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Abstract—Real-life systems entailing interacting objects have
been routinely modeled as graphs or networks. Revealing the
community structure of such systems is crucial in helping us
better understand their complex nature. Networks and the
relationships they portray are exploited by proposed community
detection techniques that seek to facilitate the discovery of
separate, overlapping, nested or fully hierarchical communities.
Nevertheless, our perception of what a community is in a
network of interacting objects, has evolved over the years. In this
respect, the decomposition of networks into possibly overlapping
organizational groups and our enhanced understanding of their
intricate interactions remain open challenges. We address these
issues through an agglomerative approach that groups pairs of
links and provides a richer hierarchical structure than previous
efforts. We attain this objective by exploiting the dispersion of
established relationships among objects in the network. Our
algorithm measures the similarity of such links as well as the
extent of their participation in multiple contexts, to determine the
order in which pairs of links should be grouped. Moreover, our
technique termed Dispersion-aware Link Communities
or DLC can handle both unweighted and weighted networks. Our
experimental results with a popular network strongly demon-
strate that our approach overcomes issues earlier techniques
stumbled upon. Furthermore, we investigate the performance
of our algorithm against ground-truth communities for a wide
range of networks and show that DLC outperforms state-of-the-
art methods.

I. INTRODUCTION

Networks are a powerful tool for modeling relations and
interactions of entities in the real world. Real-world networks
are characterized by a high level of order and organization and
allow the study of properties such as the power-law degree
distributions and the small-world structure. Another impor-
tant characteristic of networks is the presence of community
structures [13]. At a high level, communities are groups of
nodes that share a common functional property or role, e.g.
two people that went to the same high school, or two movies
with the same actor.

Although in several cases communities in a network are
distinct (e.g. Bulls vs. Knicks fans) it is often the case that
communities overlap. As an example, consider Figure 1 that
illustrates the communities of an individual in a social net-
work. The Figure displays the family, co-workers, basketball
buddies and friends from college groups. It is obvious that
the communities may overlap in various ways. For example, a
co-worker may also be a basketball buddy and a friend from
college. At a high level, identifying overlapping communities
is more challenging compared to non-overlapping ones due
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Fig. 1: Illustration of the social circles of an individual. Her
family, co-workers, basketball buddies and friends from college
are distinct yet overlapping communities.

to the fact that overlapping communities may have a more
complex structure of connections that are not easy to discern.

Effectively extracting the communities from a network
has many useful applications. To mention but a few: we can
discover people with mutual interests in a social network and
suggest them to connect. We can determine players that are
have similar styles in online games and create match-making
algorithms based on their gameplay. We can identify groups
of customers with similar behavior and enhance the efficiency
of recommender systems. Finally, we could improve news
dissemination online by utilizing community membership to
promote updates.

Early community detection approaches focused on grou-
ping the nodes of a network or search for edges that should
be removed to separate the clusters [10]. However, these
approaches do not take into account that communities may
overlap, and ultimately cannot provide an accurate represen-
tation of a network’s community structure. Ahn et al. [1]
proposed an approach that instead of focusing on nodes it
uses links, which typically have a unique identity compared
to nodes which may serve several roles within the same
network. Their approach performs hierarchical clustering of
the edges of a network, based on the similarity of the nodes
directly attached to the edges. In this way, dendrograms which
capture hierarchical community structures of the network are
produced. The approach allows for nodes belonging to several
overlapping communities.



The use of measures that rely solely on the similarity
of pairs of links, results in identifying as communities the
non-overlapping parts of communities that happen to be more
densely connected compared to the overlapping parts. This is
due to an implicit assumption on the structure of communi-
ties, i.e. that communities are expected to be more densely
connected components. However, contrary to this implicit
assumption, Yang and Leskovec, studied communities in real-
world social, collaboration and information networks [27], and
point out that two nodes are more likely to be connected
if they share multiple communities in common [26], [28].
For example, people belonging to both the co-workers and
basketball buddies communities of Figure 1, are expected to
know each other with high probability. As a result, since the
density in the area of community overlap is high for such
networks, the algorithm in [1] is misled by the high similarity
of the respective edges and identifies the overlapping area
as a single community. Algorithms [26], [28], [14], [25] that
followed the observation in [27], unfortunately do not provide
the hierarchy of community structure but instead allow only
nesting of communities.

In our work, we build upon the ideas of link clustering
and the observation that overlapping parts of communities are
denser than non-overlapping parts. Our intuition is that when
grouping pairs of edges we should capture the extent to which
a link belongs to multiple overlapping communities. We do so
by proposing a new metric based on dispersion. We proceed
in an agglomerative manner and first group the similar pairs
of edges that belong to single communities. Additionally, we
purposely delay the grouping of the pairs of edges that lie in
the overlap. As we will show in our experimental evaluation,
the result is a better and more intuitive representation of the
community structure in a number of real-world networks. The
lower levels of our resulting dendrograms feature pairs of links
that connect nodes sharing a single functional role. On the
other hand, higher levels of the hierarchy contain pairs of
links that act as brokers between different, yet overlapping
communities.

In summary, we make the following contributions in this
paper:

• We propose an algorithm that effectively reveals the
overlapping nature of real-world network communi-
ties.

• We study how to handle both unweighted and
weighted networks and retrieve a rich and intuitive
hierarchical community structure.

• We experimentally evaluate our approach against the
state-of-the-art approach using publicly available net-
works.

