
Topic-Sensitive Hidden-Web Crawling⋆

Panagiotis Liakos and Alexandros Ntoulas

National and Kapodistrian University of Athens

liakospanagiotis@gmail.com, antoulas@di.uoa.gr

Abstract. A constantly growing amount of high-quality information is stored in

pages coming from the Hidden Web. Such pages are accessible only through a

query interface that a Hidden-Web site provides and may span a variety of topics.

In order to provide centralized access to the Hidden Web, previous works have

focused on query generation techniques that aim at downloading all content of a

given Hidden Web site with the minimum cost. In certain settings however, we

are interested in downloading only a specific part of such a site. For example,

in a news database, a user may be interested in retrieving only sports articles

but no politics. In this case, we need to make the best use of our resources in

downloading only the portion of the Hidden Web site that we are interested in.

In this paper, we study how we can build a topically-focused Hidden Web crawler

that can autonomously extract topic-specific pages from the Hidden Web by search-

ing only the subset that is related to the corresponding category. To this end, we

present query generation techniques that take into account the topic that we are

interested in. We propose a number of different crawling policies and we experi-

mentally evaluate them with data from two popular sites.
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1 Introduction

An ever-increasing amount of high-quality information on the Web today is accessible

through Web pages pulling information from data sources such as databases or content

management systems. Such pages are collectively called the Hidden Web because they

are hidden from the search engine crawlers but are typically only accessible after issuing

one or more queries to a search interface.

In most cases, the information existent in the Hidden Web is of high quality as it

has been carefully reviewed, edited or annotated before being stored in a database or

a content management system and may span a multitude of topics ranging from sports

and politics to different medical treatments of a particular disease.

In order to facilitate the discovery of information on the Web, search engines and

content-aggregation systems could greatly benefit from approaches that would allow

them to collect and download the Hidden Web pages. Having information from the

Hidden Web all in one place can be of great benefit to both users (as they can have a

one-stop shop for their information needs) and for the search engines (as they can serve

their users better).

⋆ Partially supported by PIRG06-GA-2009-256603.



Since a Hidden Web site can be accessed by search engine crawlers only through

a search interface, previous work has investigated ways of collecting the information

from the Hidden Web sites. In most cases [17, 18, 5, 6, 11, 21, 22] previous work has

focused on generating queries that are able to download all of (or as much as possible)

a given Hidden Web site, with the minimum amount of resources spent (e.g. queries

issued). For example, the technique in [17] iteratively issues queries to Hidden Web

sites and can download about 90% of some sites using about 100 queries.

Although such approaches can work well for the cases where we are interested in

doing a comprehensive crawl of a Hidden Web site, there are cases where we may be

interested only in a specific portion of a Hidden Web site. For example, a search engine

that specializes in traveling may be interested in picking only news articles that pertain

to traveling from a general-purpose news database. A portal talking about politics may

want to identify the politics-related articles from a blogs database and leave out the

sports-related ones. Or, a mobile application focusing on night-life in San Francisco

may want to pull only the related articles from all the postings on events in the wider

Northern California.

In this paper, we study the problem of building a topic-sensitive Hidden Web crawler,

that can automatically retrieve pages relevant to a particular topic from a given Hidden

Web site. One way to achieve this goal would be to employ previously-developed tech-

niques (e.g. [17, 18, 5]) to retrieve the majority of the Hidden Web site and then only

keep the content that we are interested in. Since this approach may lead to downloading

a number of pages that we are ultimately not interested in, it may also lead to a great

waste in resources, measured in time, money, bandwidth or even battery life in the case

of a mobile setting.

To this end, the goal of our crawler is to retrieve from a Hidden Web site as many

pages related to a given topic as possible with the minimum amount of resources. Our

main idea is to proceed in an iterative fashion issuing queries to the Hidden Web site

that are very relevant to the topic that we are interested in.

In summary, this paper makes the following contributions:

– We formalize the problem of topically-sensitive Hidden Web crawling, i.e. down-

loading the pages from a Hidden Web site that pertain only to a given topic.

