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Abstract For the realistic generation of synthetic street
configurations, used in fiber-to-the-x (FTTx) dimensioning,
the Gabriel graph model is proposed. Commencing the analy-
sis with the Primal approach for 100 samples of urban street
networks, a great heterogeneity is empirically discovered in
their structural properties. Due to the observed morpholog-
ical complexity, the necessity of a fast abstraction model
capturing the complex street patterns is justified. The case
study supports the sufficiency of Gabriel graphs for the repro-
duction of the street networks’ basic structural properties
such as the average shortest path, the diameter or the aver-
age street segment length. The results also demonstrate the
sheer superiority of Gabriel graphs for the early estimation of
the trenching length of FTTx networks with more than 48 %
better accuracy in comparison with the conventional geomet-
ric models. Particularly in dense urban areas, the geometric
models suffer more serious accuracy shortcomings, whereas
the suggested model performs even better.

Keywords Access networks - Complex spatial networks -
Fiber-to-the-x (FTTx) - Network planning and design -
Optical fiber subscriber loops - Urban morphology

1 Introduction

As the Internet market continues its rapid growth, more and
more applications are competing for network bandwidth, and
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accordingly there are now problems arising from conges-
tion at the network edge. This motivates telecom operators
to depart from the existing copper-based technologies and
deploy various forms of optical access networks, generally
referred to as fiber-to-the-x (FTTx), with the fiber-to-the-
building (FTTB) and the fiber-to-the-home (FTTH) being
the ones reaching closest to the end-user premises [1].

Regarding the planning of such deployments, it is often
spent substantial time and resources to preliminary evalu-
ate telecommunications investments in particular regions or
cities. Long techno-economic analyses specific to each area
are typical to early determine the feasibility of an FTTx roll-
out. They usually combine information on telecommunica-
tions services’ demand and costs with geographic and demo-
graphic characteristics and can demonstrate the way that cash
flows are affected while upgrading or expanding the broad-
band access network [2—4].

A major part of such capital investment in a telecommu-
nications network is made in the lower part of the network
which connects a subscriber by a physical link to its corre-
sponding Central Office (CO) via intermediate network com-
ponents. In fixed access networks, it is commonplace that
the cables run under streets or pavements in trenches using
the road system as a natural guide to reach potential cus-
tomer locations [1]. Among the deployment costs, trenching
is the most crucial in the economics of FTTx, on the grounds
that additionally to labor expenditures, any cost for traffic/
pedestrian interruption and trenching permits should also be
accounted for. According to [2,4] and [5], the cost of dig-
ging trenches, installing ducts and cables constitutes by far
the largest cost (65-70 %) in an FTTx network deployment.

Since the required trenches depend on the underlying
street network, an abstraction of the road system of the instal-
lation area is usually taken into consideration in the overall
techno-economic methodology to estimate the OutSide Plant
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(OSP) cost [6-8]. The considered abstractions, known as
geometric models, are used to estimate important cost com-
ponents, such as the amount of trenches, ducts, cables and
generally the civil works needed in the network deploy-
ment. Typically, they assume a regular grid-like structure
and resemble lattices. The various analytical models con-
sider highly symmetric graphical models of a uniform cus-
tomer distribution over a squared or polygon-based area with
a recursive structure. The use of geometric models may be
optional for the techno-economic evaluation but in the case of
the OSP cost estimation of a network installation, it is of the
outmost concern, given that an analysis based on a detailed
Geographic Information System (GIS), e.g., the FiberPlanIT
tool [9] or the AccessPlan tool [10], is rarely a choice as
it requires even more time, money and resources. On top of
that, GIS approaches cannot be used for the preliminary eval-
uation of generic scenarios since their street traces are strictly
area-specific.

Nonetheless, in practice it can be quite risky to rely on
models which regard the spatial structure of the road sys-
tem to be so simplified and regular. Indeed, recent research
demonstrates that the structure of street networks is much
more complex [11-14]. Levinson in [15] systematically com-
pares a set of street network structure variables (connectiv-
ity, hierarchy, circuity, treeness, entropy, accessibility) across
the 50 largest metropolitan areas in the USA and discov-
ers that both network size and structure do vary with city
size. Owing to the growth of many world cities over time
by accretion rather than being planned from the outset, a
regular pattern of even, square or rectangular city blocks is
not so common among them. In particular, the urban mor-
phology of an area, in terms of street network topology and
geography, may depend on the history, the social processes,
the economic activities, the climate, the population density,
the introduction of the motor vehicle and many other factors
that strongly diversify the overall shape and properties from
area to area [12,14, 16]. Furthermore, there are broad agree-
ments that the urban patterns affect overlay infrastructure
deployment as they define a basic template which strongly
constrains the further development of other webs, such as the
power grid or communication networks [13].