Our paper is organized as follows: We first introduce some
notation and metrics that will be useful in describing our ap-
proach in Section II. In Section III we describe our hierarchical
overlapping community detection algorithm named DLC (from
Dispersion-aware Link Community detection). In Section IV,
we extensively evaluate our approach both qualitatively and
quantitatively. Section V reviews related work and finally,
Section VI concludes our paper.

II. BACKGROUND

In this section we review some basic principles and de-
finitions for our work. Firstly, we discuss embeddedness and
absolute and recursive dispersion, that are used to measure the
strength of ties. Then, we detail the similarity measures used
in the work of Ahn et al. [1]. Finally, we give the definition
of some performance metrics, including Average F1 score,
a measure that tests the accuracy of community detection
algorithms against ground-truth communities.

A. Embeddedness

The closeness between nodes in a network and its impact
on the network’s dynamics has been studied in [15], [20].
Intuitively, a large number of shared neighbors between nodes
indicates a strong tie, whereas a few mutual neighbors indicate
a weak tie. Therefore, a frequently used measure to estimate the
tie strength between two nodes is embeddedness, that captures
how much the neighbors of two nodes overlap. Embeddedness
is formally defined as:

emb(i, j) = |N+(i) ∩N+(j)| (1)

where N+(i) is the set of neighbors of node i.

In the case of social networks, individuals who share
a particular focus are more likely to share joint activities
with each other, as opposed to people that do not share that
focus [8]. Therefore, we expect individuals to organize their
relations around relevant aspects of their social environment,
also termed as foci. As relationship partners share neighbors
from several different foci, embeddedness has been used for
the identification of couples [9].

B. Absolute and Recursive Dispersion

A more powerful measure of tie strength that targets indi-
viduals who span foci is that of Backstrom and Kleinberg [2],
that takes into account the dispersion, i.e., the extent to
which two individuals’ mutual friends are not themselves well-
connected.

Absolute dispersion is defined as:

disp(i, j) =
∑

s,t∈Cij

d(s, t) (2)

where Ci,j is the set of common neighbors of i and j, and
d(s, t) is a distance function equal to 1 when s and t are not
directly linked themselves and have no common neighbors in
G other than i and j, and 0 otherwise.

For a fixed value of disp(i, j), increased embeddedness
is a negative predictor of whether j is the partner of i. Thus,
absolute dispersion should be normalized using embeddedness.
In addition to this, its performance strengthens by applying it
recursively. We initially consider xij = 1 for all neighbors
j of i. Then we iteratively update xij using the following
formula:

xij =

∑
w∈Cij

x2
iw + 2

∑
s,t∈Cij

d(s, t)xisxit

emb(i, j)
(3)



The value produced after the third iteration of (3) is
empirically found to perform the best [2]. We will refer to
this value as recursive dispersion of i and j for the rest of this
paper.

C. Alternative Similarities

The algorithm of Ahn et al. [1], to which we will refer
to as LC in the following, is an example of an agglomerative
approach. However, in contrast to earlier similar approaches,
LC focuses on links instead of nodes. The links of a network
represent a node’s functionality in many contexts, and thus,
LC allows overlaps between communities. In particular, LC
estimates the similarities between pairs of links using the
Jaccard coefficient. Similarity S between edges eik and ejk,
is defined to be:

S(eik, ejk) =
|N+(i) ∩N+(j)|
|N+(i) ∪N+(j)|

(4)

where i and j are both neighbors of k and N+(i) denotes
the set of neighbors of node i.

Applying the method in weighted networks is made pos-
sible through the adoption of the Tanimoto coefficient [1].
According to this, similarity S between edges eik and ejk is:

S(eik, ejk) =
aiaj

|ai|2 + |aj |2 − aiaj
(5)

where i and j are both neighbors of k and ai is a vector
of the weights of links between node i and the nodes in the
first-order neighborhoods of both nodes i and j.

D. Partition Density

Hierarchical community detection algorithms provide us
with a dendrogram describing all the resulting communities,
as well as their hierarchical structure. Ahn et al. [1] suggest
the use of the partition density, D, to cut the dendrogram at
the level that produces its optimal value. Partition density, is
formally defined as follows:

D =
2

|E|
∑
c∈C

ec
ec − (nc − 1)

(nc − 2)(nc − 1)
(6)

where C is the set of communities discovered, ec is the
number of links in a community c ∈ C, and nc is the number
of nodes all the links in ec touch.

Alternatively, the tree can simply be cut at the level that
produces the desired number of resulting communities.

E. Performance Metrics

Evaluating and comparing communities detected by dif-
ferent algorithms is not a trivial task. Large networks exhibit
extremely complex organization and cannot be visualized in
meaningful ways. However, we can measure the accuracy of a
community detection algorithm given the presence of ground-
truth communities, with the use of Average F1 score, as it is
defined in [28]. We repeat here the definition for completeness:

Given a network G(V,E), we consider a set of detected
communities Ĉ and a set of ground-truth communities C∗. As
there is no standard way of assigning a detected community
Ĉi to a ground-truth community C∗i , we use the F1-score of
the best matching ground-truth community to each detected
community, and the F1-score of the best matching detected
community to each ground-truth community. In particular, we
define Average F1 score as:

AF1(Ĉ, C∗) =
1

2
(

1

|C∗|
∑

Ci∈C∗
F1(Ci, Ĉg(i))

+
1

|Ĉ|

∑
Ĉi∈Ĉ

F1(Cg′(i), Ĉi))
(7)

where the best-matching g and g′ are defined as follows:

g(i) = argmax
j

F1(Ci, Ĉj) (8)

g′(i) = argmax
j

F1(Cj , Ĉi) (9)

In addition to Average F1 score, the coverage percentage
and mean overlap are other metrics used in the literature [1].
The first, measures the percentage of nodes that participate in
the resulting communities, and the second, expresses the mean
number of communities each node participates in.