– We present an algorithm for performing topically-sensitive Hidden Web crawling.

Our idea is to identify candidate keywords from the crawled documents that are

relevant to the topic of interest.

– We propose a number of different policies that can be used to decide which of the

candidate queries we can issue next. As we will show later in our experimental

section some polices are much better in producing good keywords than others.

– We evaluate our algorithm using the different policies on two real Hidden Web sites

and we showcase the merits of each of the policies.

2 Topic-Sensitive Hidden Web Crawling

At a high level, the goal of a general topic-sensitive (or focused) Web Crawler [9] is to

retrieve pages from the Web that pertain to a given topic. The crawler has to evaluate the

contents of each downloaded page to decide whether it is relevant to a particular topic.



Hence, the crawler aims at examining as small of a subset of the total search space as

possible in order to avoid wasting resources by downloading pages that are irrelevant to

the topic.

(a) (b)
Fig. 1. (a) Topic-Sensitive Crawling in the publicly indexable Web, (b) Representing a Hidden

Web site as a set

Figure 1a illustrates this process in the publicly indexable Web. Pages that are rele-

vant to our topic of interest are represented with black boxes while the irrelevant ones

are represented with white ones. The goal of the crawler is to follow only links with

relevant pages, in order to use its resources efficiently. In the case of a Hidden-Web

crawler however the pages are not directly accessible by following links as in [9]. Since

the only access point that the crawler has is a search interface, it needs to identify good

keywords that will return pages pertaining to a given topic.

The definition of what constitutes a “topic” may be different depending on the ap-

plication at hand. For example, if we are interested in loosely collecting Web pages

that are about football, then any page that contains the words “football”, “quarterback”,

“touchdown”, etc., may be relevant to the topic. Alternatively, in the cases when we are

interested in discerning more accurately between topics (e.g. external affairs vs. inter-

nal politics) a more elaborate mechanism (e.g. an SVM-based classifier) may be used.

Our work presented here does not depend on how exactly we detect whether a particu-

lar page belongs to a given topic. Instead, we make two generic assumptions regarding

the topic definition that allows for a variety of different topic detection techniques to

be employed. First, we generally assume that a topic can be described by a distribu-

tion of keywords. This is essentially the same assumption as most text classifiers are

based on. Second, we assume that not all of the keywords in the distribution are known

beforehand, as in this case the problem becomes trivial (i.e. the crawler simply needs

to iterate over all the relevant keywords). We should note that not knowing all of the

keywords is the typical practical scenario. In our football example above, we may know

that “quarterback” or “touchdown” are good initial keywords but we may not necessar-

ily know that “huddle” or “hailmary” are also good keywords for the crawler to use.1 In

our work, we typically provide the crawler with a small set of keywords that are relevant

to begin with and the crawler discovers more keywords to use as it progresses through

the Hidden-Web site.

1 This scenario is also typical for the cases where one may want to perform a topic-sensitive

crawling-by-example, i.e. provide an example document as input and have the crawler crawl

documents that are similar to the input document.



At a high level, in order to access the pages from a Hidden Web site we typically

need to apply the following steps:

1. First, submit a query through the interface provided by the Web Site, that charac-

terizes what we want to locate.

2. Then we receive a result index page, that contains links and possibly additional

information of the pages that matched the submitted query.

3. Finally, having identified a promising page in the results (we can skip pages already

downloaded based on their URL), we follow the link and eventually visit the actual

Web page.

2.1 A Topic-Sensitive Hidden Web Crawling Approach

As we discussed in the previous section, we gain access to the contents of a Hidden

Web site only by issuing queries through a search interface and obtaining a result index

page. Therefore, a Hidden Web crawler should automatically issue queries to the site

and then retrieve the pages included in the results.

