QFG, it is infeasible to perform the
expensive matrix multiplication to compute the stationary
distribution whenever a new query comes in. Instead, we
pick the most efficient Monte Carlo random walk simula-
tion method among the ones presented in [15], and use it on
QFG to approximate the stationary distribution for q. Fig. 4
outlines our algorithm.

The algorithm in Fig. 4 computes the fusion relevance
vector of a given query q, relFq . It requires the following
inputs in addition to QFG. First, we introduce a jump

vector of q, gq, that specifies the probability that a query is
selected as a starting point of a random walk. Since we set
gqðq0Þ to 1 if q0 ¼ q, and 0 otherwise, q will always be
selected; in the next section we will generalize gq to have
multiple starting points by considering both q and the clicks
for q. A damping factor, d2 ½0; 1� (similar to the original
PageRank algorithm [16]), determines the probability of
random walk restart at each node.

Two additional inputs control the accuracy and the
time budget of the random walk simulation: the total
number of random walks, numRWs, and the size of
neighborhood explored, maxHops. As numRWs increases,
the approximation accuracy of the fusion relevance vector
improves by the law of large numbers. We limit the
length of each random walk to maxHops, assuming that a
transition from q to q0 is very unlikely if no user in the
search logs followed q by q0 in less than maxHops
number of intermediate queries. In practice, we typically
use numRWs ¼ 1;000;000 and maxHops ¼ 5, but we can
reduce the number of random walk samples or the
lengths of random walks by decreasing both parameters
for a faster computation of relFq .

The random walk simulation then proceeds as follows:
we use the jump vector gq to pick the random walk starting
point. At each node v, for a given damping factor d, the
random walk either continues by following one of the
outgoing edges of v with a probability of d, or stops and
restarts at one of the starting points in gq with a probability
of ð1� dÞ. Then, each outgoing edge, ðv; qiÞ, is selected with
probability wfðv; qiÞ, and the random walk always restarts if
v has no outgoing edge. The selection of the next node to
visit based on the outgoing edges of the current node v in
QFG and the damping factor d is performed by the
SelectNextNodeToV isit process in Step (7) of the algorithm,
which is illustrated in Fig. 5. Notice that each random walk
simulation is independent of another, so can be parallelized.

After simulating numRWs random walks on the QFG
starting from the node corresponding to the given query q,
we normalize the number of visits of each node by the
number of all the visits, finally obtaining relFq , the fusion
relevance vector of q. Each entry of the vector, relFq ðq0Þ,
corresponds to the fusion relevance score of a query q0 2 VQ
to the given query q. It is the probability that q0 node is visited
along a random walk originated from q node over the QFG.

Lastly, we show that there exists a unique fusion
relevance vector of a given query q, relFq . It is well known

HWANG ET AL.: ORGANIZING USER SEARCH HISTORIES 917

Fig. 4. Algorithm for calculating the query relevance by simulating
random walks over the query fusion graph.

Fig. 5. Algorithm for selecting the next node to visit.

that for a finite ergodic Markov chain, there exists a unique
stationary distribution. In fact, the random walk simulation
algorithm described in Fig. 4 approximates relFq that
corresponds to the stationary distribution of the Markov
chain for q, MCq. To prove the uniqueness of relFq , it is
sufficient to show that MCq is ergodic.

Given a query q and a damping factor d, the Markov
chain for q, MCq, is defined as follows: first, the finite state
space ofMCq, denoted �q, contains all the queries reachable
from the given query q in QFG (�q � VQ). Then, we define
the transition matrix of MCq. For each state qi and qj in �q,
the transition probability from state qi to state qj,
MCqðqi; qjÞ, is defined as

MCqðqi; qjÞ ¼
d � wfðqi; qjÞ if qj 6¼ q;
d � wfðqi; qjÞ þ ð1� dÞ if qj ¼ q:

�

If qi has no outgoing edge in QFG, we setMCqðqi; qjÞ to 1
for the next state qj ¼ q and 0 otherwise. Also note that if qi
and qj are not directly connected in QFG, wfðqi; qjÞ ¼ 0. As
in Boldi et al. [17], we assume that the transition matrix of
MCq is aperiodic. Also, each state in �q has a positive
transition probability to state q (actually, MCqðqi; qÞ �
1� d8qi 2 �q), so any state in MCq can reach any other
state in MCq through state q. Thus, MCq is ergodic, which
guarantees the existence of unique stationary distribution of
MCq. However, we want to mention that MCq is a
conceptual model, and we do not materializeMCq for each
query q in QFG to calculate relFq in practice. Instead, for a
given query q, we simply adjust edge weights in QFG
accordingly, and set state q as the start state of every
random walk to ensure that only states of MCq among
nodes in QFG are visited.

3.3 Incorporating Current Clicks

In addition to query reformulations, user activities also
include clicks on the URLs following each query submis-
sion. The clicks of a user may further help us infer her
search interests behind a query q and thus identify queries
and query groups relevant to q more effectively. In this
section, we explain how we can use the click information of
the current user to expand the random walk process to
improve our query relevance estimates. Note that the
approach we introduce in this section is independent of
modeling the query click information asQCG in Section 3.1.2
to build QFG. Here, we use clicks of the current user to
better understand her search intent behind the currently
issued query, while clicks of massive users in the click logs
are aggregated into QCG to capture the degree of relevance
of query pairs through commonly clicked URLs.