III. OUR DISPERSION-AWARE
LINK COMMUNITIES APPROACH

We present here our approach for revealing the hierarchical
community structure of a network. We first discuss our obser-
vation regarding the reasons previous hierarchical approaches
extract overlapping parts of different communities as a single
separate community. Then, we propose a way to alleviate this
issue through the use of tie strength measures that capture the
notion of nodes functioning in a single or multiple contexts.
After that, we discuss the measure used in our approach.
Next, we detail our algorithm, termed Dispersion-aware
Link Communities (DLC). Finally, we provide the mod-
ifications that are necessary for it to function with weighted
networks.

A. Observation

Community detection algorithms have evolved from grou-
ping related nodes into separate functional subunits, to discove-
ring communities that allow overlaps. Yang and Leskovec re-
cently empirically observed that overlapping detection methods
discover communities based on a false assumption [27]. In
particular, they consider non-overlapping parts of communities
to be more densely connected than the overlapping parts.
We provide here an example that highlights why using the
Jaccard coefficient as a similarity measure of two links leads
to the identification of overlapping communities that follow
this false assumption.

Figure 2 depicts the well-known character co-occurrence
network from Victor Hugo’s novel, entitled “Les Misérables”.



Fig. 2: Character co-occurrence network from Victor Hugo’s
novel, “Les Misérables”. Javert, and Thénardier are acquainted
with characters clustered in multiple groups of the network and
their relationship with Cosette appears to be similar.

We observe that three of the main characters, namely Cosette,
Javert, and Thénardier, appear in a dense area. We also notice
that the links of Javert, illustrated using red lines, are quite
similar to those of Thénardier, illustrated with cyan lines.

Using (4) we ascertain that the Jaccard similarity corre-
sponding to the pair of edges connecting Cosette with Javert
and Cosette with Thénardier is indeed relatively high. In
particular, Javert and Thénardier have cumulatively a total of
24 neighbors and share 11 of them. Therefore, through (4) we
get that the similarity of this pair of edges is 0.46. Due to
this score, LC is eventually led to identify a community that
includes all three characters.

However, in Hugo’s novel, Cosette leaves the Thénardier
family at a very young age, whereas her acquaintance with
Javert occurs many years later. The reason for this effect is that
Javert and Thénardier share a number of acquaintances that are
not acquainted to each other. Therefore, choosing to include an
edge pair that merges the communities they belong to, leads to
the unification of two distinct, yet overlapping, communities
into a single one. Worse still, this unification occurs at an
early stage of the algorithm and the hierarchical structure of
the network is also detected incorrectly.

LC’s inability to handle this type of overlaps is also
reported in [29], following observations concerning the pre-
sence of connector nodes and densely connected overlaps of
communities in a broad range of networks.

B. Employing dispersion-based measures for overlapping
community detection

The relationship between Javert and Thénardier is a parti-
cular case of a strong tie which is frequent in networks and has
to be considered when identifying overlapping communities.
The two characters act as connector nodes for several over-
lapping communities. To identify connections of this type we
utilize the new dispersion-based tie strength measures detailed
in [2].

Backstrom and Kleinberg propose the use of absolute
dispersion, as defined in (2), as a much more effective measure

than embeddedness for identifying spouses or romantic part-
ners in a network. They analyze real data from facebook
and conclude that high dispersion is indeed present, not only
to spouses or romantic partners, but to people who span foci
in general. The latter includes the relationship of Javert and
Thénardier. Ranking links between nodes using the recursive
dispersion, as defined in (3), is found to perform the best when
identifying such relationships.

We propose the use of dispersion-based measures to single
out the links that belong in overlapping parts of communities.
This allows for prioritizing similar links with adjacent nodes
that do not span foci. Thereby, we manage to favor groupings
of pairs of edges that lie in the non-overlapping parts of
communities and delay those pairs that lie in the overlapping
parts. In this way, overlapping communities are joined at a
higher level of the resulting tree which then depicts more
accurately the hierarchical structure of the network and its
communities.

C. Normalized recursive dispersion

Recursive dispersion exhibits high values of standard de-
viation for all the networks that were examined in this work.
Additionally, the distributions of the recursive dispersion va-
lues for all networks are heavy-tailed.

Backstrom and Kleinberg [2] employ this measure to rank
pairs of nodes. Therefore, a high value of standard deviation
and a heavy-tailed distribution of recursive dispersion values
have no impact on their work. However, we employ this
measure to balance the similarity of two edges and disfavor
the pairs that span foci. Thus, we need to alleviate the problem
of recursive dispersion governing the similarity of a pair.

To do so, we perform a preprocessing step that standardizes
the range of recursive dispersion values. In particular, we opt
to normalize the values of recursive dispersion by applying
feature scaling, to bring them into the range [1, 1000], as
well as log transformation. After both these actions have
been applied, we increase the value by 1, resulting in values:
1 ≤ nrd(i, j) ≤ 4 ∀eij ∈ E. As we will show in Section IV,
this range of values performs well.