One of the biggest challenges in implementing such a crawler is that we need to

pick the most appropriate terms that will retrieve the pages pertaining to the desired

topic in the most effective way. If the crawler can pick terms that are very well-suited

to the topic we are interested in, the crawler will be able to also retrieve pages that

are of the given topic. On the other hand, if the crawler issues terms that are completely

irrelevant, it will simply waste its resources by downloading pages that are of no interest

to the users (and potentially also degrading the quality of the search engine that employs

the crawler).

To illustrate, we assume that the crawler downloads pages from a Hidden Web site

that contains a set of pages S (the rectangle in Figure 1b). These pages might cover

a vast area of topics, most of which may potentially be irrelevant to our search. The

results of each potential query qi can be considered as a subset of S that contains the

pages that the site would return as a result.

In practice, we are interested only in pages relevant to a specific topic (i.e. the

squares in Figure 1b). To this end, in order to minimize the total cost of crawling, we

need to discover queries that focus on the topical area of our interest, and in that way

avoid the extra cost of issuing queries that return irrelevant results.

In order to select the best keywords, at each step of the algorithm, we examine the

candidate keywords that we have retrieved from the collection so far and we pick one to

be issued as our next query. We describe the keyword extraction and selection processes

in section 2.2. In order to bootstrap our algorithm, we consider an initial description of

the topic as a set of terms. This initial description of the topic can either be one or more

terms that are relevant to the topic, or one or more documents relevant to the topic.

After the first step, and after we have downloaded each batch of results based on the

term that we queried, we augment our list of candidate terms to include terms that were

newly found. This however, implies that we need to be able to determine whether the

downloaded page pertains to the desired topic or not. For this step, we also employ a

classifier as we will discuss in more detail in Section 2.3.



Algorithm 2.1

( 1 ) W o r d C o l l e c t i o n = d i ;

( 2 ) w h i l e ( a v a i l a b l e r e s o u r c e s ) do

/ / e x t r a c t t h e t e r m s and b u i l d a W o r d C o l l e c t i o n

( 3 ) i f ( c n t ++ mod N == 0)

T ( W o r d C o l l e c t i o n ) = E x t r a c t T e r m s ( W o r d C o l l e c t i o n ) ;

/ / s e l e c t a te rm t o send t o t h e s i t e

( 4 ) q i = S e l e c t T e r m ( T ( W o r d C o l l e c t i o n ) ) ;

/ / send query and a c q u i r e r e s u l t i n d e x page

( 5 ) R( q i ) = QueryWebSite ( q i ) ;

/ / download and e v a l u a t e t h e pages o f i n t e r e s t

( 6 ) DownloadAndEvaluate (R( q i ) , p i , W o r d C o l l e c t i o n ) ;

done

Fig. 2. Topic-Sensitive Crawling of a Hidden Web Site

Figure 2 shows the algorithm for a Topic-Sensitive Hidden Web Crawler. First, the

Word Collection is initialized with an exemplary document, di. Step (3) of the algorithm

is only issued once every N times –to reduce the number of required computations– and

it extracts the best terms of the Word Collection. This is done by calculating the TF/IDF

weight for every term of the collection. The process is explained in detail in Section 2.2.

Step (4) picks the best of the terms that Step (3) extracted from the document, that has

not been used so far, while step (5) uses this term to issue a query and retrieves the re-

sult index page. Finally, Step (6) downloads the Hidden Web pages that were included

in the results and had not been previously downloaded and evaluates the contents of the

results using one of the policies (pi) presented in this work. The evaluation process of

this step is responsible for the maintenance of the collection of words used for keyword

extraction. This process depends heavily on the policy that is to be followed. The dif-

ferent policies are explained in Section 2.3. This process is repeated (Step (2)) until we

use our available resources (e.g. number of queries allowed, storage, bandwidth, etc.)

2.2 Word Collection

In this section we provide the details of the Word Collection that serves as a pool of

possible queries for our algorithm.

This pool of words is the document di used in Step (1) of the Algorithm 2.1. It

consists of text that is related to the topic in search and is initialized with an exemplary

document that describes that topic. So, if for instance we wanted to crawl for sports

articles from a news site, we could provide the algorithm with an input document (or

snippet, or a small set of keywords) that would consist of a few sport-related articles.

