
SocWeb - Search Within Your Social Networks

Technical Report

Supported by Marie Curie Grant

PIRG06-GA-2009-256603

Fotis Psallidas, Alexandros Ntoulas, Alex Delis
{fpsallidas, antoulas, ad}@di.uoa.gr

October 2012

Contents

1 Introduction 2

2 Core Concepts 5
2.1 Overview . 5
2.2 SocWeb Model . 5
2.3 Generic SocWebAPI . 10

3 Architecture 15
3.1 Application Level . 15
3.2 Distributed Generic Crawler . 15
3.3 Storage System . 15
3.4 Indexing . 15

4 Experiments 16

5 Conclusions 17

6 Future Work 18

7 Acknowledgments 19

1

Chapter 1

Introduction

2

The share of social activity by individuals has become a new world trend.
The amount of data produced at any second has exceeded the limit of infor-
mation that any human mind can keep track off. Even nowadays, that the
computation power has been taken to its limits and we are able to safely keep
track of this information in large computing and storing systems, the task of
acquiring knowledge from this huge amount of data has become a very tough
and intensive task. Moreover, all this data produced both in structured and
unstructured ways has formed a knowledge database that each individual can
conceive in a different way. Each type of information published at any point of
time can be perceived differently among different users. Just like in ordinary
life where people with different perspectives, background, ethics etc filter the
received information based on their criteria, exactly the same applies to social
networks.

The contribution of our work is to describe the several problems that emerge
in the field of search engine design and implementation using diversified content
from social networks. The final outcome of our work is a user-driven social
network search engine, namely SocWeb, that allows users to search within their
social networks and provides personalized results that users seek for based on
the provided search terms.

The problem of search engine design and implementation has been active
for several years now and thus has been well studied by the community. How-
ever, social networks contribute a new dimension in the field that search engines
should deal with to provide the information needed by individuals. Those net-
works and the information that lies within them add multiple constraints that
contemporary search engine strive to deal with former techniques instead of at-
tempting to define and deal with the new problems that emerge. Thus, they
fail to provide up-to-date knowledge needed by individuals. These problems are
the type of information, the extraction ways in respect of the several protection
levels on top of that information, the scale of the data produced by both individ-
uals and machines and the diversity of social networks purpose and structure .
In our work we address all these problems and suggest generic ways to overcome
them.

In chapter 2, we introduce the core concepts of the SocWeb project, the
SocWeb Model which is a generic way to describe arbitrary social network
graphs, ,the SWODL (abbreviated for SocWeb Object Definition Language)
which is a language that we introduce to describe object types of social network
graphs and the SocWeb Generic API which makes use of the SocWeb Model
and SWODL templates to provide a very simple interface to retrieve information
from these social networks.

In chapter 3, we present the architecture of each component of SocWeb.
First, the Application Level that provides a simple but rich front-end to the user
and triggers specific requests to be handled by the backend. Second, the Dis-
tributed Crawler level, which is cosnidered the most impartant part of SocWeb,
and is able to retrieve information, using the core concepts introduced in chap-
ter 2 and specific policies that allows it to decide what and why to retrieve next
efficiently. Third, the Storage System, which takes the information extracted
from the Crawler, apply several checks and finally store it in a distributed man-
ner. Fourth, the Indexing level which reads the output of either the Crawler
directly or from the Storage System and creates the final indices that allow effi-
cently query performing by the users. A really important approach that emerges

3

from our design is that each componenet is considered stand-alone. Its policies
dont affect the policies of the other components, because the communication
among them is formed based on the core concepts that each component is able
to understand and act upon them.

4

Chapter 2

Core Concepts

2.1 Overview

2.2 SocWeb Model

5

Each Social Network can be seen as a bidirectional graph containing objects
of diversified types and links between these objects. Here, we define the termi-
nology that we use to describe them. SocWeb Model defines 2 generic types of
objects:

1. primitive objects, containing only in-links,

2. composite objects, containing both in- and out-links

Where an object A has an in-link from object B or equivallently object B
has an out-link to object A , if object A can be reached from object B .