We give a motivating example that illustrates why it
may be helpful to take into account clicked URLs of q to
compute the query relevance. Let us consider that a user
submitted a query “jaguar.” If we compute the relevance
scores of each query in VQ with respect to the given query
only, both the queries related to the car “jaguar” and those
related to the animal “jaguar” get high fusion relevance
scores. This happens because we do not know the actual
search interest of the current user when she issues the
query “jaguar.” However, if we know the URLs clicked by
the current user following the query “jaguar” (e.g., the

Wikipedia article on animal “jaguar”), we can infer the
search interest behind the current query and assign query
relevance scores to queries in VQ accordingly. In this way,
by making use of the clicks, we can give much higher query
relevance scores to queries related to “animal jaguar” than
those related to “car jaguar.” This idea of biasing the
random walks toward a certain subset of the graph nodes is
similar in spirit to topic-sensitive PageRank [18].

We now describe how we use the clicked URLs by the
current user together with the given query q to better capture
her search intent. First, we identify the set of URLs, clk, that
were clicked by the current user after issuing q. Then, we use
clk and the click-through graph CG to expand the space of
queries considered when we compute the fusion relevance
vector of q. Unlike the jump vector gq in Section 3.2 that
reflects the given query q only, we now consider both q and
clk together when we set a new jump vector.

Given q and clk, we employ a click jump vector, gclk, that
represents the queries in CG that have also induced clicks to
the URLs within clk. Each entry in gclk, gclkðqiÞ, corresponds
to the relevance of query qi to the URLs in clk. Using CG, we
define gclk as the proportion of the number of clicks to clk
induced by qi (qi 2 VQ n fqg) to the total number of clicks to
clk induced by all the queries in VQ n fqg

gclkðqiÞ :¼
P

uk2clk countcðqi; ukÞP
qj2VQ;qj 6¼q

P
uk2clk countcðqj; ukÞ

:

Since the given query q is already captured in gq, we set the
entry in gclk corresponding to q to 0 (gclkðqÞ ¼ 0).

Now, we introduce a new jump vector gðq;clkÞ that
considers both q and clk by incorporating gclk that biases
the random jump probabilities toward queries related to the
clicks, clk. In particular, we combine gq and gclk by defining
gðq;clkÞ as the weighted sum of gq in Section 3.2 and the click
jump vector gclk. We control the importance of query and
click by using wquery and wclick (wquery þ wclick ¼ 1), thus
gðq;clkÞðqÞ ¼ wquery and gðq;clkÞðq0Þ ¼ wclick � gclkðq0Þ for every
query q0 2 VQ n fqg. Once gðq;clkÞ is set, we simulate random
walks and estimate the fusion relevance vector in a similar
way as before, with one difference. Notice that in Section 3.2,
when calculating relFq , all the random walks start from the
node corresponding to q, because gqðqÞ is the only nonzero
entry in the jump vector gq (gqðqÞ ¼ 1). Now, however, the
random walk simulation can start from any query node q0 for
which gðq;clkÞðq0Þ > 0, with a probability of gðq;clkÞðq0Þ. We
denote this alternate query fusion vector obtained from
gðq;clkÞ as relFðq;clkÞ.

In the following sections, fusion relevance vectors, relFq
and relFðq;clkÞ, are referred to as relq and relðq;clkÞ, respec-
tively, assuming that we, by default, use the query fusion
graphQFG, notQRG or QCG, to compute relevance vectors.

4 QUERY GROUPING USING THE QFG
In this section, we outline our proposed similarity function
simrel to be used in the online query grouping process
outlined in Section 2. For each query, we maintain a query
image, which represents the relevance of other queries to this
query. For each query group, we maintain a context vector,
which aggregates the images of its member queries to form

918 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 5, MAY 2012

an overall representation. We then propose a similarity
function simrel for two query groups based on these concepts
of context vectors and query images. Note that our proposed
definitions of query reformulation graph, query images, and
context vectors are crucial ingredients, which lend signifi-
cant novelty to the Markov chain process for determining
relevance between queries and query groups.

Context Vector. For each query group, we maintain a
context vector which is used to compute the similarity
between the query group and the user’s latest singleton
query group. The context vector for a query group s, denoted
cxts, contains the relevance scores of each query in VQ to
the query group s, and is obtained by aggregating the
fusion relevance vectors of the queries and clicks in s. If s is
a singleton query group containing only fqs1

; clks1
g, it is

defined as the fusion relevance vector relðqs1
;clks1

Þ. For a
query group s ¼ hfqs1

; clks1
g; . . . ; fqsk ; clkskgi with k > 1,

there are a number of different ways to define cxts. For
instance, we can define it as the fusion relevance vector of
the most recently added query and clicks, relðqsk

;clksk
Þ. Other

possibilities include the average or the weighted sum of all
the fusion relevance vectors of the queries and clicks in the
query group. In our experiments, we calculate the context
vector of a query group s by weighting the queries and the
clicks in s by recency, as follows:

cxts ¼ wrecency
Xk
j¼1

ð1� wrecencyÞk�jrelðqsj
;clksj

Þ:

Note that if fqsk ; clkskg are the most recent query and clicks
added to the query group, this can be rewritten

cxts ¼ wrecency � relðqsk
;clksk

Þ þ ð1� wrecencyÞcxts0 ;

where s0 ¼ hfqs1
; clks1

g; . . . ; fqsk�1
; clksk�1

gi. In our implemen-
tation we used wrecency ¼ 0:3.