However, the Word Collection cannot remain static during the execution of the algo-

rithm for a variety of reasons.

First, the input document given to the algorithm during the initialization of the Word

Collection, may not be enough for the extraction of all (or enough) terms that are needed

for the retrieval of a sufficient amount of Web Pages. No matter how good that initial

document may be in capturing the essence of the topic in search, it may manage to

provide only a limited number of terms. Second, the initial Word Collection may be too

specific, in a way that the terms extracted would not be general enough to capture the



whole topical area of the document. For instance, if those sport-related articles men-

tioned earlier, were taken from a WNBA fan-site, the terms extracted from the Word

Collection would retrieve results concerning women’s sports and basketball. We are in-

terested in matching the input document with a broad topic, in order to retrieve all the

related Web Pages. Therefore, it is necessary to broaden our Word Collection during the

execution of our algorithm. Finally, to successfully retrieve the maximum amount of

Web Pages from a Hidden Web site, it is essential that we adapt to its terminology. For

instance, we cannot retrieve but a subset of Web Site that indexes multilingual content

if all the words in our Word Collection are English.

Therefore, it is clear that for effective Topic-Sensitive Hidden Web Crawling, the

pool of words that is used for term extraction must be enriched continuously as well as

adapted to the site in search. To face this issue, we exploited the contents of the results

as potential parts of the Word Collection. Each result page is evaluated using one of the

policies described in Section 2.3 and the contents of the ones relevant to the topic in

search are added to the Word Collection.

In that way, the Word Collection is able to provide a sufficient amount of terms to

be issued as queries. Furthermore, since the Word Collection is updated with content

directly from the site in search, it can provide the algorithm with terms that not only are

relevant to a specific topic, but have a higher significance for that site.

In order to effectively retrieve results, the queries picked from the Word Collection

must be focusing on the topic that we are interested in. To successfully address this

matter, in Step (4) we use the well-known TF/IDF term weighting system that measures

accurately the general importance of a term in a collection.

2.3 Result evaluation policies

In this section we provide the details of the various evaluation policies that we employ in

our work. These policies are used in order to decide if each page contained in the results

is relative to the topic in search, and therefore will be helpful later. The contents of the

pages that are considered in-topic are added to the Word Collection, and consequently

take part in the keyword selection process.

The policies that we consider in our work are the following:

– perfect: We use the categorization information directly from the site in search. Each

document of dmoz and Stack Exchange is classified into topics and this policy uti-

lizes this knowledge. Of course such information is not available in most cases. In

our work, we will use this policy as a benchmark to determine how well the rest

of the policies can do relative to this one that has perfect information regarding the

topic that every result document belongs to.
– do-nothing: We accept all of the returned pages as in-topic. This policy updates

the Word Collection with every page the crawler manages to discover. Since the

first few terms are extracted from the input document it is expected that the first

queries that will be submitted will be meaningful and so the corresponding result

pages will have a high chance of being in-topic. However, since the results are never

filtered it is expected that a lot of out-of-topic pages will find their way to the Word

Collection and affect the term selection process significantly. Thus, this policy can

also be used as a comparison point for the other policies.



– NaiveBayes: We use a Naive Bayes classifier that decides if a result is relevant or

not to the topic in search. This policy examines the effects of using a topic classifier

during the crawling process. The classifier needs to go through a training phase

before it can be used. We feed the classifier with samples of documents belonging

to a certain topic and then are able to test if other documents should be classified

under this topic or not. Therefore, it is clear that this method can only be used for

topics that the classifier is already trained for. Obviously, the better the classifier is

trained the less erroneous pages will be added to the Word Collection.

– CosineSimilarity: We examine the cosine similarity of every result page with the

initial example document and accept only a small percentage of the closest pages. In

this way we ensure that the pool of words will be enriched only with terms closely

related to the topic defined by our input. This policy is more flexible compared to

the NaiveBayes policy in terms of adaptability as it requires no training. However,

since this method depends heavily on the input document, we will examine how the

quality of the input document affects performance in our experimental section.