Due to the existent urban morphological complexity,
quantities such as the trenching and fiber lengths, which
are fundamental parameters for telecommunications techno-
economic models, have been overestimated or underesti-
mated using the conventional geometric models [17-19].
Bearing also in mind the fact that node locations, node capac-
ities, and connection lengths are sensitive to the geometry of
the implementation and to the regional specificities, an addi-
tional effect probably exists on the quality of service and the
overall technical feasibility of the planned installation. This
strong dependence of infrastructure network elements and
connections on the actual geography of the underlying street

Gabriel
graph model

GIS
solutions

Geometric
models

¢

More accuracy

More extensibility to work with other sophisticated tools

o
.

N N N

0 0202
G:

More consistency in rural areas

A
-
-

(

More low-cost
(need for less or no data and less methods)
e

More abstraction/generalization

(oo
—

A

More quick estimation

Fig. 1 The necessity of an abstraction model in between the conven-
tional geometric models and the GIS solutions

network makes the ability to explicitly taking into account
the street network in the process of analysis or planning, of
the greatest importance for the civil engineering part of the
access network. However, a reliable, fast and low-cost model
that would capture the irregular street connectivity and in turn
contribute to the early FTTx dimensioning is notably missing
from literature. The necessity of such an abstraction model
in between the conventional geometric models and the GIS
solutions is illustrated in Fig. 1.

This paper supports that the use of a graph-based model
could offer a better alternative street layout, compared to
the imprecise geometric models and the costly area-specific
GIS solutions. Both operators and researchers would benefit
from employing such a model that conjointly meets accuracy,
simplicity and generality. For instance, operators willing to
early decide about the feasibility of an infrastructure deploy-
ment project, that aims to cover a large set of urban areas,
would rather use a trustworthy abstract approach than the
labor-intensive GIS-based planning. On top of that, avoiding
the demanding GIS data gathering and data preparation at
this preliminary phase would be quite saving. Furthermore,
researchers active in the area of network performance and
techno-economics would rather exploit a credible abstract
approach, than base their investigations on unrealistic reg-
ular street layouts or limit the validity of their results by
adopting case study-oriented analyses of particular areas.
Principally, the impact assessment of strategic decisions on
FTTx planning (e.g., FTTB vs. FTTH, P2P vs. PON, central-
ized PON vs. cascaded PON) is expected to gain enhanced
accuracy from the use of generic yet realistic street lay-
outs.

The current paper commences with the analysis of 100
samples of urban street networks by employing GIS and
Graph Theory. The Primal approach [20] is used to turn GIS
data into spatial graphs, by associating nodes to street inter-
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sections and edges to street segments. Then, various topo-
logical and geographic patterns are observed. At the present
paper, willing to extend the previous work done in [14]
and [19], the use of the Gabriel graph model [21] is pro-
posed for the realistic generation of synthetic street config-
urations and for further utilization in a telecommunications
techno-economic model. Afterward, unlike previous related
studies [17,18] which investigate the behavior of only two
existing geometric models, here all the five known geomet-
ric models are included and compared, namely the Simpli-
fied Street Length [8], the Street Length [8], the Double
Street Length [8], the SYNTHESYS [6,7] and finally the
TITAN/OPTIMUM [6,7] models. However, a full deploy-
ment cost model or an optimized design algorithm for FTTx
exceeds the scope of this paper. Studies such as [22] com-
prehensively elaborate on these thematic areas.

The aim of the present study is to propose a graph model as
a novel spatial abstraction for FTTx early dimensioning, so
as to replace the use of the defective conventional geometric
models. More specifically, the analysis will endeavor to con-
tribute to the following: (1) demonstrate the complex hetero-
geneity of real urban street networks (2) suggest the use of the
Gabriel graph model as a synthetic street network generator
and indicate its sufficiency for the representation of realistic
street structures and (3) justify its better fitting compared to
the existing geometric models on the FTTx dimensioning and
particularly on the early estimation of the main FTTx cost
component — the trenching length.

The rest of this paper is organized as follows. Section 2
introduces the existing geometric models, whereas Sect. 3
describes the Gabriel graph model. Section 4 presents the
empirical analysis of the investigated urban real-street sam-
ples and illustrates the Gabriel graph model fitting perfor-
mance to the observed structural properties. Section 5, which
follows, reveals the case study comparison results on the
FTTx trenching length estimation. Finally, conclusions are
drawn in Sect. 6.