We formally define the normalized recursive dispersion of
nodes i, j with eij ∈ E to be:

nrd(i, j) = log(1 + 999
(rd(i, j)−min rd)

(max rd−min rd)
) + 1 (10)

where rd(i, j) is the recursive dispersion of nodes i and j,
and max rd,min rd are the maximum and minimum values
of recursive dispersion for the graph G.

D. DLC Algorithm

We present here the main contribution of this work, the
DLC algorithm.

DLC performs hierarchical agglomerative clustering on the
links of a network. It builds the hierarchy of communities by
progressively merging pairs of links. The order on which the
merging occurs, is determined by the similarity of pairs of
links. To capture this similarity we employ both (4) and (10).



Algorithm 1: DLC(G)
input : An undirected graph G = (V,E).
output : A dendrogram depicting the hierarchical structure of

communities of G.
1 begin
2 rd← dict();
3 for iter ← 1 to 3 do
4 foreach (i, j) ∈ E do

5 rd[(i, j)]←
∑

w∈Cij
x2
w+2

∑
s,t∈Cij

d(s,t)xsxt

emb(i,j)
;

6 nrd← normalize(rd);
7 similarities← heap();
8 for k ∈ V do
9 for (eik, ejk)← combinations(n+(k), 2) do

10 if (i, j) ∈ nrd then
11 dispersion← nrd[(i, j)];

12 else
13 dispersion← nrd[(i,k)]+nrd[(j,k)]

2
;

14 S(eik, ejk)←
|n+(i)∩n+(j)|
|n+(i)∪n+(j)| ;

15 similarity ← S(eik,ejk)

dispersion
;

16 similarities← (similarity, (eik, ejk));

17 foreach (similarity, (eij , ejk)) ∈ similarities do
18 join clusters(eik, ejk);
19 if len(clusters) == 1 then
20 break;

In particular, DLC uses the normalized recursive dispersion
measure to balance the similarity S of pairs of links. When
all clusters are merged, the resulting dendrogram is cut at the
level that produces the optimal partition density. Alternatively,
it can be cut at a level that produces the desired number of
communities.

Algorithm 1 is a simplified version of DLC, appropriate for
unweighted networks. We detail the modifications needed for
a weighted network in Section III-F. The algorithm accepts
a graph G(V,E) as its input and produces a dendrogram
depicting the rich hierarchical structure of its (possibly over-
lapping) communities.

Initially, we consider every link of graph G to be a com-
munity of its own. Lines 2–5 compute the recursive dispersion
of all edges e ∈ E. Then, using this measure in Line 6, we
compute the normalized recursive dispersion value of each
edge, according to (10). Afterwards, for every node of the
graph, we examine the similarity of all possible pairs of its
edges. We first calculate the distance of two edges using (4)
(Line 14), and then we balance this distance using the pre-
viously calculated normalized recursive dispersion measure.
In particular, we divide the value of (4) with the normalized
recursive dispersion of the adjacent nodes of the two edges. In
case the adjacent nodes are not linked we use the average of
the normalized recursive dispersion of the nodes of each edge
(Lines 10–13, 15–16). Finally, we iterate through the sorted
similarities and group the respective edges (Lines 17–18). At
every grouping stage, we keep the action that takes place and
allows the construction of the dendrogram, and we calculate
the partition density to determine at the end the best level at
which to cut the tree at. When the tree is built, i.e., when we
are left with a single cluster, DLC terminates (Lines 19–20).

E. Complexity of DLC

Computing the recursive dispersion for every edge, re-
quires finding the set of common neighbors of its two nodes,
and then examining for every possible pair of neighbors if they
are linked through another path in the network. This requires
total time O(|E|d3), where |E| is the number of edges in
the network and d the network’s average degree. Then, DLC
calculates the similarity for every pair of edges. In particular,
for every node we examine

(
d
2

)
pairs and find their common

neighbors. The computed similarity at every step is inserted
in a heap. This step takes time O(|V |d3log(|V |)), where |V |
is the number of nodes in the network. Finally, DLC iterates
through the computed similarities and groups the respective
clusters, which takes time O(|V |d2log(|V |)). Therefore, the
overall complexity is O(|V |d3log(|V |)). We note here, that the
average degree of real-world networks, such as the ones we
examine in our experiments, is relatively small.

LC also features a phase in which for every node we exa-
mine

(
d
2

)
pairs to find their common neighbors and insert their

similarity in a heap. Therefore, its complexity is equivalent to
that of DLC.

F. Weighted networks

Weights of links are valuable additional information that
should be considered in network analysis, as they offer a
more accurate representation of the strength of a tie between
nodes [10]. For instance, in a collaboration network links can
be weighted according to the number of papers co-authored
by pairs of scientists, to differentiate the authors that work
frequently together from those that co-authored only a few
papers.

LC is appropriate for both weighted and unweighted net-
works, as (5) can be used instead of (4) when the edges are
weighted; DLC uses dispersion-based measures that can be
modified similarly to consider weights as well.

Absolute dispersion depends on the number of mutual
neighbors of two nodes that are not connected to each other,
i.e., their weight is 0 in a weighted network. Normalized
recursive dispersion additionally depends on the embeddedness
of two nodes. Therefore, to use this measure in weighted
networks, we simply have to alter (3) and take the weights
of links into account, as follows:

xij =

∑
w∈Cij

x2
iw + 2

∑
s,t∈Cij

d(s, t)xisxit

aiaj
(11)

where ai is a vector of the weights of links between node
i and the nodes in the first-order neighborhoods of both nodes
i and j.