3 Experimental Evaluation

3.1 Experimental Setup

We start our experimental evaluation by presenting the datasets used in our experi-

ments. Then, we demonstrate the performance of the proposed policies as described in

Section 2.3 for a variety of topics. For the experiments we present here, we set variable

N of Algorithm 2.1 to 7. That is, we update the Word Collection of Algorithm 2.1 ev-

ery 7 queries. We experimentally tested different values for N and we found that 7 is

essentially the breaking point after which we would observe a significant degradation

in terms of the performance of our algorithms. Additionally, during the operation of the

CosineSimilarity policy, we kept the top 1% of the returned documents.

For our experiments we used two different datasets, namely the Open Directory

Project [1] and all the public non-beta Stack Exchange sites [2] contents. Dmoz indexes

approximately 5 million links that cover a broad area of topics. Each link is accompa-

nied with the site’s title, a brief summary and its categorization. The links are searchable

through a keyword-search interface and dmoz enforces an upper limit on the number of

returned results (10,000 results). The Stack Exchange sites contain a total of 391,522

questions over twenty different topics. In order to further examine the performance of

our algorithms, we enforced an upper limit of 1,000 results per query for this dataset as

well. We considered the titles and summaries of each indexed link of the dmoz website

and the questions of the Stack Exchange sites as documents, and allowed our policies

to utilize them during the keyword extraction process.

For every topic we studied here, we needed an initial exemplary document to serve

as a representative of that topic. In the following, we used random documents from

the sites from the respective topics to serve as such exemplary documents. We do not

report on how selecting a different initial document affects performance as we experi-

mentally confirmed the findings of [17] that the selection of the first document does not

significantly affect the returned results. However, we do study how the number of initial

exemplary documents affects performance in Section 3.5.



3.2 Evaluation of the different policies over the same topic

We start our evaluation by studying the effectiveness of the policies proposed in Sec-

tion 2.3 in retrieving pages of a given topic from dmoz and Stack Exchange. We show

the fraction of documents returned for dmoz and Stack Exchange as a function of the

queries issued in Figures 3a and 3b respectively. For dmoz we report results for the topic

Sports while for Stack Exchange we report results for the topic Wordpress. The results

over topics other than Sports and Wordpress, are very similar to figures 3a and 3b. We

study the performance of our policies on additional topics in Section 3.4.
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(b) Topic Wordpress of Stack Exchange
Fig. 3. Results of the four policies over two datasets

For the topic Sports dmoz, contains a total of 90,693 pages. As Figure 3a shows,

all four policies behaved identically for the first seven queries, where only the initial

document is being used for keyword extraction. Do-nothing’s performance was enor-

mously affected after those first few queries, when the Word Collection was updated

with all the returned results, since as the name of the policy implies, no action was

taken to filter them. As a consequence, Do-nothing performed badly, as expected. Poli-

cies Perfect and NaiveBayes behaved similarly with the first one managing to retrieve a

slightly bigger percentage of Sports-related documents. This can be explained from the

fact that the two policies had a high percentage of common queries issued (28%). After

210 queries, the Perfect policy retrieved 86.43% of the total relevant documents, while

the NaiveBayes policy managed to collect 83.42% of them.

The CosineSimilarity policy managed to outperform all three of them by retrieving

89.66% of the documents categorized under the Topic Sports after issuing about 180

queries. 19% of the terms used for query submission were common with the Perfect

policy and 20% of them were common with the NaiveBayes policy. This implies that

CosineSimilarity does a better exploration of the keyword space compared to the other

policies and it can find keywords leading to more relevant documents earlier compared

to the Perfect policy which takes about 220 queries to achieve the same performance.