2 Conventional geometric models

In this section, the five most well-established geometric mod-
els for abstracting the fixed access network deployment area
are presented.

The geometric model for a telecommunications access
network makes an abstraction of the installation area under
consideration and is used as a starting point to design the
telecommunications infrastructure. It is commonly based on
a set of parameters such as the customer density, the build-
ing density, the area size and the average distance between
end users and CO and includes an algorithmic or mathe-
matical approach for calculating key geometry-dependent
quantities for the cost analysis, e.g., trenching and fiber
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lengths in the case of fixed street-based! (buried) access net-
works.

In the following, it is assumed that the optical access
network will reach each building termination point (BTP)
representing a potential customer location. Thus, the term
building is used rather than the terms customer, subscriber,
house or home while no distinction among them is neces-
sary, as the focus is limited only in the trenching calcula-
tions and not in the fiber length itself. This assumption fits
the FTTB configuration although it is the common approach
in the conventional geometric models. It is further assumed
that all buildings are to be connected and no existing passive
infrastructure is taken into account (greenfield deployment).
The potential customer base is considered to be uniformly
distributed over the regarded area. Where applicable, the area
is a square of 1km?, with the one side containing n build-
ings (where n = | \/building density |) and the entire area
including n? buildings. The distance between two buildings
— also known as inter-building spacing (IBS)—is indicated
by I (wherel = +/area size/n). Although the models are
described in detail in [6—8], for the sake of completeness, the
basic formulations are presented in the subsections below,
whereas the notation from the original papers is preserved
where possible.

2.1 The Simplified Street Length model

The Simplified Street Length (SSL) model [8] is a very sim-
plified model, assuming that all buildings can be connected in
one line through the middle of the building, as seen in Fig. 2a.
This simplified Manhattan model could closely resemble a
facade installation of the FTTB/FTTH network. In partic-
ular, all streets are connected using one divider street. The
structure is fully symmetric horizontally as well as vertically.

Regarding the installation length, each row requires an
installation length of (n — 1) - [, whereas there are n rows.
Respectively, the divider street requires installation length of
(n — 1) - 1. The above combined give a total length (TL) for
installation as follows [8]:

TL:(n2—1)-l (D

2.2 The Street Length model

The Street Length (SL) model [8] connects all buildings from
one street-wise cable along the street. In the calculation of
the analytical model, the cable is located at the middle of the
street, as shown in Fig. 2b, but could be easily envisaged at
one side of the street as well.

! There also exist aerial-based geometric models for FTTx deployment
in the literature [8], i.e., the diagonal tree and the simplified Steiner tree.
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With regard to the installation length, this structure can
group all buildings per 2. In order to connect all couples
of buildings in two adjacent rows (one street), the required
installation length is n - [, whereas there are n/2 such adja-
cent rows. Likewise, in order to link these previously con-
nected couples of buildings into one fully connected street,
the installation length needed is (n — 1) - /, and again in n/2
adjacent rows. In addition, the divider street has a length of
(n — 2) - 1. Finally, the above give a total installation length
as shown [8]:

TL:(nz—i—%—Z)-l )

2.3 The Double Street Length model

The Double Street Length (DSL) model [8] considers a street
to consist of two sides and therefore reduces the number of
the street crossings to a minimum, as in Fig. 2c.

Regarding the installation length, the structure mentioned
in SL model for the grouping of two buildings is used once
again. Nevertheless, in this case, the adjacent buildings are
not directly connected to each other as there is no crossing of
the street with distance w. The installation length in this part
is (I — w) and there are again n”/2 such adjacent buildings.
As for the connection in the rows, an installation length is
needed at both sides of the street. In all cases except the upper
street side of the upper row and the lower street side of the
lower row, an installation length of (n — 1) - [ is required
minus the street width w of the divider street which is not
crossed. There are in total n/2 streets and n street sides.

With respect to the divider street, the installation length at
both sides of the street will be the same. Again the horizontal
streets are spaced at a distance of 2 - [ and the length at
one side to connect two streets is 2 - / — w. The number of
streets to connect is n/2, and the number of connectors (at
both sides)is2- (n/2 — 1) - (2 - I — w). In this calculation,
one should still add the length of installation crossing the
streets at both sides for every two streets, except for the top
and bottom street, where the street is only crossed at one
side. After all, there is also one street crossing for connecting
both sides of the street at the CO. In the present paper, it is
subsequently assumed that w = % - [. The trenching length
can be calculated by [8]:

3. 2 2
TL:[ 2” +n—4:|~l—[%+2'n—4:|~w

+(m—1) - w 3)

2.4 The SYNTHESYS model

The SYNTHESYS model developed by RACE R1044
project [23] is a polygon-based geometric model for the
access network [6,7]. The first-level links consist of A-B,
B-C, C-D and C-E links. Second-level links are denoted
D-F links. Third-level links are the links between F and the
subscriber premises entrance. The abstraction is shown in
Fig. 2d.