Each object has a ceratin type, named SocWebObjectType that corre-
sponds to the type of the object in the social network graph. These socWebOb-
jectTypes are predefined in SocWeb and denote the type of objects supported.
The form of each object type ,that we make use of, is in compressed mode in
order to denote both the type of the object and the social network that it cor-
responds. For instance, a Facebook photo’s socWebObjectType is FB PHOTO
and Twitter photo’s socWebObjectType is TW PHOTO. For primitive objects,
we currently support SW STRING and SW INTEGER that stand for string
and integer fields accordingly.A full list of all socWebObjectTypes currently
supported can be found in [TODO: APPENDIX A]

The primitive objects are the indispensable pillar of the social network graph,
because in essence they define its boundaries. On the other hand, composite
objects have links to either primitive types, or composite types or even collection
of composite types.

To decribe this diversity of links, we define 3 different types of them:

1. links to primitive objects, named p-links,

2. links to composite objects, named c-links,

3. links to collections of either primitive or composite objects of the same
type, named co-links

We also say that a composite object C1 is:

1. p-connected to a primitive object P, if there is p-link from C1 to P,

2. c-links to a composite object C2, if there is a co-link from C1 to C2,

3. co-links to a collection of composite or primitve objects of the same type
CO, if there is a link from C1 to CO.

For a composite object, its p-connected primitive objects constitute its at-
tributes while the c-connected composite objects,that is linked to, resemble its
relationships. The co-connections, in essence, are c-connections of the com-
posite object with multiple objects of the same type thus describing multiple
relationships of the same type.

In order to define programatically the various objects we make use of inher-
itance. We introduce the generic socWebObject class which is illustrated below
in Listing 2.1

6

(a) p-link (b) c-link

(c) co-link

Figure 2.1: Different link types supported by SocWeb Model. Composite objects
are denoted by green circles where primitive objects by blue ones.

Listing 2.1: socWebObject class

1 c l a s s socWebObject{
2 pub l i c :
3 typede f gnu cxx : : hash map<std : : s t r i ng , int , char HashFunc ,

cha r eq s t r> TMAP;
4 typede f gnu cxx : : hash map<std : : s t r i ng , j s o n s p i r i t : : mValue ,

char HashFunc , cha r eq s t r> VMAP;
5

6 TMAP∗ tmap ; // the d e s c r i p t i o n o f the ob j e c t
7 VMAP∗ vmap ; // the ob j e c t s that cor responds to the above

d e s c r i p t i o n
8

9

10 std : : s t r i n g socWebId ; // the id o f the ob j e c t in socWeb
11 socWebObjectType objT ; // the type o f the ob j e c t
12

13 socWebObject (std : : s t r i n g socWebId) ;
14 socWebObject (std : : s t r i n g , socWebObjectType) ;
15 socWebObject () ;
16 socWebObject (socWebObjectType objT) ;
17 socWebObject (const socWebObject&) ;
18 ˜socWebObject () ;
19 v i r t u a l socWebObjectType type () ;
20 v i r t u a l void p r i n t (i n t l e v e l =0) ;
21 v i r t u a l std : : s t r i n g get socWebId () ;
22 } ;

Using this generic class we are able to create derived classes either for
primitive or composite objects.For instance Listing 2.2 presents the socWeb-
String class that refers to SW STRING primitive type and Listing 2.3 present
socWebFbPhoto that refers to FB PHOTO type.

Listing 2.2: socWebString class

1 c l a s s socWebString : pub l i c socWebObject{

7

2 f r i e nd std : : ostream& operator<<(std : : ostream& output , const
socWebString& p) ;

3 pub l i c :
4 std : : s t r i n g s t r ;
5 socWebString (const std : : s t r i n g&) ;
6 socWebString (const i n t&) ;
7 socWebString () ;
8 void operator =(const std : : s t r i n g& s t r) ;
9 void operator =(const i n t& num) ;

10 pr i va t e :
11 } ;

Listing 2.3: socWebFbPhoto class

1 c l a s s socWebFbPhoto : pub l i c socWebObject{
2 pub l i c :
3

4 //P−l i n k s
5 socWebString id ;
6 socWebString name ;
7 socWebString i con ;
8 socWebString p i c tu r e ;
9 socWebString source ;

10 socWebString he ight ;
11 socWebString width ;
12 socWebString l i n k ;
13 socWebString c r ea t ed t ime ;
14 socWebString updated time ;
15 socWebString po s i t i o n ;
16 socWebInteger comments cnt ;
17 socWebInteger l i k e s c n t ;
18