We also retrieved all the documents of the Stack Exchange sites relevant to the

Wordpress publishing platform. There was a total of 17,793 questions categorized under

this topic. The results are illustrated in figure 3b. After 572 queries, the Perfect policy

retrieved 85% of the total relevant documents, the NaiveBayes policy retrieved 81% and



the CosineSimilarity policy managed to collect 71% of them. The significant amount of

more queries needed for the retrieval of documents from this dataset is explained by the

much smaller upper limit of returned documents per query.

3.3 Queries issued and topic accuracy

In order to investigate more closely the performance of our policies we further examined

the actual queries issued by each policy. We present a sample of queries issued by

each policy together with the precision achieved (i.e. fraction of in-topic documents) in

Figure 4.

One thing that we should note is that there is a lot of overlap in the results of each

term. Although every policy manages to discover meaningful terms that return a good

number of results, a large portion of them has been already discovered by previous

queries. Additionally, the Do-nothing policy is the most successful in finding “popu-

lar” terms. Most of the terms illustrated in Figure 4 returned the maximum of 10,000

results, while the average after 210 queries was 8,650. This is due to the fact that the

Word Collection of this policy was eventually enriched with terms from every possible

topic of the Open Directory Project. The NaiveBayes policy was second with 7,927, the

Perfect policy third with 7,530 and the CosineSimilarity policy last with 7,426 results

per query.

Using the dmoz categorization information for every downloaded document, we also

measured the precision of the different policies as shown in Figure 4. Overall, the Per-

fect policy was the most successful one since it is allowed to use the class information.

Of course, in practice such information is not available and thus this policy serves as

a benchmark in terms of classification precision. The Perfect policy achieved a 68.2%

precision on average.

The Do-nothing policy chooses to accept every document it downloads as relevant to

the topic in search, so its errors are equal to the total number of links retrieved minus the

links that were actually in-topic. It’s accuracy was 7.8% on average. The classifier used

in the NaiveBayes policy on the other hand, proved to be very effective and achieved

a 64.4% precision on average. However, the impact of all errors is not the same for

our algorithm. An in-topic document that is classified as irrelevant is not added to the

Word Collection and does not affect the term extraction process. On the other hand,

an irrelevant document that “sneaks” its way into the Word Collection, may cause the

selection of inappropriate terms for query submission. For the NaiveBayes policy 45%

of the documents added to the Word Collection, were actually categorized under another

topic in the dmoz classification taxonomy.

Finally, the CosineSimilarity achieved a 58.6% precision on average. However, this

did not affect the policy in a negative way. The retrieved documents, despite the fact

that they belong to a different topic, had very high cosine similarities with the input

document, so naturally, the Word Collection was not altered in an undesirable way. As

a result, the CosineSimilarity policy outperformed the other policies in terms of recall

as we showed in the previous section.



No Term Precision

1 results 42.83%

2 statistics 43.61%

3 roster 71.36%

10 men 27.26%

15 scores 27.89%

20 players 30.62%

25 hockey 41.85%

30 tennis 7.43%

40 rugby 14.43%

60 sport 3.82%

100 competition 12.28%

(a) Perfect

Term Precision

results 42.83%

statistics 43.61%

roster 71.36%

schedules 10.31%

church 0.00%

coaching 17.89%

methodist 0.00%

beliefs 10.11%

stellt 0.00%

bietet 0.00%

nach 0.00%

(b) Do-nothing

Term Precision

results 42.83%

statistics 43.61%

roster 71.36%

schedules 10.31%

standings 67.96%

baseball 38.29%

records 8.38%

membership 1.52%

county 0.39%

fc 5.45%

standing 26.66%

(c) NaiveBayes

Term Precision

results 42.83%

statistics 43.61%

roster 71.36%

tables 5.61%

player 24.36%

players 33.70%

hockey 44.08%

baseball 32.20%

race 14.56%

conference 1.73%

competitive 11.61%

(d) CosineSimilarity
Fig. 4. Queries issued by the different policies.