A set of equations has been derived in order to calcu-
late trenching length estimates at different network levels. In
these equations, the following variables are used: dj, denotes
the number of buildings per km?; Ny, denotes the number of
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buildings per hub; n, is the rank of the polygon; M is the
number of potential users per branching box. The radius of
the polygon is:

S 2-N,
}AV|2 =R>= —h
dp - n, - sin(a)

“

where « is the peak angle of the triangular sector (¢ =
360°/n). Using these variables, length estimates can be
expressed as follows:

— [ R o

[4B| = [BC| = 5 -cos (3) )
|ICD| = |CE| = g -\ 1+8:sin? (/2) (6)
r—f|::R.(043z+-0336) ™)

Equations (4)-(6) are directly derived from the geometry,
whereas Eq. (7) is obtained by simulation. Next, in order to
calculate the average distance /;, between the branching box
and building entrance, the relevant surface corresponding to a
branching box (S = M/d}) is approximated to be equivalent
to a circle, i.e., 7 - r2. Then, this additional distance is:

M
T -dp

2
=75 ®)

The total trenching length can be obtained by summing
up the above distances for all triangles. The formula for the
total trenching length is:

TL =, - (8| + [BC| + [CD| + [CE| +n,-[0F)
+np - I 9

where n; is the number of splitters and 7, is the number of
buildings in the polygon.

2.5 The TITAN/OPTIMUM model

The TITAN [24] and OPTIMUM [25] projects have devel-
oped a geometric model, namely the TITAN/OPTIMUM
model [6,7], which allows modeling of clustered areas where
subscribers are not homogeneously distributed. The topology
can either be a star, ring or bus, or be a combination of these.
The model is based on a layered structure in which each layer
uses the same basic geometric model, although with differ-
ent parameters. A model layer represents a specific type of
flexibility point (FP) and is characterized by FP area density
and distribution ratio. The distribution ratio at a given layer
or network level represents the number of lower-level flexi-
bility points linked to this flexibility point. Link levels (LL)
interconnect the flexibility points of different levels. Total
trenching length in the model area derives by simply adding
lengths from different layers.

@ Springer

Fig. 3 An instance of artificial Gabriel graph for the representation of
urban street network

The basic model area in each layer is rectangular. The
area has a length of a units and a width of b units. The total
trenching length (star or bus topology) for one layer, as in
Fig. 2e, is given by:

TL=a-b—1 (10)

3 The Gabriel graph model

From the family of planar graph models [26] (nearest neigh-
bor graph, minimum spanning tree, relative neighbor graph,
Gabriel graph, Delaunay triangulation, planar Erd6s-Rényi
model, etc.), the Gabriel graphs seem to be visually closer to
the layout of real-street networks (Fig. 3).

The Gabriel graphs are named after Gabriel, who intro-
duced them in a paper with Sokal [21]. In this connection
scheme, two nodes are connected directly if and only if there
are no other nodes that fall inside the circle associated with
the diameter that has the two nodes as endpoints. Mathemat-
ically, two nodes i and j, from a set of N nodes (N is the
only parameter of the model), are connected if the square of
the distance between them is less than the sum of the squared
distance between each of these points and any other point k.
An undirected graph is constructed by adding edges between
nodes i and j if for all nodes k, k # i, j, where d expresses
the Euclidean distance:

d(, ) <d @, k> +d(j,k)? (11)

Put differently, two nodes i and j are connected directly,
unless there exists some other node k such that in the triangle
ikj, the angle subtended at k is above 90 degrees.
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In this model, the installation would follow all streets and
connect buildings (subscribers) which are all assumed to be
distributed along the streets (graph edges) for simplicity rea-
sons. The total length can be derived by simulations which
only require the parameter N. It is thus necessary for the
length estimation to be able to calculate the number of inter-
sections N i.e., counting road intersections on the map. It is
later seen in Sect. 4 that these simulations result in a simple
power-law equation.

The Gabriel graphs are useful in modeling graphs with
geographic connectivity that resemble grids [21], but addi-
tionally incorporate more complex traits. The Gabriel graph
model has already been suggested to capture the structure
of telecommunications networks in the physical backbone
level [27,28]. Nonetheless, it is quite intriguing to examine
whether the Gabriel model can capture the structure of the
urban street network—the basis of the access network. From
this viewpoint, recent research has already focused on neigh-
boring graphs of Gabriel, or entire graph families. Actually,
authors in [29] have investigated how closely the B-skeleton
graphs (supersets of the Gabriel graphs) resemble real-street
networks and found considerable agreement.