IV. EXPERIMENTAL EVALUATION

We implemented and tested our approach on a number of
publicly available and well-studied networks, and compared
our results with the state-of-the-art approach of Ahn et al. [1].
In this section, we first describe the dataset used for our
experiments and list the details of our implementation. Then,
we investigate the recursive dispersion scores of a small



network nodes edges mean degree communities
Les Miserablés 77 254 6.6 -

congress 526 14, 198 53.98 903
philosophers 1, 231 7, 303 9.71 1, 162

dblp 317, 080 1, 049, 866 6.62 13, 477
amazon 334, 863 925, 872 5.53 151, 037

TABLE I: The undirected networks examined in our experi-
ments.

network, as well as their impact when used in hierarchical
link clustering. After that, we present results of our algorithm
against the LC approach and examine the differences between
the discovered communities. Additionally, we provide a com-
parison between the two algorithms using the Average F1 score
metric. Finally, we compare the behavior of the two algorithms
using metrics presented in [1].

A. Experimental Setting

Our dataset comprises five networks of various sizes, four
of which are accompanied with ground-truth communities. The
properties of these networks and their respective ground-truth
communities are listed in Table I.

Below, we furnish the fundamental characteristics of the
five networks we have experimented with:

• Les Miserablés1: The co-appearance network of cha-
racters in the novel “Les Miserablés”, extracted by
Knuth [18]. The nodes of this network are the cha-
racters of the novel. Pairs of nodes are linked with an
edge if the corresponding characters encounter each
other in the novel. No ground-truth community is
available, however, the small size of the network and
the popularity of the novel allows for a qualitative
evaluation.

• congress2: The network of legislative collaborations
between US representatives of the House and the
Senate during the 111st US congress (2009-2011) [6].
Nodes are politicians who are linked with an edge if
they have at least 75 co-sponsorships to bills. Edges
that were created by bills with more than 10 co-
sponsors were removed. Each bill is related to several
subjects and ground-truth communities are formed
using subjects politicians frequently worked on.

• philosophers3: A network of famous philosophers
extracted from pages of the english-language
Wikipedia4 [1]. Wikipedia maintains a list of
philosophers and hyperlinks in each philosopher’s
article are used to create edges between them.
Wikipedia also maintains a taxonomy of
philosophers according to their field, theory or area,
which is used to produce ground-truth communities.

• dblp5: A co-authorship network with authors as nodes
and an edge linking them in case they have published

1Available here: http://www-personal.umich.edu/∼mejn/netdata/
2Available here: http://www.michelecoscia.com/?page id=42
3We thank Sune Lehmann for generously sharing the philosophers dataset.
4Wikipedia: http://en.wikipedia.org
5Available here: https://snap.stanford.edu/data/

rank node u node v
normalized

recursive dispersion
1 Gueulemer Madame Thénardier 4.0
2 Gavroche Gueulemer 3.986

14 Madame Thénardier Thénardier 3.061

21 Fantine Madame Thénardier 2.953
22 Cosette Madame Thénardier 2.953

29 Bamatabois Fantine 2.773

37 Cosette Thénardier 2.684

51 Marius Thénardier 2.614

80 Javert Jean Valjean 2.524

88 Javert Thénardier 2.483

TABLE II: A selection of links from Les Misérables co-
appearance network with high normalized recursive dispersion
values involving popular characters of the novel.

at least one paper together [27]. Ground-truth commu-
nities are formed using authors who published work
to a certain venue, i.e. journal or conference.

• amazon5: A network formed after crawling the
Amazon website. Nodes are products and an edge
linking them exists in case they are frequently co-
purchased [27]. Ground-truth communities are formed
using the product categories that the Amazon website
provides.

For experiments against LC we used the author’s Python
implementation of the algorithm6. Our algorithm, implemented
using Python as well, is also available online7.

B. Impact of normalized recursive dispersion

Table II shows some exemplary values of normalized recur-
sive dispersion for edges of Les Misérables network, ordered
descendingly. We opted to list pairs of characters that are
popular along with their ranking, instead of simply presenting
those that ranked the highest, to make more evident that this
measure indeed captures those edges that act as bridges to two
or more overlapping communities.

DLC uses normalized recursive dispersion to balance the
values of similarities between edges of a network and prioritize
those pairs that do not have adjacent nodes exhibiting high
dispersion. The impact of the use of normalized recursive
dispersion is evident in Table III. We present pairs of edges
that are balanced using the normalized recursive dispersion
values listed in Table II, along with their similarity and ranking
using LC and DLC. We observe that all these pairs of edges
ranked lower with DLC than with LC, and in certain cases the
difference in ranking is quite large. The examples are again
picked in order to involve popular characters to enhance the
understanding of the reader. The pairs of edges in Table II
either belong in multiple communities and should be moved
lower to nest them, or do not mutually belong in a community
and should be moved low enough to let the clusters form
without them being considered.