3.4 Comparison of policies under different topics of dmoz

In this section, we present the performance of the policies Perfect, NaiveBayes and

CosineSimilarity over five different topical areas belonging to the classification tax-

onomy dmoz uses. To this end we used the following topics: Computers (103,336

documents), Recreation (91,931 documents), Shopping (87,507 documents), Society

(218,857 documents) and Sports (90,639 documents).

Figure 5a illustrates the behavior of our approach for these five different categories

of dmoz using the Perfect policy. Topics computers and sports proved to be the easiest

to retrieve while society needed a significantly bigger amount of queries to surpass the

80% barrier. This is due to the fact that society is a much larger category compared to the

rest. More specifically, topic Computers returned 92.17% of the total documents after

210 queries. Topics Sports and Recreation discovered 86.43% and 80.76%, respectively,

with the same amount of queries. Finally for the topics Shopping and Society the policy

collected 77.82% and 62.06%, respectively.

The results for the said topics using the NaiveBayes policy are presented in Figure

5b. This policy is performing slightly lower than Perfect for each of the five topics.

The ordering of the topics is, however, a little different, since the NaiveBayes policy

behaved very poorly for the topic Recreation, which was ranked fourth below the topic

Shopping. More explicitly, after 210 queries, topics Computers collected 89.81% of the

documents, topic Sports 83.42%, topic Shopping 73.34%, topic Recreation 70.86% and

topic Society 54.86%. This is due to the fact that Recreation is a much broader topic

than the rest and thus Perfect can benefit more by knowing the topic of the documents

beforehand.

In Figure 5c we observe similar results for the CosineSimilarity policy. Topics Com-

puters and Sports were again first with 91.84% and 89.66%, respectively, after issuing

210 queries. Topic Recreation collected 83.55% of the related documents, while topics

Shopping and Society returned 79.02% and 62.97%, respectively, after the same amount

of queries.

At a high level, the CosineSimilarity policy performed slightly better than the Per-

fect policy in 4 of the 5 topics examined, Computers being the only exception. Addi-
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Fig. 5. Comparison of polices on different topics.

tionally, it out-scored the NaiveBayes policy for every one of the five different topics.

Topic Recreation behaved better than Shopping after the 87th query, as it did with the

Perfect policy after the 162nd query.

3.5 Impact of input document size

The CosineSimilarity policy depends heavily on the input document, since it does not

use it to only extract the first few queries to be issued, but to evaluate the result doc-

uments retrieved as well. To this end, we examine the impact of the size of the initial

document on the behavior of this policy. The other three policies use the initial docu-

ment only for the first step of the process, so they are not affected as much by the size

of the initial document.

Figure 6 illustrates the results for CosineSimilarity under three different input doc-

uments of variable size, while retrieving documents from dmoz under the Computers

category. As we can see, as we limit the input size, the performance deteriorates. How-

ever, even for a very small initial document we can still get reasonably good results.

More specifically, using an input document that consists of 1,000 titles and summaries

of links indexed by dmoz, the CosineSimilarity policy retrieved 91.14% of the relevant

documents after 190 queries. In comparison, with only 100 titles and summaries, the

policy discovered 87.77% of the documents with the same number of queries. With an

input document of 50 titles and summaries, it retrieved a sizeable 86.67% of them.
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Fig. 6. Impact of the input document size using CosineSimilarity on topic Computers

3.6 A high-level comparison to generic Hidden Web crawling

In [17], an experiment on crawling all of the dmoz site’s documents is presented. It

takes about 700 queries to retrieve a little over 70% of its contents and after that we

would have to analyze the pages to identify which ones belong to the topic at hand.

The CosineSimilarity policy proposed in this paper was able to download 70% of topics

Sports and Computers after 52 and 60 submitted queries respectively. Therefore, we

can significantly reduce the cost of crawling when we are interested in a specific topic

by using our techniques.