Similar rationale has motivated researchers to use or to
invent other models, departing from the conventional geo-
metric ones, though with vague fit to real-street data. For
instance, the mathematical framework of stochastic geome-
try [30] has been used to derive analytical formulas for dis-
tributions of connection lengths. The Stochastic Subscriber
Line Model (SSLM) [31] is a stochastic—geometric model for
fixed access networks. Nevertheless, the estimation success
depends on the fitting of optimal tessellations to the consid-
ered road system. Furthermore, authors in [32,33] have sug-
gested the use of novel graph models for generating a realistic
street network. For the problem of suboptimal Passive Opti-
cal Network (PON) design algorithm, authors in [34] have
evaluated their method using a Delaunay triangulation graph
in order to approximate a road network.

4 Empirical analysis of urban street networks

In this section, the structural properties of urban street net-
works of varying population/ household/ building density are
analyzed. The findings indicate a great heterogeneity on the
topological and geometric properties among the street net-
work samples.

As increasing amounts of pervasive geographic data are
becoming available, new approaches are suggested [11-13]
that make use of Graph Theory and Complex Network The-
ory to characterize and compare the topology of street net-
works. Typically, street networks are spatial, that is to say a
special class of networks whose nodes are embedded in a two
(or three-)-dimensional Euclidean space and whose edges do

not define relations in an abstract space, but are real physical
connections [12].

4.1 Dataset

The case of Greece is chosen since it is anticipated to exhibit
a large differentiation on key determinants of the street mor-
phology, i.e., geographic restrictions (hillslope, soil prop-
erties, etc.) and historical development (high urbanisation,
etc.), among the individual areas along its long history.

More specifically, in Greece there are more than 6000
municipal departments (MDs) with only a small portion of
them able to be considered as urban. Here, it is decided to
regard as urban the 100 MDs which have the highest pop-
ulation density. In these MDs, the population density varies
between 1200 and 27,000 people/km?, the household den-
sity is between 400 and 10,000 households/km?, whereas the
building density spans between 250 and 3200 buildings/km?
[35]. Therefore, the street dataset represents a diverse set in
terms of population/ household/ building density. There are
collected 1-square-kilometer street samples of these 100 dis-
tinct urban MDs, as in Fig. 4a. The street data are obtained
from the collaborative project OpenStreetMap [36] and the
census data from the Hellenic Statistical Authority [35]. The
samples are square delimited, in order to introduce an equiv-
alent artificial limit for all samples following a procedure
common in relevant studies [12,13].

4.2 The Primal approach

Data from GIS vector maps, using geometrical segments such
as points and lines (coordinate pairs or series of coordinate
pairs) to represent objects, can rapidly be transformed into
graphs. Among the new techniques that have emerged, such
as the angular-segment maps [37] and the continuity maps
[38], there are two principal modeling approaches which can
be applied to represent the street network as a graph: the
Primal approach [20] and the Dual approach [39].

In the Primal approach, the streets are turned into spatial,
undirected, weighted graphs, where street intersections and
end points are represented as nodes while street segments
between successive intersections are represented as edges, in
the way that is shown in Fig. 4b. The Dual approach is the
opposite, where named streets are represented as nodes and
the intersections between the streets are represented as graph
edges. In recent studies, e.g., [12], as well as in the current
paper, the analysis of the real-street networks is based on the
production of Primal graphs that encapsulate both topologi-
cal and geometrical properties of urban networks. The ben-
eficial consideration of the Primal approach lies in its ability
to preserve the geometry of the urban space— indispensable
for the present study, whereas the Dual approach can only
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Fig. 4 The sample of Vironas MD: a the conventional street map, b the corresponding spatial Primal graph

preserve the topological properties with the geometric ones
disappearing in the end.

4.3 Utilization of graph theory

The derived spatial network whose nodes are embedded in
a two-dimensional Euclidean space can be represented as a
graph G (V, E), which consists of a finite set of nodes V
and a finite set of edges E. The graph nodes have precise
position on the planar map {x;, y;};—; v, while the links
follow the footprints of the real streets and are associated with
a set of real positive numbers representing the street lengths,
’’’’’ |£|- In the following, the graph representing an area
is described by the adjacency |V| x |V| matrix A, whose
entry a;; is equal to 1 when there is an edge between i and j
and 0 otherwise, and by a |V| x |V| matrix L, whose entry
l;j is the weight (physical length) associated with the edge
connecting i and j. In this way, both the topology and the
geography metrics are taken into account.