19 //C−l i n k s
20 socWebFbFrom∗ from ;
21 socWebFbPlace∗ p lace ;
22

23 //Co−l i n k s
24 std : : vector<socWebFbPhotoTag∗> tags ;
25 std : : vector<socWebFbLike∗> l i k e s ;
26 std : : vector<socWebFbComment∗> comments ;
27 std : : vector<socWebFbPhotoImage∗> images ;
28

29 socWebFbPhoto (JsonHandler) ;
30 socWebFbPhoto (const socWebFbPhoto&) ;
31 ˜socWebFbPhoto () ;
32 void p r i n t (i n t l e v e l =0) ;
33 } ;

The main objective goal of SocWeb, apart from describing inter-connections
within a social network, is to be able to describe ”arbitrary” social networks and
provide the ability to define connections among different objects from different
social networks. Using this abstract model we are able to address the question
of how to describe, efficiently and in an easily adaptable manner, “arbitrary”
social networks. For each social network we provide SocWeb with up-to-date
definition of all of its object types along with their p-, c- and co-connections.
SocWeb is able to read these descriptions and create subclasses of the socWe-
bObject generic type. The definition of the object types can be generated with
a special, fairly simple language that we introduce in section 2.3, the SWODL

8

(abbreviated for SocWeb Object Definition Language).
Finally, we deal with the problem of connecting objects of different networks

by introducing a new link type, named s-link. S-link connects objects of different
networks, thus making our arbitrary network graphs connected into a single
graph. Consequently we have a way to extract aggregated information for an
object, that lies in one social network, using its s-connected objects from another
social network. The concept of s-link along with the other type of links is
illustrated in

Figure 2.2: S-link concept along with the other type of links defined in SocWeb
Model

9

2.3 Generic SocWebAPI

10

Social networks’ Web pages ,that contain the information needed, are a
simple picture of the information contained in these social graphs. Thus, instead
of striving to acquire information from these pages in order to reproduce parts
of the social graphs we take a different approach. Nowadays, all the large social
networks provide APIs (abbreviated for Application Programming Interface)
that give access to their internal graph. The first step, in order to use the API
provided by a specific social network is to register an application in this network.
Then, the users of this registered application authorize the app with certain
authorization privilleges that the application requests. Next, the application
,based on the authrorization that it is granted, is able to use the corresponding
API in order to retrieve the information needed. The whole process is illustrated
in Figure 2.3

Social

Network J

request
authorization

authorize

Application

 Network J API

 Social

User X

Figure 2.3: Application authorization and Information Retrieval from Social
Network J using the corresponding API

Although the above schema can be used to perform per authorized user
crawling it can’t scale in a generic way. The amount of social networks has
increased tremendously, each with its own meaning, purpose, API functions,
results structure-type and corresponding parsing techniques, authorization pro-
cedures, per ip-per user and per application call limitations. First, in terms
of meaning and purpose, the information that lies within each social network
reveals the meaning and the purpose of the social network itself. The usage of
their APIs reveals the information need applied to that specific meaning and
purpose. For instance, the meaning of a facebook photo album largely differs
from a flickr photo album because the meaning and purpose and consequently
the usage of facebook and flickr differ. Thus, if a developper needs to retrieve
photo albums in general should be aware of the meaning and purpose of the

11

social network that she retrieves from. Second, the API functions differ among
social networks. Developers that thinking of dealing with multiple social net-
work APIs are about to face myriad API functions where each function requires
multiple parametrization. Third, the type of the results differ among social net-
works. For instance, some social networks rely solely on JSON formats, while
others rely only on XML format, thus making parsing really hard. Fourth, each
social network has its own authorization procedure. Most of them rely upon
different versions of OAuth protocol. Based on the OAuth protocol there are
also 3 different kinds of authorization procedure each corresponding to either
web, desktop or mobile applications. Of course, social networks nowadays also
provide API calls that need no authorization.Thus there is an extra level of
complexity to determine whether or not an API call needs authorization or not.
Morover, if all the API calls that are about to be used by the application need no
authorization the developper doesn’t need to implement the authorization step.
But, this needs a priori knowledge of the final calls that are about to be used.
Finally, each social network poses (or not) its own limitations on the amount of
requests that can be handled by their severs. The limitations are applied per
ip, per hour, per authorized user and per application and vary among different
social network (They even differ within the social network itself, e.g. Twitter
has different limitation on the usage of REST API and different limitations by
the Streaming API). The industry of application in the field of social networks
are affected by all the above problems. Developpers have to deal with multiple
hurdles which are not the main focus of the final commodities.