Query Image. The fusion relevance vector of a given
query q, relq, captures the degree of relevance of each query
q0 2 VQ to q. However, we observed that it is not effective or
robust to use relq itself as a relevance measure for our
online query grouping. For instance, let us consider two
relevant queries, “financial statement” (“fs”) and “bank of
america” (“boa”), in Fig. 2b. We may use the relevance
value in the fusion relevance vectors, rel}fs}ð}boa}Þ or
rel}boa}ð}fs}Þ. Usually, however, it is a very tiny number
that does not comprehensively express the relevance of the
search tasks of the queries, thus is not an adequate
relevance measure for an effective and robust online query
grouping. Instead, we want to capture the fact that both
queries highly pertain to financials.

To this end, we introduce a new concept, the image of q,
denoted IðqÞ, that expresses q as the set of queries in VQ that
are considered highly relevant to q. We generate IðqÞ by
including every query q0 whose relevance value to q,
relqðq0Þ, is within top-X percentage. To do this, we sort
the queries by relevance, and find the cutoff such that the
sum of the relevance values of the most relevant queries
accounts for X% of the total probability mass. We break ties
randomly. In our experiments, X ¼ 99%. We found that
even with this high percentage, the size of the image of the
query is typically very small compared to the total number
of possible queries in QFG. The image of a query group s,

IðsÞ, is defined in the same way as IðqÞ except that the
context vector of s, cxts, is used in the place of relðq;clkÞ.

Now, we define the relevance metric for query groups,
simrel (2 ½0; 1�), based on QFG. Two query groups are
similar if their common image occupies high probability
mass in both of the context vectors of the query groups. We
use the above definitions of context vector and query image
to capture this intuition.

Definition 4.1. simrelðs1; s2Þ, the relevance between two query
groups s1 and s2, is defined as follows:

simrelðs1; s2Þ ¼
X

q2Iðs1Þ\Iðs2Þ
cxts1

ðqÞ �
X

q2Iðs1Þ\Iðs2Þ
cxts2

ðqÞ:

Then, the relevance between the user’s latest singleton
query group sc ¼ fqc; clkcg and an existing query group si 2
S will be

simrelðsc; siÞ ¼
X

q2IðscÞ\IðsiÞ
relðqc;clkcÞðqÞ �

X
q2IðscÞ\IðsiÞ

cxtsi
ðqÞ:

The relevance metric simrel is used in the Step (5) of the
algorithm in Fig. 3 in place of sim. In this way, the latest
singleton query group sc will be attached to the query
group s that has the highest similarity simrel.

Online Query Grouping. The similarity metric that we
described in Definition 4.1 operates on the images of a
query and a query group. Some applications such as query
suggestion may be facilitated by fast on-the-fly grouping of
user queries. For such applications, we can avoid perform-
ing the random walk computation of fusion relevance
vector for every new query in real time, and instead
precompute and cache these vectors for some queries in our
graph. This works especially well for the popular queries. In
this case, we are essentially trading-off disk storage for
runtime performance. We estimate that to cache the fusion
relevance vectors of 100 million queries, we would require
disk storage space in the hundreds of gigabytes. This
additional storage space is insignificant relative to the
overall storage requirement of a search engine. Meanwhile,
retrieval of fusion relevance vectors from the cache can be
done in milliseconds. Hence, for the remainder of this
paper, we will focus on evaluating the effectiveness of the
proposed algorithms in capturing query relevance.

5 EXPERIMENTS

5.1 Experimental Setup

In this section, we study the behavior and performance of our
algorithms on partitioning a user’s query history into one or
more groups of related queries. For example, for the sequence
of queries “caribbean cruise”; “bank of america”; “expedia”;
“financial statement”, we would expect two output parti-
tions: first, {“caribbean cruise,” “expedia”} pertaining to
travel-related queries, and, second, {“bank of america,”
“financial statement”} pertaining to money-related queries.

Data. To this end, we obtained the query reformulation
and query click graphs by merging a number of monthly
search logs from a commercial search engine. Each monthly
snapshot of the query log adds approximately 24 percent
new nodes and edges in the graph compared to the exactly
preceding monthly snapshot, while approximately 92 per-

HWANG ET AL.: ORGANIZING USER SEARCH HISTORIES 919

cent of the mass of the graph is obtained by merging nine
monthly snapshots. To reduce the effect of noise and
outliers, we pruned the query reformulation graph by
keeping only query pairs that appeared at least two times
(�q ¼ 2), and the query click graph by keeping only query-
click edges that had at least 10 clicks (�c ¼ 10). This
produced query and click graphs that were 14 and 16
percent smaller compared to their original respective
graphs. Based on these two graphs, we constructed the
query fusion graph as described in Section 3 for various
parameter settings of �.

In order to create test cases for our algorithms, we used
the search activity (comprising at least two queries) of a set
of 200 users (henceforth called the Rand200 data set) from
our search log. To generate this set, users were picked
randomly from our logs, and two human labelers examined
their queries and assigned them to either an existing group
or a new group if the labelers deemed that no related group
was present. A user’s queries were included in the Rand200
data set if both labelers were in agreement in order to reduce
bias and subjectivity while grouping. The labelers were
allowed access to the web in order to determine if two
seemingly distant queries were actually related (e.g.,
“alexander the great” and “gordian knot”). The average
number of groups in the data set was 3.84 with 30 percent of
the users having queries grouped in more than three groups.

Performance Metric. To measure the quality of the
output groupings, for each user, we start by computing
query pairs in the labeled and output groupings. Two
queries form a pair if they belong to the same group, with
lone queries pairing with a special “null” query.