Beyond the number of nodes | V| and edges | E|, the basic
statistical metrics, which can abstract the properties of a com-
plicated network structure, are calculated [40]; the graph den-
sity measures the ratio of the number of edges to the maxi-
mum number of possible edges, the average node degree is
the average number of edges connected to a node, the aver-
age shortest path length is defined as the average number of
steps along the shortest paths for all possible pairs of network
nodes, and the diameter is the length (in number of edges)
of the longest shortest path between any two nodes in the
network. Moreover, the average street segment length is the
ratio of the total length to the number of edges, where the
total length or cost of construction can be quantified [12] by
using the measure W defined in formula:

@ Springer

number of nodes

@ population density

household density

A building density

0 5000

10000 15000

density

20000 25000 30000

Fig. 5 The number of nodes of the considered samples versus the cor-
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i
4.4 Structural properties and Gabriel graph fit

The basic statistical properties of interest can reveal the dif-
ferences among the considered urban networks. The pecu-
liar historical, cultural and socioeconomic mechanisms have
shaped distinct urban networks in different ways, e.g., in
Fig. 5 the diversity in the number of nodes is obvious among
the investigated area samples. Their size varies greatly, rang-
ing from 65 to 633 nodes (per km?), and they all define a
single connected component.

Accordingly, considerable variation is observed at all
other measures, presented in Figs. 6 and 7, which are cor-
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related with the varying number of nodes. The number of
edges, the graph density, the average shortest path, the diam-
eter, the average street segment length and the total length all
receive values in a great range, and all fit well a power-law
with the number of nodes. More specifically, as the number
of nodes increases, more edges are constructed and average
node degree slightly increases, though on the contrary, the
graph density decreases. At the same time, both the average
shortest path and the diameter increase their values, while the
average street segment length decreases. This strong depen-
dence on the number of nodes, and thus on the overall struc-
ture of the street network, is apparent in the total length as
well, which increases as the number of nodes increases.

Furthermore, it is deemed worthy to stress that among
the examined urban street networks, a large heterogeneity is
evident associated with the perceived values in the above set
of structural properties. For instance, an area including 100
nodes can have: 130 edges, graph density about 0.02, average
shortest path length around 7, diameter near 18, average street
segment length of 100m and total length of 13km. On the
contrary, another area, for example, one comprising of 600
nodes, is associated with: 900 edges, graph density close to
0.005, average shortest path length about 15, diameter close
to 38, average street segment length of 40 m and total length
of more than 30km.

Moreover, Table 1 by making use of the statistic Mean
Absolute Percentage Error (MAPE), as well as Figs. 6 and
7, all demonstrate that the Gabriel graph model is able to
produce synthetic networks> quite similar to the real-street
networks. The statistical properties of this model are in fine
agreement with the observed empirical patterns.

However, the analysis was conducted in a particular coun-
try, and it is possible that the discovered patterns are country-
specific. Thus, itis intriguing to investigate whether the above
good fitting of Gabriel graphs to real-street data is verified
in other countries too. Likewise, it is imperative to examine
whether the good fitting holds for larger surface samples,
given that the 1-square-kilometer surface in the dataset sam-
ples might be regarded too small: (1) to eradicate possible

2 Each point representing a Gabriel graph measurement is the averaged
outcome of 100 runs simulating a Gabriel graph of a given size.
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Table 1 Gabriel model fitting

to the basic street network Edges/ density/ Av. shortest Diameter Average street Total length
properties av. node degree path length segment length
MAPE 0.317 0.149 0.139 0.095 0.201
149900 y = 1.483x 1040 19 ¢ Real-streetfrom[12]
R2 = 0.999 A Real-streetfrom[41]
2 1000 ' 2 1 < Real-streetfrom[42]
2 g Gabriel graph
) ® — Power (Gabriel graph)
b T
° 100 c 041
o =%
2 ¢ Real-streetfrom[12] o
g 10 A Real-streetfrom[41] 9 5.01
c Real-street from[42] ’ = 3.060x-0%
Gabriel graph y R? - 0.999
1 — Power (Gabriel graph) 0.001 .
1 10 100 1000 10000 1 10 100 1000 10000
number of nodes number of nodes
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R y= 22._966x0 040 g y = 948.3x049
S 4 R?2=0.782 £ R?=0.998
=) =)
g 4 E“l 00
o 3 5=
- o<
2 5 52
Real-streetfrom[12]
) ¢ Real-streetfrom[12] o2 10 *
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1 < Real-streetfrom[42] 5 < Real-streetfrom[42]
s Gabriel graph > Gabriel graph
0 —— Power (Gabriel graph) © I — Power (Gabriel graph)
1 10 100Q 1000 10000 1 10 100 1000 10000
number of nodes number of nodes