4 Related Work

Research on the Hidden Web has emerged during the last years. In [18], Raghavan

et al. first introduced the problem of Hidden Web crawling by presenting an archi-

tectural model for a Hidden Web crawler. Their efforts in this work, mainly focus on

learning Hidden-Web query interfaces. The potential queries are either provided man-

ually by users or collected from the query interfaces. Similar work is presented in [6]

where some new strategies for effective discovery of Hidden Web forms are presented,

while [14] discusses the approach used from Google in filling such Web forms.

In [5, 17, 21] the problem of automatically producing meaningful queries that can

return large fractions of a document collection is examined. [17] provides a theoretical

framework for analyzing the process of generating queries for a document collection as

well as examining the obtained result. In addition, the framework is applied to the prob-

lem of Hidden Web crawling and the efficiency of the approach is quantified. In [5], a

number of methods for building multi-keyword queries is presented and experimentally

evaluated to show that a large fraction of a document collection can be returned. Wu

et al. [21] focus on the core issue of enabling efficient Web Database crawling through

query selection and propose a theoretical framework that transforms the database crawl-

ing procedure into a graph-traversal problem; in the latter, the proposal is based on fol-

lowing up “relational” links. [20] developed a new set covering algorithm to address

the problem of web database crawling and in [13], the incremental web database crawl-

ing problem is examined. Our work differs from the above efforts as we retrieve only

portions of a Hidden Web site that are relevant to a specific topic.

Chakrabarti et al. studied ways to selectively search for pages relevant to a pre-

defined set of topics [9]. A complete process for discovering topic-specific resources



from the Web is presented. A classifier and a distiller are used for the evaluation of

crawled pages based on their hypertext. However, this methodology is only applicable

on the publicly indexable web, since hyperlinks are not used at all on the Hidden Web.

Since then, there has been many similar work made [16, 10, 15, 4], again for the publicly

indexable web. In [7] the authors present a method for determining the topic of a given

page based on keywords found in its URL. In our case, we opted to also use content from

the page since we download such content anyway in order to get access to keywords

that will be used to update our Word Collection.

In [23], Yang et al. propose a method for retrieving documents relevant to a query

document. Candidate phrases are extracted from an input document and a score is as-

signed to each one of them, using two different policies. The first is a linear combination

of the total TF/IDF score of all the terms of the phrase and their degree of coherence.

The second is based on the probability of pairs of terms occurring in the same document

(mutual information based). Our goal is different in that we aim at retrieving as many

documents as possible around the topic of the input document. In addition, we proceed

iteratively and learn from previously downloaded documents in order to determine our

queries.

In [3], a focused crawler for the Hidden Web is presented. Its main focus is on ex-

tracting information from labels of form elements, to associate Hidden Web sites to

topic domains and to analyze the forms to find ways to execute queries automatically.

However, the queries to be issued are not produced automatically, but are picked from

predefined resources. Bergholz et al. have also addressed this matter in [8]. However, as

the case was before, they use predefined sets of keywords named “querying resources”

in order to retrieve results from the collections it discovers. In [12], Ipeirotis et al. at-

tempted to categorize Hidden Web Databases by probing them with queries and evalu-

ating the amount of the results. They used pre-classified documents to train a rule-based

document classifier and transformed the rules it produced, to queries for use. Similarly,

[19] presents a technique called informed probing where potentially available metadata

(e.g. title, or meta tags) from the entry page to a Hidden Web site can be used as probe

keywords in order to categorize the Hidden Web sources.

5 Conclusion and Future Work

We examined how we can build a Topic-Sensitive Hidden Web Crawler that, given an

exemplary document, can effectively retrieve those documents that are relevant to a cer-

tain topic. We presented an algorithm for a Topic-Sensitive Hidden Web Crawler and

proposed and experimented with a variety of policies deployed to help us measure the

relevance of the returned documents with the searched topic. Our experimental eval-

uation indicates that our suggested algorithm has great potential for harnessing topic-

specific documents.

In the future, we plan to exploit diverse query formulations in order to further re-

duce the overheads involved in the process, to experiment with additional Hidden Web

sites that may freely provide their data, and finally, to explore techniques that may in-

crementally retrieve recently updated content.
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