To evaluate the performance of our algorithms against
the groupings produced by the labelers, we will use the
Rand Index [19] metric, which is a commonly employed
measure of similarity between two partitions. The Rand
Index similarity between two partitions X,Y of n elements
each is defined as RandIndexðX;Y Þ ¼ ðaþ bÞ=ðn2Þ, where a
is the number of pairs that are in the same set in X and the
same set in Y , and b is the number of pairs that are in
different sets in x and in different sets in Y . Higher
RandIndex values indicate better ability of grouping related
queries together for a given algorithm.

Default values. In the following, we will study different
aspects of our proposed algorithms. Unless we explicitly
specify differently, we use the following default para-
meters: damping factor d ¼ 0:6, top-X ¼ 99%, � ¼ 0:7, click
importance wclick ¼ 0:2, recency wrecency ¼ 0:3, and similarity
threshold �sim ¼ 0:9. We have picked these values by
repeating a set of experiments with varying values for
these parameters and selecting the ones that would allow
our algorithm to achieve the best performance on Rand200
based on the RandIndex metric. We followed the same
approach for the baselines that we implemented as well. We
will also evaluate the approaches on additional test sets
(Lo100, Me100, Hi100), which will be described later. Since
our method involves a random walk, we also tested for
statistical significance of each configuration across runs.
The results that we present in the remainder of the section
are statistically significant at the 0.001 level according to the
t-test statistical significance test [20] across runs.

5.2 Using Search Logs

As discussed in Section 3, our query grouping algorithm

relies heavily on the use of search logs in two ways: first, to

construct the query fusion graph used in computing query

relevance, and, second, to expand the set of queries

considered when computing query relevance. We start

our experimental evaluation, by investigating how we can

make the most out of the search logs.
In our first experiment, we study how we should combine

the query graphs coming from the query reformulations

and the clicks within our query log. Since combining the

two graphs is captured by the � parameter as we discussed

in Section 3, we evaluated our algorithm over the graphs

that we constructed for increasing values of �. The result is

shown in Fig. 6; the horizontal axis represents � (i.e., how

much weight we give to the query edges coming from the

query reformulation graph), while the vertical axis shows

the performance of our algorithm in terms of the

RandIndex metric. As we can see from the graph, our

algorithm performs best (RandIndex ¼ 0:86) when � is

around 0.7, with the two extremes (only edges from clicks,

i.e., � ¼ 0:0, or only edges from reformulations, i.e., � ¼ 1:0)

performing lower. It is interesting to note that, based on the

shape of the graph, edges coming from query reformula-

tions are deemed to be slightly more helpful compared to

edges from clicks. This is because there are 17 percent fewer

click-based edges than reformulation-based edges, which

means that random walks performed on the query

reformulation graph can identify richer query images as

there are more available paths to follow in the graph.
We now turn to study the effect of expanding the query set

based on the user clicks when computing query relevance.

To this end, we evaluated the performance of our algorithm

for increasing values of click importance ws and we show

the result in Fig. 7. Based on this figure, we observe that, in

general, taking user clicks into account to expand the

considered query set helps to improve performance.

Performance rises up to a point (wclick ¼ 0:3), after which

it starts degrading. At the two extremes (when only queries

from user clicks are used to seed the random walks, i.e.,

ws ¼ 1, or when only the current query is used, i.e.,

wclick ¼ 0, performance is generally lower.

920 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 5, MAY 2012

Fig. 6. Varying mix of query and click graphs.

5.3 Varying the Parameters

Given the previous results on how to utilize the information

from search logs, we now turn to studying the remaining

parameters of our algorithms.
Damping Factor. The damping factor d is the probability

of continuing a random walk, instead of starting over from
one of the query nodes in the jump vector. As shown in Fig. 8,
RandIndex is lower for very low damping factor, increases
together with the damping factor, and maxes out damping
factors between 0.6 and 0.8. This confirms our intuition that

related queries are close to the current query in our query
fusion graph and that they can be captured with short
random walks (small d) from the current query. At the
extreme where damping factor is 0, we observe a lower
performance as the query image is essentially computed on a
random sample from the jump vector without exploiting the
link information of the query fusion graph.

Top-X. Top-X is the fraction of the sum of relevance
scores of related queries that are included in the image of a
query. As Fig. 9 shows, we get better performance for very
high X, such as 0.99. We pick a high X, in order to keep most
of the related queries that can be potential useful for
capturing query similarities. Usually, even though we use a
very high X value such as 0.99, the number of related
queries in a query image is still much smaller than jVQj as

related queries obtain much higher relevance scores than
those of irrelevant ones.

Similarity Threshold. The similarity threshold �sim helps
us determine whether we should start a new group for the
current query or attach to an existing one. We show how
performance varies based on increasing similarity thresholds
in Fig. 10. In general, as the similarity threshold increases, the
RandIndex value becomes higher. This is expected as the
higher the similarity is, the more likely that a session would
include query groups containing highly related queries. A
high threshold is also useful for avoiding the effect of having
unrelated but very popular queries (e.g., “ebay,” “yahoo”)
that may appear frequently as reformulations of each other.
As �sim increases from 0.8 to 1, the RandIndex drops since
such �sim is too strict to group related queries together,
resulting in many small groups.

Recency Weight. We finally study the recency weight
wrecency that affects how much weight we are giving to the
fusion relevance vectors within an existing query group.
Larger values of wrecency mean that we are favoring more the
latest query that was assigned to a given query group. We
show how performance varies based on increasing wrecency
values in Fig. 11. Overall, we observe that we get the best
performance for wrecency values between 0.3 and 0.6.