Fig. 8 Empirical findings (log—log plot) of topological and geometric patterns in literature datasets (of larger surface samples) can confirm the

Gabriel graph estimation capability (power-law)

side effects (i.e., “edge effects™ due to node creation at the
samples’ boundaries during the clipping process) and (2) to
consider it as a typical access network service area. In order to
alleviate these concerns, three additional datasets—provided
in related empirical studies—are supplementary taken into
account [12,41,42]. Their samples are from diverse areas
around the world (20 world cities, 118 US urban areas and
21 German cities, respectively) and correspond to large sur-
face areas (2.59, 9.12-38.62 and 141-891 square kilometers,
respectively); therefore, they are evidently pertinent to shed
light on the above concerns. Though, as only partial informa-
tion is available for these additional datasets (the area surface
size, the number of nodes, the number of edges and the total
length), thus Figs. 8 and 9 depict the obtained data along with
the Gabriel graph measurements and the associated Gabriel
graph regression lines (power-law relation). For comparison
reasons, all calculations have been normalized (scaled down)

3 These “edge effects” are probably the main factor behind the inversely
proportional relation between the samples’ surface size and the MAPE
referring to the edges/density/average node degree (Tables 1 and 2).

@ Springer

100
y=1.212x0572
— R?=0.994 *
£
=
=
2 10
£ Real-streetfrom[12]
S & A Real-streetfrom[41]
e < Real-streetfrom[42]
Gabriel graph
1 —— Power (Gabriel graph)
1 10 100 1000 10000

number of nodes

Fig. 9 The total length (log—log plot) of literature empirical data (of
larger surface samples) can confirm the Gabriel graph estimation capa-
bility (power-law)

to correspond to 1-square-kilometer area. The key findings
are repeatedly verified for these real-street datasets (Table 2).

Regarding the crucial property of total length, it appears
in Fig. 7 to take values as a function of the number of nodes
(intersections) | V|. Additionally, the Gabriel graph estima-
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Table 2 Gabriel model fitting

to data from literature

Real-street data Real-street data Real-street data

tion lies quite close to the three real-street calculations, as
observed in Fig. 9, and the MAPE statistic, presented in
Tables 1 and 2, is up to the level of ~25 %. Despite the
fact that the above samples represent very diverse geographic
cases, the relation between the total length and the number
of nodes can well fit a power-law, i.e., ~ |V |”. As well, the
recent report [43], where a street network is sampled at dif-
ferent times of its growth, gives a power-law with a similar
exponent value p = 0.54.

In the case of Gabriel synthetic graphs, this particular
equation, estimating the total length by only using the num-
ber of nodes, is:

from [12] from [41] from [42]
MARPE (total length) 0.249 0.072 0.222
MAPE (edges/ density/ av. node degree) 0.278 0.041 0.021
MAPE (average street segment length) 0.076 0.078 0.186
140 p
# Real-street
_ A SSL +
g 1200 o) L
£ *DSL *
o 100 | . syNTHESYS #
S * TITAN/OPTIMUM &
? 8o Gabriel graph | e
g .
# Y
;g» 60 + % 2 ;,5 L]
K] L O "'; = 8% °
2 4w {‘fﬁ L -h
= . e B e 8
g BT Ry v
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W =1212. V|72 (13)

5 Estimation of trenching length

In this section, a case study is presented concerning the
FTTB/FTTH deployment in the selected 100 urban areas
of Greece. All five traditional geometric models along with
the Gabriel graph model are applied in order to estimate the
required trenching length of the installation.

As mentioned before, the potential customer base in
each area is uniformly distributed over a square of dimen-
sions 1km x 1lkm and the CO is situated in the mid-
dle of the square. The only exception is the SYNTHESYS
model, where—by definition—a polygon of 1 km? surface is
employed (n, = 8, ny = 12).