6Available here: https://github.com/bagrow/linkcomm
7Available here: http://tinyurl.com/nfrese5.



edge eik edge ejk similarity normalized
LC rank DLC rankrecursive dispersion

(Gueulemer, Babet) (Madame Thénardier, Babet) 0.5333 4.0 866 1, 446
(Gavroche, Babet) (Gueulemer, Babet) 0.3077 3.9857 1, 286 1, 875

(Madame Thénardier, Jean Valjean) (Thénardier, Jean Valjean) 0.6111 3.061 736 1, 082
(Fantine, Javert) (Madame Thénardier, Javert) 0.2174 2.9527 1, 487 1, 927

(Babet, Madame Thénardier) (Cosette, Madame Thénardier) 0.2105 2.9522 1, 495 1, 949
(Bamatabois, Jean Valjean) (Fantine, Jean Valjean) 0.1905 2.7733 1, 583 1, 984

(Cosette, Javert) (Thénardier, Javert) 0.2609 2.684 1, 364 1, 676
(Marius, Cosette) (Thénardier, Cosette) 0.2333 2.6141 1, 437 1, 742
(Javert, Cosette) (Jean Valjean, Cosette) 0.4865 2.5235 985 1, 094
(Javert, Cosette) (Thénardier, Cosette) 0.4583 2.4829 1, 045 1, 149

TABLE III: Link pairs for Les Misérables co-appearance network that are disfavored with DLC in comparison to LC because
they span foci and ought to be considered for grouping at a higher level of the dendrogram.

(a) One of the communities LC mistakenly comes up with, due to the special
tie between Javert and Thénardier, denoted with red links.

(b) Two communities detected using DLC, denoted with red and green links
respectively, that involve the characters of the community LC came up with.

Fig. 3: Representation of partial results of algorithms LC and DLC for the character co-appearance network of Les Misérables,
using a force-directed layout that strengthens the visual aspect of the difference in results.

C. Interpretation of Resulting Communities

The smallest network of our dataset, i.e., Les Misérables,
does not have a set of ground-truth communities associated
with it. However, the popularity of the novel and the small
size of its co-appearance network allows for the investigation
of specific examples that showcase our contribution.

We continue building on the example concerning two
of the characters from Les Misérables that appear to span
foci, namely, Javert and Thénardier. As the edges whose
adjacent nodes follow similar behavior tend to have high
Jaccard similarity, we expect LC to mistakenly identify
the overlapping part of multiple communities as a single
one. Indeed, one of the communities that LC comes up with
features: Javert, Thénardier, Madame Thénardier, Jean Val-
jean, Cosette, Gillenormand and Mademoiselle Gillenormand.
However, the relationships between members of the Thénardier
family and Cosette, Javert, or members of the Gillenormand
family are highly irrelevant. To make this even more evident,
we provide an illustration of this community with Figure 3a.
We use a force-directed layout that makes nodes that are not
connected to be drawn apart. It is clearly visible that the
community found by LC, denoted using red colored links,
groups nodes that are not actually part of a single community.

Using DLC, we manage to overcome this issue and come
up with much more meaningful communities involving the
aforementioned characters. In particular, we find a community

featuring Cosette, Marius, Jean Valjean, Gillenormand, and
Mademoiselle Gillenormand, i.e., the young couple of the
novel and their respective ‘guardians’. Moreover, we find a
community that more accurately illustrates the relationship
between Javert and Thénardier, with its additional members
being the Patron-Minette gang, i.e., Gueulemer, Claquesous,
Babet, and Montparnasse. We remind the reader that in the
novel, Thénardier employs the Patron-Minette gang to rob
Valjean only to see their plans fail due to the intervention
of Javert, who manages to rescue Valjean.

We would like to note here that DLC, as well as LC, create
a dendrogram representing the hierarchical structure of the
network. The higher we cut the tree, the more tangled the
resulting communities will appear. However, DLC provides
an improved representation of the nesting that occurs in real
networks as it favors links that do not span foci. In particular,
links with large dispersion, that are essentially acting as
brokers between disconnected nodes [2], are used in groupings
later than with LC. As a consequence, the links that span
foci appear in a higher position in the dendrogram, and DLC
captures more accurately the concept of brokerage between
communities [4].

Table IV depicts all resulting communities of the two
algorithms when we cut the tree at the respective level of
optimal partition density. Nodes are ordered using modularity
to enhance the visual aspect of the table, by bringing closer



Bishop Myriel
Napoleon

Countess de Lo
Geborand

Champtercier
Cravatte

Count
Old Man

Mlle Baptistine
Mme Magloire

Labarre
Valjean

Marguerite
Mme de R

Isabeau
Gervais

Scaufflaire
Woman 1
Toussaint

Tholomyes
Listolier
Fameuil

Blacheville
Favourite

Dahlia
Zephine
Fantine
Perpetue
Simplice

Bamatabois
Judge

Champmathieu
Brevet

Chenildieu
Cochepaille
Fauchelevent

Mother Innocent
Gribier

Jondrette
Mme Burgon

Cosette
Pontmercy
Woman 2

Gillenormand
Magnon

Mlle Gillenormand
Mme Pontmercy

Mlle Vaubois
Lt Gillenormand

Marius
Baroness T

Mme Thénardier
Thénardier

Javert
Boulatruelle

Éponine
Anzelma

Gueulemer
Babet

Claquesous
Montparnasse

Brujon
Gavroche
Mabeuf
Enjolras

Combeferre
Prouvaire

Feuilly
Courfeyrac

Bahorel
Bossuet

Joly
Grantaire

Mother Plutarch
Child 1
Child 2

Mme Hucheloup

TABLE IV: Communities detected using DLC (green) and
LC (red) for the character co-appearence network of Les
Misérables. We ordered the characters based on modularity
to bring close nodes that possibly share communities.

nodes that possibly share communities. We notice that Valjean
and Javert appear in much fewer communities with DLC than
with LC. In addition to this, the presence of both of them
in some of the communities of LC is clearly problematic. A
good illustration of this is DLC’s community of Fauchelevent,
Mother Innocent, and Gribier, where the grouping of a small
and well-defined cluster with the link of Valjean and Javert
is delayed, as opposed to LC’s community of Fauchelevent,
Mother Innocent, Valjean, and Javert. In addition to this, we

network average f1 score
LC DLC

congress 0.2191 0.2532
philosophers 0.3353 0.3406

dblp 0.3328 0.3647
amazon 0.3564 0.3565

TABLE V: Average F1 score for the networks of our dataset
that posses ground-truth communities. DLC outperforms LC
for all the networks of our dataset.

notice that DLC manages to form meaningful communities
out of minor characters of the novel, as opposed to LC that
ignores a lot of them. For example, DLC forms a community
that groups all acquaintances of Bishop Myriel that have no
other links in the network, i.e., Napoleon, Countess de Lo,
Geborand, Champtercier, Cravatte, the Count, and the Old
Man.