HWANG ET AL.: ORGANIZING USER SEARCH HISTORIES 921

Fig. 7. Varying the click importance wclick.

Fig. 8. Varying the damping factor d.

Fig. 9. Varying the fraction of related queries in Top-X.

Fig. 10. Varying the similarity threshold �sim.

5.4 Performance Comparison

We now compare the performance of our proposed

methods against five different baselines. For these baselines,

we use the same SelectBestQueryGroup as in Fig. 3 with

varying relevance metrics.
As the first baseline, we use a time-based method

(henceforth referred to as Time) that groups queries based

on whether the time difference between a query and the most

recent previous query is above a threshold. It is essentially the

same as the Time metric introduced in Section 2, except that

instead of measuring similarity as the inverse of the time

interval, we measure the distance in terms of the time interval

(in seconds). Fig. 12 shows the performance of this method for

varying time thresholds (measured in seconds). We will use

600 secs (highest RandIndex value in Fig. 12) as the default

threshold for this method.
The next two baselines are based on text similarity.

Jaccard similarity uses the fraction of overlapping keywords

between two queries, while Levenshtein similarity calculates

the edit distance, normalized by the maximum length of the

two queries being compared. It may capture misspellings

and typographical errors that may elude the word-based

Jaccard. Fig. 13 shows their performance as we vary the

similarity threshold. As with Time, the optimal performance

is reached at an intermediate threshold, 0.1 (default) in the
case of Jaccard, and 0.4 (default) for Levenshtein.

Our last two baselines exploit click and query graphs.
More specifically, we have implemented the coretrieval
baseline (henceforth referred to as CoR) to assign a query to
the group with the highest overlap in the retrieved results,
as described in Section 2. We have also implemented the
method based on the Asymmetric Traveler Salesman
Problem (henceforth referred to as ATSP) as described in
[5]. Since both of these baselines are threshold based, we
study their performance for increasing threshold values in
Fig. 13, and then set the similarity threshold for CoR to 0.7
(default) and for ATSP to 0.7(default).

We compare the baseline methods with our method that
uses the query fusion graph. For our method (denoted as
QFG), we use the default parameters that we specified in
Section 5.1. We report the results on the Rand200 data set in
the first row of Table 1, where we use boldface to denote the
best performance for a data set (we will discuss the
remaining rows in the next section). Overall, Time and
Levenshtein perform worse than the rest of the algorithms.
This is an indication that the queries issued by the users are
interleaved in terms of their topics (hence Time performs
badly) and also that the edit distance between queries is not
able to capture related queries too well. Jaccard is perform-
ing slightly better than these two but it also cannot capture
the groupings very well, with the CoR method coming next.
Finally, our QFG method and the ATSP method perform
the best with QFG performing slightly better than ATSP.

The techniques that we have studied so far fall into
different categories and attempt to capture different aspects
of query similarities; Time simply looks at the time intervals,
Jaccard and Levenshtein exploit textual similarities of queries,

922 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 5, MAY 2012

Fig. 11. Varying the recency weight wrecency.

Fig. 12. Varying the time threshold.

Fig. 13. Varying the similarity threshold.

TABLE 1
Comparative Performance (RandIndex) of Our Methods

Best performance in each data set is shown in bold.

while CoR, ATSP, and QFG use the search logs. Therefore,
given the different natures of these algorithms it is reason-
able to hypothesize that they do well for different kinds of
queries. In particular, since our QFG method relies on the
accurate estimation of a query image within the query
fusion graph, it is expected to perform better when the
estimation was based on more information and is therefore
more accurate. On the other hand, if there are queries that
are rare in the search logs or do not have many outgoing
edges in our graph to facilitate the random walk, the graph-
based techniques may perform worse due to the lack of
edges. We study how the structure of the graph affects the
performance of the algorithms as follows.

5.5 Varying Graph Connectivity

In order to better estimate the query transition probabilities
in our query fusion graph, it is helpful to have as much
usage information encoded in the graph as possible. More
specifically, if the queries within a user’s session are issued
more frequently, they are also more likely to have more
outgoing edges in the graph and thus facilitate the random
walks going out of these queries. At the same time, more
popular queries will have more accurate counts in the graph
and this may lead to higher confidence when we compute
the query images.

To gain a measure of usage information for a given user,
we look at the average outdegree of the user’s queries
(average outdegree), as well as the average counts among
the outgoing links (average weight) in the query reformula-
tion graph. In order to study the effects of usage informa-
tion on the performance of our algorithms, we created three
additional test sets of 100 users each. The sets were also
manually labeled as we described in Section 5.1. The first
set, Lo100 contains the search activity of 100 users, with
average outdegree <5 and average weight <5. Similarly,
Me100 contains user activity for users having 5� average
outdegree <10 and 5� average weight <10, while Hi100
contains user activity with average outdegree �10 and
average weight �10.

Based on these data sets, we evaluate again the perfor-
mance of our algorithms and we show the results in the
bottom three lines of Table 1. As we can see from the table, for
QFG, subsets with higher usage information also tend to
have higher RandIndex values. Hi100 (RandIndex ¼ 0:88)
performs better than Me100 (RandIndex ¼ 0:868), which in
turn outperforms Lo100 (RandIndex ¼ 0:821). ATSP shows a
similar trend (higher usage shows better performance) and it
outperformsQFG at the Lo100 data set. CoR’s performance is
more or less similar for the different data sets which is
expected as it does not use the graphs directly. For Jaccard, it
is most efficient when the connectivity around the queries
within a user’s session is relatively low. We do not observe
any significant difference in the performance of the other
baselines (Time and Levenshtein) in these new data sets.