As for the real-street trenching length, measured and
presented in Figs. 7 and 10, it can take values between
8 and 35km. However, some remarkable variances among
the results of the simple geometric models can be clearly
observed, which in turn lead to errors higher than 38.9 %,
as seen in Table 3. The numerical results indicate that the
solution by the Gabriel model outperforms the existing solu-
tions by the conventional geometric ones. Even more sig-
nificant is the observation that the proposed Gabriel model
leads to an approximately 20 % error that is to say at least
48 % better accuracy (up to 85 %) than any other geometric
model. Hence, the models may be ranked from the best to
the worst as follows concerning the estimation of trenching
length: Gabriel graph, TITAN/OPTIMUM, SSL, SL, DSL
and SYNTHESYS.

buildings per square km

Fig. 10 Trenching length versus building density, with the Gabriel
graph fitting best the real-street trenching

In addition, it is achievable to quantify the inaccuracy of
the considered models, caused by the irregular street con-
nectivity, discriminated in different area types: Semi-Urban
(250500 buildings/km?), Urban (500—1000 buildings/km?)
and Dense Urban (more than 1000 buildings/kmz).
Once again, it is visible that the Gabriel approach offers
much higher accuracy than geometric models do, especially
in highly populated areas, where the existing models diverge
even more from real data (see Fig. 11).

Although in the current study the comparison between the
Gabriel graph model and the conventional models refers to
one real dataset i.e., Greece, any additional verification for
other datasets, corresponding to other countries, is employ-
able but would require supplementary data (mainly the build-
ing density per sample) which are not readily available.

As well, it is important to note the restrictive hypothesis
of buildings scattered along the entire length of the streets in
the Gabriel model calculations. Of course, more realistic spa-
tial distributions may be incorporated to the Gabriel model
to define the buildings locations. As the Gabriel graph itself
represents the street lines, another layer of points may serve
as the building locations. In that case, the point pattern could
follow a spatial distribution such as the homogeneous Pois-
son (also known as complete spatial randomness) or the Rip-
ley’s K-function. However, this would require modifying the
calculations and transcending the solely mathematical graph
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Table 3 Models’ fitting to the SSL SL DSL SYNTHESYS  TITAN/ OPTIMUM  Gabriel graph
real-street trenching length
MAPE 0.415 0.429 0.562 1.326 0.389 0.201
20 ) importance to the telecommunications practitioners, but can
- also provide supplementary contribution to research efforts in
=DSL the access network field. More specifically, it can be favor-
1.5 SYNTHESYS ably applied in studies where design algorithms are eval-
~TITAN/OPTIMUM uated or implementation scenarios are investigated, such as
” m Gabriel graph [2,3,34] (e.g., different splitting ratios, P2P vs. PON). More-
% 10 iri
g over, the empirical features found here and the proposal of
the Gabriel graph model may be useful for the planning of
other infrastructure networks whose development occurs in
0.5 - planar constraints and is based on the complex road system as
p— 7 — Vi - / a natural guide to reach customers, such as transport, energy
- - / or water networks.
= A
0.0 == - - Although the Gabriel graphs appear to satisfactorily fit all
Semi-Urban Urban Dense-Urban . . . . .
R examined metrics, there still remains space for exclusively

Fig. 11 MAPE behavior under different area types: Semi-Urban (250—
500 buildin, gs/km2 ), Urban (500-1000 buildings/kmz) and Dense Urban
(more than 1000 buildings/kmz)

handling met in this paper. Similar modification would be
suggested in a brownfield network deployment case, where
the reuse of previous infrastructure becomes an additional
challenge to deal with.

6 Conclusion

In the current paper, the Gabriel graph model is proposed
and validated by real-street data for the representation of the
underlying street network. Besides, the conventional geomet-
ric models for FTTx dimensioning are proven inadequate to
offer a realistic perspective.

In particular, the real-street topologies are found to possess
a remarkable complex heterogeneity in their structure and
deviate from simple regular patterns such as square grids. The
proposed approach of the Gabriel graph model in contrast to
the conventional geometric ones can sufficiently capture the
irregular connectivity of the urban street networks in order to
obtain reasonably accurate estimates for the key cost quanti-
ties of an FTTx installation — exclusively the trenching length
quantity. On the other hand, the traditional geometric mod-
els are verified to suffer from inaccuracy problems and thus
may lead to wrong conclusion of the early techno-economic
assessment, especially in dense urban service areas, where
striking differences are found between estimations and real-
street calculations.

In these terms, the use of the proposed Gabriel model
instead of the conventional geometric models not only is of

@ Springer

ascribing these metrics to engineering metrics or utilizing
them to solve dimensioning problems. As well, the calcu-
lation and the accuracy evaluation for the rest of the FTTx
cost factors, i.e., fiber length, number of splitters, by employ-
ing the Gabriel model is an open issue. Meanwhile, having a
legitimate trenching cost, one can form rough estimations of
the remaining cost components from the total budget, e.g.,
by using percentage cost breakdown derived from similar
project cases, also known as analogous estimating.
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