D. Experimental Evaluation of DLC

As the size of a network grows, sophisticated visualization
techniques offer representations with no evident organization
from which we cannot easily extract any information. There-
fore, a common practice in evaluating community detection
algorithms is comparing their results with ground-truth com-
munities of networks.

Most of the networks of our dataset posses such ground-
truth communities and therefore allow for a quantitative eval-
uation of the performance of our overlapping community
detection algorithm. We compare here our DLC algorithm
against LC and allow both methods to decide the number of
resulting communities based on the optimal partition density.
For both algorithms we do not consider communities with
fewer than two nodes, as nontrivial communities should have
three or more nodes [1].

We see in Table V that DLC outperforms LC for all
networks of our dataset. This is expected as DLC captures more
accurately the overlapping structure that has been observed
in such networks. The improvement is less evident in the
amazon network. This is also expected as communities of this
network tend to have high values of embeddedness, which
results into well separated groups [16] and almost eliminates
DLC’s advantage over LC.

We note here, that achieving high scores using this metric
is difficult as the ground-truth communities that are frequently
used, differ from structural communities and are actually
metadata groups [16]. As such, they are not recoverable from
network topology alone. Additionally, the number of resulting
communities plays a crucial role in the accuracy obtained. The
number of communities is an input parameter for many com-
munity detection algorithms, and thus, ranking of algorithms
based on comparisons against ground-truth communities may
differ depending on the experimental setting.

We further compare DLC with LC using performance
benchmarks from Ahn et al. [1]. Table VI shows the results
of both DLC and LC algorithms as far as the coverage quality
and overlap quality are concerned. We renamed this measures
to coverage percentage and mean overlap respectively, to
highlight their true meaning, as good performance in these



network coverage percentage mean overlap # communities
LC DLC LC DLC LC DLC

Les Miserablés 0.7143 0.9221 1.4805 1.7273 19 22
congress 0.9544 0.9867 8.5589 1.0684 342 14

philosophers 0.8099 0.7945 2.6353 2.6572 595 690
dblp 0.8977 0.8972 1.9061 1.9165 130, 755 132, 294

amazon 0.7846 0.7859 1.5125 1.5132 107, 745 107, 678

TABLE VI: Coverage percentage and mean overlap of LC and
DLC algorithms for the networks of our dataset.

benchmarks can be misleading, especially in the case of
overlap quality.

We observe that the coverage percentage of DLC is better
than that of LC for small networks and almost identical for
large networks. This is expected as DLC delays the grouping
of edges that span foci —and have a high value of similarity—
in favor of pairs of edges that would be ignored with LC.
In addition to this, we observe similar behavior between the
two algorithms as far as mean overlap is concerned, with the
exception of the smaller networks. This is due to the difference
in the number of detected communities, which plays a crucial
role for this measure.

V. RELATED WORK

The problem of identifying communities emanates from
research on graph partitioning, which has been active since
the 1970s [17]. Girvan and Newman, with their seminal paper
on community detection [13], build on Freeman’s betweeness
centrality measure [12] and define edge betweeness as the
number of shortest paths between pairs of vertices that run
along an edge. Using this measure, they iteratively remove the
edges with high betweeness, as they have a tendency to connect
different clusters, and thus, reveal the underlying community
structure of a network. The algorithm is computationally
expensive, but this work sparked significant research in the
field of community detection [10].

Many clustering methods aim at maximizing modularity,
a measure introduced by Newman and Girvan [21]. Modu-
larity captures the quality of a specific proposed division of
a network into communities, by examining how higher the
internal cluster density is than the external cluster density. One
such method is that of Clauset et al. [5]. There, the proposed
algorithm discovers a hierarchical community structure and
identifies the best level to cut the tree as the one that produces
the division that maximizes modularity. Blondel et al. [3]
propose Louvain, another greedy modularity maximization
algorithm. Nodes are iteratively aggregated into communities
as long as such a move locally improves modularity. Methods
of this class are know to suffer from a resolution limit [11].

Another popular direction in the field of community de-
tection, is the use of random walks. Pons and Latapy [23]
use random walks to measure the similarity between vertices.
In another line of work, Infomap [24] finds the shortest
multilevel description of a random walker to get a hierarchical
clustering of the network.

The previous methods, hierarchically nested or else, do
not take into account the fact that communities in networks
may overlap [22]. Palla et al. [22], propose the Clique

Percolation Method, a local approach based on k-
cliques. Overlaps between communities are allowed as a given
node can be part of several k-clique percolation clusters at
the same time. A revolutionary idea in overlapping commu-
nity detection was introduced in two approaches that were
developed almost simultaneously [1], [7]. The core of these
approaches is that instead of focusing on grouping nodes,
communities should be formed by considering groups of links.
This allows for a natural incorporation of overlaps between
communities while also retaining a hierarchical community
structure. Ahn et al. [1] additionally reports a comparison of
their proposed algorithm with previous approaches, proving
that it outperforms all of them.