Overall, we observe that different techniques might be
more appropriate for different degrees of usage information
(and hence connectivity) of the graph. Higher connectivity
implies that the queries are well known and may be well
connected in the graph, while lower connectivity might
imply that the query is new or not very popular. Since our
goal is to have a good performance across the board for all
queries we study the combination of these methods next.

5.6 Combining the Methods

The results of the previous experiment point out the
contrast between the performance of the different methods.
This suggests that a combination of two methods may yield
better performance than either method individually. We
explore combining two methods by merging the output
query groups as follows: given the output groups of any
two methods, query pairs that belong to a group within one
or within the other, will belong to the same group in the
combined output.

Table 2 shows the performance gained by combining
QFG with each baseline. For QFG þ Jaccard and QFG þ
Levenshtein, the combination performs better than the
individual methods. QFG þ Time performs better than Time
but worse than QFG.

Interestingly, for QFG þ Jaccard, we now get a more
consistent performance across the three test sets (Lo100,
Me100, Hi100) at around 0.89. The biggest boost to QFG’s
performance is obtained for Lo100; it is more than for Me100
or Hi100. This result is noteworthy as it implies that the
combination method performs gracefully across queries for
which we may have different usage information in the
graph. Combining QFG with CoR and ATSP improves
slightly their performance but not as much as the combina-
tion of QFG and Jaccard. This is mostly due to the fact that
CoR captures similar information as the click portion of the
QFG, while ATSP captures similar information to the query
reformulation portion of QFG.

In summary, from the experimental results, we observe
that using the click graph in addition to query reformula-
tion graph in a unified query fusion graph helps improve
performance. Additionally, the query fusion graph per-
forms better for queries with higher usage information and
handily beats time-based and keyword similarity-based
baselines for such queries. Finally, keyword similarity-
based methods help complement our method well provid-
ing for a high and stable performance regardless of the
usage information.

6 RELATED WORK

While we are not aware of any previous work that has the
same objective of organizing user history into query groups,
there has been prior work in determining whether two
queries belong to the same search task. In recent work,
Jones and Klinkner [4] and Boldi et al. [5] investigate the
search-task identification problem. More specifically, Jones
and Klinkner [4] considered a search session to consist of a
number of tasks (missions), and each task further consists of
a number of subtasks (goals). They trained a binary
classifier with features based on time, text, and query logs

HWANG ET AL.: ORGANIZING USER SEARCH HISTORIES 923

TABLE 2
Performance (RandIndex) of Combined Methods

Best performance in each data set is shown in bold.

to determine whether two queries belong to the same task.
Boldi et al. [5] employed similar features to construct a
query flow graph, where two queries linked by an edge
were likely to be part of the same search mission.

Our work differs from these prior works in the following
aspects. First, the query-log based features in [4], [5] are
extracted from co-occurrence statistics of query pairs. In our
work, we additionally consider query pairs having common
clicked URLs and we exploit both co-occurrence and click
information through a combined query fusion graph. Jones
and Klinkner [4] will not be able to break ties when an
incoming query is considered relevant to two existing query
groups. Additionally, our approach does not involve
learning and thus does not require manual labeling and
retraining as more search data come in; our Markov random
walk approach essentially requires maintaining an updated
query fusion graph. Finally, our goal is to provide users
with useful query groups on-the-fly while respecting
existing query groups. On the other hand, search task
identification is mostly done at server side with goals such
as personalization, query suggestions [5], etc.

Some prior work also looked at the problem of how to
segment a user’s query streams into “sessions.” In most
cases, this segmentation was based on a “time-out thresh-
old” [21], [22], [23], [24], [25], [26], [27]. Some of them, such
as [23], [26], looked at the segmentation of a user’s browsing
activity, and not search activity. Silverstein et al. [27]
proposed a time-out threshold value of 5 minutes, while
others [21], [22], [24], [25] used various threshold values. As
shown in Section 5, time is not a good basis for identifying
query groups, as users may be multitasking when searching
online [3], thus resulting in interleaved query groups.

The notion of using text similarity to identify related
queries has been proposed in prior work. He et al. [24] and
Ozmutlu and Çavdur [28] used the overlap of terms of two
queries to detect changes in the topics of the searches. Lau
and Horvitz [29] studied the different refinement classes
based on the keywords in queries, and attempted to
predict these classes using a Bayesian classifier. Radlinski
and Joachims [30] identified query sequences (called
chains) by employing a classifier that combines a time-
out threshold with textual similarity features of the
queries, as well as the results returned by those queries.
While text similarity may work in some cases, it may fail to
capture cases where there is “semantic” similarity between
queries (e.g., “ipod” and “apple store”) but no textual
similarity. In Section 5, we investigate how we can use
textual similarity to complement approaches based on
search logs to obtain better performance.