What developpers really want afterall is to retrieve certain objects from the
social graphs. We adhere to this challenge and based on our SocWeb Model
and the SWODL we propose a generic API, Generic SocWebAPI, with only 4
family of API calls that is able to retrieve any kind of information from any
social graph available out there. We call this Generic SocWebAPI. The API
function calls are:

1. socWebObject get_object(object_id, object_type)

Retrieve the object with id object id and type object type. All its
p-links, c-links and co-links will be retrieved for this object.

2. P-link family call
Retrieve only the p-connected objects of an object.

• socWebObject[] get_plinks(object_id, object_type)

• socWebObject[] get_plinks(object_id, object_type, attribute[])

• socWebObject[] get_plinks(object_id, object_type, time_range[])

• socWebObject[] get_plinks(object_id, object_type, attribute[], time_range[])

3. C-link family calls
Retrieve only the c-connected objects of an object.

• socWebObject[] get_clinks(object_id, object_type)

• socWebObject[] get_clinks(object_id, object_type, attribute[])

• socWebObject[] get_clinks(object_id, object_type, time_range[])

• socWebObject[] get_clinks(object_id, object_type, attribute[], time_range[])

4. Co-link family calls
Retrieve only the co-connected objects of an object.

12

• socWebObject[] get_colinks(object_id, object_type)

• socWebObject[] get_colinks(object_id, object_type, attribute[])

• socWebObject[] get_colinks(object_id, object_type, time_range[])

• socWebObject[] get_colinks(object_id, object_type, attribute[], time_range[])

The general form of the API calls is

Listing 2.4: API’s functions’ general form

socWebObject [] get <Type Of Link>(ob j e c t i d , ob j ec t type , [
a t t r i b u t e [] , t ime range []])

For each call an application should provide the object id of the object to be
retrieved and its type. The type of the object should be collected from a list of
object types that we provide and is illustrated in [APPENDIX A]. Moreover,
an application might want some of the p-links, c-links, co-links of the objects
returned. This can be achieved using the name array parameter, allowing the
caller to implicitly declare the p-links, c-links, co-links needed. In addition,
most social networks APIs retuned results based on a specific time range.For
instance, Facebook provides the ability to return user’s posts within a specific
time range. If a time range request is not available for the specific connection of
the object then the most recent will be returned. Finally, callers of the Generic
SocWebAPI to request results for specific p-links , c-links, co-links in conjuction
with time ranges.

As it can be seen all these API calls return arrays of socWebObjects. Some-
times, the results that can be retrieved have really large size thus making these
synchronous calls quite slow. We adhere to this problem because it arises sev-
eral technical challeneges and present a cursor-based solution. All the API calls
listed above accept another parameter at the end of the parameter list that in-
dicates the amount of results to be returned.Consequently the new general form
of our API calls is

Listing 2.5: API’s functions’ general form with limit

socWebObject [] get <Type Of Link>(ob j e c t i d , ob j ec t type , [
a t t r i b u t e [] , t ime range []] , l im i t=−1)

The l imit=-1 above indicates that all the results should be returned. A
positive limit means that the amount of results must be limited by the value
of the limit. In order to retrieve results after the above limit a new API call is
introduced

Listing 2.6: Get Next Results

socWebObject [] g e t nex t (l im i t=−1)

where the limit again refers to the amount of results that get returned.
Finally, by using our new Generic SocWebAPI the information retrieval from

”arbitrary” social networks is illustrated in 2.4.
To the best of our knowledge, there is no previous work that combines all the

APIs of the most popular famous. Developpers have the ability not to concern
about the various APIs and the way should be handled. They just use a simple
API with 4 families of function calls that gets the work done efficiently. The

13

authorize

Application

request
authorization

Social

Network 2

Social

Network 1

Social

Network N

Generic API

 Social

Network N Api

 Social

Network 1 API

 Social

 Network 2 API

.

s

...

User X

Objects’
Descriptions

Figure 2.4: Application authorization and Information Retrieval from Social
Network J using the corresponding API

only concern is the description of the objects needed to be retrieved, thus we
keep an up-to-date repository of all the possible descriptions to use them at any
time.

14

Chapter 3

Architecture

3.1 Application Level

3.2 Distributed Generic Crawler

3.3 Storage System

3.4 Indexing

15

Chapter 4

Experiments

16

Chapter 5

Conclusions

17

Chapter 6

Future Work

18

Chapter 7

Acknowledgments

19