Later research efforts focused on providing more scalable
approaches. Coscia et al. [6] use egonet analysis methods and
propose DEMON that allows nodes to vote for the communities
they see locally in an effort to improve the quality of overlap-
ping partitions. Yang and Leskovec [26] report that, contrary
to previous belief, community overlaps are more densely
connected than the non-overlapping parts. This relaxes the
assumption that governed all previous efforts on overlapping
community detection. Building on their empirical observations,
they also propose BIGCLAM [28], a community detection
method that uses matrix factorization to detect communities.
BIGCLAM requires as an input the number of communities
to look for, or else should be guided with the minimum and
maximum number of communities as well as the number of
tries it should make. Gleich and Seshadhri [14] formalized
the problem of community detection as finding vertex sets
with small conductance, where conductance of a cluster is a
measure of the probability that a one-step random walk starting
in that cluster leaves the cluster. They proposed the use of
personalized PageRank vectors to identify communities with
good conductance score. A similar approach is investigated
in [25], where a number of alternative seeding phases before
the use of personalized PageRank vectors is examined.
However, minimizing conductance leads to the identification
of dense areas of a network as single communities, when they
are in fact overlapping parts of multiple communities [26].
Li et al. [19] search for small community structure in large
networks by considering only a subset of the network such
that the seeding nodes are in its support. However, they report
results concerning the identification of one seeded community
against algorithms that uncover the whole community structure
of networks. These approaches manage to detect communities
in large networks but do not reveal their hierarchical structure.
Instead, they only permit overlaps and nestings. Additionally,
they do not consider weighted networks.

Our approach belongs to the class of hierarchical com-
munity detection algorithms and uses links instead of nodes,
as in [1] and [7]. We however, examine the use of similarity
measures that handle networks with overlapping parts of
communities that are denser than non-overlapping parts. Thus,
we reveal a more accurate hierarchical community structure
for both unweighted and weighted networks.

VI. CONCLUSION

In this paper we propose and develop a novel overlapping
community detection algorithm, termed DLC. Our algorithm
builds link communities through hierarchical agglomerative



clustering according to the similarity of the networks’ pairs
of links. We take into account a recent observation stating that
overlapping parts of a network’s communities are denser than
non-overlapping parts. We investigate measures that evaluate
the strength of ties in networks, building on the notion that
mutual neighbors of nodes may span multiple foci or be
clustered in a single context. The nodes involved in ties that
belong in the first category, act as connector nodes between
overlapping communities. Therefore, they should be consid-
ered for grouping in a hierarchical approach when the higher
levels of the respective dendrogram are forming. We achieve
that, by using normalized recursive dispersion to balance the
similarity of two edges and prioritize the grouping of pairs
of edges with mutual neighbors that function in a single
context. Our approach reveals the rich hierarchical structure
of network communities and handles both unweighted and
weighted networks. We compare DLC with LC [1] and detail
how the differences in their functionality alter the forming
of communities in a popular network. In addition to this, we
examine the accuracy of both algorithms against ground-truth
communities and find that DLC outperforms LC for a wide
range of publicly available networks.

We will further investigate the performance of DLC by ex-
ploiting node attributes to assign weights to links of networks.
For example, we can assume that members of social network
group of a high school’s alumni should be linked strongly in
case they are born in the same year. We believe that a compar-
ison of DLC’s performance on the respective unweighted and
weighted networks will be extremely interesting. Furthermore,
a drift from the currently available ground-truth communities
depicting metadata groups to communities that better portray
the functional roles of a network’s nodes, will allow for a more
accurate comparison of community detection techniques. We
plan to collect data from only those social network groups
where membership signifies affinity, and thus, create ground-
truth communities of improved quality.
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[22] G. Palla, I. Derényi, I. Farkas, and T. Vicsek, “Uncovering the overlap-
ping community structure of complex networks in nature and society,”
Nature, vol. 435, no. 7043, pp. 814–818, 2005.

[23] P. Pons and M. Latapy, “Computing communities in large networks
using random walks,” in Computer and Information Sciences-ISCIS
2005, 2005, pp. 284–293.

[24] M. Rosvall and C. T. Bergstrom, “Multilevel compression of random
walks on networks reveals hierarchical organization in large integrated
systems,” PloS one, vol. 6, no. 4, p. e18209, 2011.

[25] J. J. Whang, D. F. Gleich, and I. S. Dhillon, “Overlapping community
detection using seed set expansion,” in Proc. of the 22nd ACM Int. Conf.
on Information & Knowledge Management, 2013, pp. 2099–2108.

[26] J. Yang and J. Leskovec, “Community-affiliation graph model for
overlapping network community detection,” in Proc. of the 12th IEEE
International Conference on Data Mining, 2012, pp. 1170–1175.

[27] ——, “Defining and evaluating network communities based on ground-
truth,” in Proc. of the 12th IEEE International Conference on Data
Mining, 2012, pp. 745–754.

[28] ——, “Overlapping community detection at scale: a nonnegative matrix
factorization approach,” in Proc. of the 6th ACM int. Conf. on Web
Search and Data Mining, 2013, pp. 587–596.

[29] ——, “Overlapping communities explain core–periphery organization
of networks,” Proc. of tihe IEEE, vol. 102, no. 12, 2014.