The problem of online query grouping is also related to
query clustering [13], [31], [6], [7], [32]. The authors in [13]
found query clusters to be used as possible questions for a
FAQ feature in an Encarta reference website by relying on
both text and click features. In Beeferman and Berger [6] and
Baeza-Yates and Tiberi [7], commonly clicked URLs on
query-click bipartite graph are used to cluster queries. The
authors in [31] defined clusters as bicliques in the click graph.
Unlike online query grouping, the queries to be clustered are
provided in advance, and might come from many different
users. The query clustering process is also a batch process
that can be accomplished offline. While these prior work

make use of click graphs, our approach is much richer in that
we use the click graph in combination with the reformulation
graph, and we also consider indirect relationships between
queries connected beyond one hop in the click graph. This
problem is also related to document clustering [33], [34], with
the major difference being the focus on clustering queries
(only a few words) as compared to clustering documents for
which term distributions can be estimated well.

Graphs based on query and click logs [35] have also been
used in previous work for different applications such as
query suggestions [5], query expansion [36], ranking [37],
and keyword generation [14]. In several cases, variations of
random walks have been applied on the graph in order to
identify the most important nodes. In Craswell and
Szummer [37], a Markov random walk was applied on
the click graph to improve ranking. In Fuxman et al. [14], a
random walk was applied on the click-through graph to
determine useful keywords; while in Collins-Thomson and
Callan [36], a random walk was applied for query
suggestion/expansion with the node having the highest
stationary probability being the best candidate for sugges-
tion. As we discussed in Section 3, we take advantage of the
stationary probabilities computed from the graph as a
descriptive vector (image) for each query in order to
determine similarity among query groups.

7 CONCLUSION

The query reformulation and click graphs contain useful
information on user behavior when searching online. In this
paper, we show how such information can be used
effectively for the task of organizing user search histories
into query groups. More specifically, we propose combin-
ing the two graphs into a query fusion graph. We further
show that our approach that is based on probabilistic
random walks over the query fusion graph outperforms
time-based and keyword similarity-based approaches. We
also find value in combining our method with keyword
similarity-based methods, especially when there is an
insufficient usage information about the queries. As future
work, we intend to investigate the usefulness of the
knowledge gained from these query groups in various
applications such as providing query suggestions and
biasing the ranking of search results.

ACKNOWLEDGMENTS

This work was done while H. Hwang, H.W. Lauw, and
L. Getoor were at Microsoft Research, Silicon Valley.

REFERENCES

[1] J. Teevan, E. Adar, R. Jones, and M.A.S. Potts, “Information Re-
Retrieval: Repeat Queries in Yahoo’s Logs,” Proc. 30th Ann. Int’l
ACM SIGIR Conf. Research and Development in Information Retrieval
(SIGIR ’07), pp. 151-158, 2007.

[2] A. Broder, “A Taxonomy of Web Search,” SIGIR Forum, vol. 36,
no. 2, pp. 3-10, 2002.

[3] A. Spink, M. Park, B.J. Jansen, and J. Pedersen, “Multitasking
during Web Search Sessions,” Information Processing and Manage-
ment, vol. 42, no. 1, pp. 264-275, 2006.

[4] R. Jones and K.L. Klinkner, “Beyond the Session Timeout:
Automatic Hierarchical Segmentation of Search Topics in Query
Logs,” Proc. 17th ACM Conf. Information and Knowledge Manage-
ment (CIKM), 2008.

924 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 5, MAY 2012

[5] P. Boldi, F. Bonchi, C. Castillo, D. Donato, A. Gionis, and S. Vigna,
“The Query-Flow Graph: Model and Applications,” Proc. 17th
ACM Conf. Information and Knowledge Management (CIKM), 2008.

[6] D. Beeferman and A. Berger, “Agglomerative Clustering of a
Search Engine Query Log,” Proc. Sixth ACM SIGKDD Int’l Conf.
Knowledge Discovery and Data Mining (KDD), 2000.

[7] R. Baeza-Yates and A. Tiberi, “Extracting Semantic Relations from
Query Logs,” Proc. 13th ACM SIGKDD Int’l Conf. Knowledge
Discovery and Data Mining (KDD), 2007.

[8] J. Han and M. Kamber, Data Mining: Concepts and Techniques.
Morgan Kaufmann, 2000.

[9] W. Barbakh and C. Fyfe, “Online Clustering Algorithms,” Int’l
J. Neural Systems, vol. 18, no. 3, pp. 185-194, 2008.

[10] Lecture Notes in Data Mining, M. Berry, and M. Browne, eds. World
Scientific Publishing Company, 2006.

[11] V.I. Levenshtein, “Binary Codes Capable of Correcting Deletions,
Insertions and Reversals,” Soviet Physics Doklady, vol. 10, pp. 707-
710, 1966.

[12] M. Sahami and T.D. Heilman, “A Web-based Kernel Function for
Measuring the Similarity of Short Text Snippets,” Proc. the 15th
Int’l Conf. World Wide Web (WWW ’06), pp. 377-386, 2006.

[13] J.-R. Wen, J.-Y. Nie, and H.-J. Zhang, “Query Clustering Using
User Logs,” ACM Trans. in Information Systems, vol. 20, no. 1,
pp. 59-81, 2002.

[14] A. Fuxman, P. Tsaparas, K. Achan, and R. Agrawal, “Using the
Wisdom of the Crowds for Keyword Generation,” Proc. the 17th
Int’l Conf. World Wide Web (WWW ’08), 2008.

[15] K. Avrachenkov, N. Litvak, D. Nemirovsky, and N. Osipova,
“Monte Carlo Methods in PageRank Computation: When One
Iteration Is Sufficient,” SIAM J. Numerical Analysis, vol. 45, no. 2,
pp. 890-904, 2007.

[16] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank
Citation Ranking: Bringing Order to the Web,” technical report,
Stanford Univ., 1998.

[17] P. Boldi, M. Santini, and S. Vigna, “Pagerank as a Function of
the Damping Factor,” Proc. the 14th Int’l Conf. World Wide Web
(WWW ’05), 2005.

[18] T.H. Haveliwala, “Topic-Sensitive PageRank,” Proc. the 11th Int’l
Conf. World Wide Web (WWW ’02), 2002.

[19] W.M. Rand, “Objective Criteria for the Evaluation of Clustering
Methods,” J. the Am. Statistical Assoc., vol. 66, no. 336, pp. 846-850,
1971.

[20] D.D. Wackerly, W.M. III, and R.L. Scheaffer, Mathematical Statistics
with Applications, sixth ed. Duxbury Advanced Series, 2002.

[21] P. Anick, “Using Terminological Feedback for Web Search
Refinement: A Log-Based Study,” Proc. 26th Ann. Int’l ACM SIGIR
Conf. Research and Development in Information Retrieval, 2003.

[22] B.J. Jansen, A. Spink, C. Blakely, and S. Koshman, “Defining a
Session on Web Search Engines: Research Articles,” J. the Am. Soc.
for Information Science and Technology, vol. 58, no. 6, pp. 862-871,
2007.

[23] L.D. Catledge and J.E. Pitkow, “Characterizing Browsing Strate-
gies in the World-Wide Web,” Computer Networks and ISDN
Systems, vol. 27, no. 6, pp. 1065-1073, 1995.

[24] D. He, A. Goker, and D.J. Harper, “Combining Evidence for
Automatic Web Session Identification,” Information Processing and
Management, vol. 38, no. 5, pp. 727-742, 2002.

[25] R. Jones and F. Diaz, “Temporal Profiles of Queries,” ACM Trans.
Information Systems, vol. 25, no. 3, p. 14, 2007.

[26] A.L. Montgomery and C. Faloutsos, “Identifying Web Browsing
Trends and Patterns,” Computer, vol. 34, no. 7, pp. 94-95, July 2001.

[27] C. Silverstein, H. Marais, M. Henzinger, and M. Moricz, “Analysis
of a Very Large Web Search Engine Query Log,” SIGIR Forum,
vol. 33, no. 1, pp. 6-12, 1999.

[28] H.C. Ozmutlu and F. Çavdur, “Application of Automatic Topic
Identification on Excite Web Search Engine Data Logs,”
Information Processing and Management, vol. 41, no. 5, pp. 1243-
1262, 2005.

[29] T. Lau and E. Horvitz, “Patterns of Search: Analyzing and
Modeling Web Query Refinement,” Proc. Seventh Int’l Conf. User
Modeling (UM), 1999.

[30] F. Radlinski and T. Joachims, “Query Chains: Learning to Rank
from Implicit Feedback,” Proc. ACM Conf. Knowledge Discovery and
Data Mining (KDD), 2005.

[31] J. Yi and F. Maghoul, “Query Clustering Using Click-through
Graph,” Proc. the 18th Int’l Conf. World Wide Web (WWW ’09), 2009.

[32] E. Sadikov, J. Madhavan, L. Wang, and A. Halevy, “Clustering
Query Refinements by User Intent,” Proc. the 19th Int’l Conf. World
Wide Web (WWW ’10), 2010.

[33] T. Radecki, “Output Ranking Methodology for Document-
Clustering-Based Boolean Retrieval Systems,” Proc. Eighth Ann.
Int’l ACM SIGIR Conf. Research and Development in Information
Retrieval, pp. 70-76, 1985.

[34] V.R. Lesser, “A Modified Two-Level Search Algorithm Using
Request Clustering,” Report No. ISR-11 to the Nat’l Science
Foundation, Section 7, Dept. of Computer Science, Cornell Univ.,
1966.

[35] R. Baeza-Yates, “Graphs from Search Engine Queries,” Proc. 33rd
Conf. Current Trends in Theory and Practice of Computer Science
(SOFSEM), vol. 4362, pp. 1-8, 2007.

[36] K. Collins-Thompson and J. Callan, “Query Expansion Using
Random Walk Models,” Proc. 14th ACM Int’l Conf. Information and
Knowledge Management (CIKM), 2005.

[37] N. Craswell and M. Szummer, “Random Walks on the Click
Graph,” Proc. 30th Ann. Int’l ACM SIGIR Conf. Research and
Development in Information Retrieval (SIGIR ’07), 2007.

Heasoo Hwang received the PhD degree in
computer science from the University of Califor-
nia at San Diego. Her main research interests
include effective and efficient search over large-
scale graph-structured data. She is a research
staff member at Samsung Advanced Institute of
Technology.

Hady W. Lauw received the PhD degree in
computer science at Nanyang Technological
University in 2008 on an A�STAR graduate
fellowship. He is a researcher at the Institute
for Infocomm Research in Singapore. Pre-
viously, he was a postdoctoral researcher at
Microsoft Research Silicon Valley.

Lise Getoor received the PhD degree in
computer science from Stanford University.
She is an associate professor at the University
of Maryland, College Park. Her research inter-
ests include machine learning and reasoning
under uncertainty, with applications to informa-
tion integration, database management, and
social media.

Alexandros Ntoulas received the PhD degree
in computer science from the University of
California, Los Angeles. He is a researcher at
Microsoft Research, Silicon Valley. His research
interests include systems and algorithms that
facilitate the monitoring, collection, manage-
ment, mining, and searching of information on
the web.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

HWANG ET AL.: ORGANIZING USER SEARCH HISTORIES 925

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

