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Abstract—This paper presents a complex telecom investment
problem analysis using system of systems concepts. This is neces-
sary due to problem’s multidimensional nature with several inter-
dependences, and the presence of uncertainty and competition. A
genetic algorithm is implemented in MATLAB in order to optimize
the objective function (operator’s profitability) of the formulated
nonlinear programming problem. This approach is capable of pro-
viding optimal policies (regarding, e.g., services pricing, inception
of investment, or revenues reinvestment) in a competitive market
helping future investors in decision making by using various emu-
lated strategic plans as reference.

Index Terms—Genetic algorithms (GAs), investment, nonlinear
programming problem, optimization, policy, system of systems,
techno-economic, telecommunications.

I. INTRODUCTION

INTERNET and generally information and communication
technologies (ICT) are assumed as a major factor leading

to socio-economic development [1], [2]. ICT can also play a
significant role in economic growth [3] and competition [4, Ch.
1.3] for countries, enterprises and individuals. In detail, the use
of ICT has a great impact on several fields such as trade, health
and education, positively influences wages [5] while creating
new job opportunities [6, p. 6 and 7]. On the other hand, ICT
can help individuals and enterprises to remain competitive by
doing things in a more efficient and effective way [6].

The high importance of Information and Communications
Technologies for Europe can be viewed by its action to include
Digital Agenda in Europe 2020 Strategy. In this plan, European
Union describes its ambitions for 2020 that is “to reach a smart,
sustainable and inclusive growth for European Economy” [7,
Fig. 1 and Annex 1] and “to exit the crisis and prepare the
EU economy for the challenges of the next decade” [8, Europe
2020 Strategy]. Toward this direction, the European Union
has already and will continue to provide funds in order to
develop a knowledge- and innovation-based “digital” economy
[6, p. 3], [9].

Telecom operators who are the main investors of telecommu-
nications networks have thus to exploit the funding opportunities
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from the one hand and deal with the high uncertainty influenc-
ing such deployments. Hence, accurate, quick choices along
with budget details and strategy plans need to be constructed
on a clear basis. A quick and accurate methodology scheme
that will make investors to enhance current methodologies and
decide with greater confidence about critical aspects of their
investment should consequently be provided.

In the past, several studies, mainly based on a typical techno
economic analysis, have been performed dealing with tele-
com investments [10]–[13]. In the literature, more complex ap-
proaches and decision analysis frameworks can also be found,
incorporating several methodologies such as real options with
analytic hierarchy process [14], forecasting models and diffu-
sion determinants [15], dual objective optimization (maximiza-
tion of profitability and service level) [16], and dynamic pricing
attached to demand forecast [17].

As telecom investments are difficult to be modeled by tradi-
tional systems methodologies, given their space and time scale,
their multidimensional nature, their complexity, the uncertain-
ties arising from demand and price evolution and the emerging
needs of users, new approaches incorporating complexity while
keeping computational simplicity are needed. In addition, qual-
itative issues such as the first movement advantage and exter-
nalities deriving from the associated networked economies are
even more difficult to be incorporated in a simple and accurate
manner. The system of systems (SoS) concept has been proven a
valid choice when dealing with such type of complex problems
[18]–[23].

Earlier approaches to implement the SoS concept in a techno-
economic problem for telecom networks providing a complete
and accurate reference to telecom operators and policy makers
can be found in [24]. Although this study managed to address
the emerging behavior of telecom investments, it could not deal
with the complex interdependences of the constituent systems as
well as the externalities arising from the associated networked
economies.

In this paper, a methodology based on SoS framework is pro-
posed for modeling telecom investments and defining strategies
leading to profitability under several constraints. Adaptation and
reconfiguration concepts on initial decided strategies are also
encapsulated in this framework. To the best of authors’ knowl-
edge, this is the first time that such a study is implemented.
Having a compact and almost closed-form nature, the proposed
framework can be proved an extremely valuable tool for telecom
operators.

The rest of this paper is organized as follows. In Section II,
the SoS nature of a techno-economic investment is presented
having as test pilot a fiber to the curb (FTTC) access network.
The telecom investment problem is presented in Section III. The
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SoS constituent systems are modeled in Section IV. The results
derived from the implementation of the proposed framework
in an FTTC/very high speed digital subscriber line (VDSL)
case are illustrated in Section V. Some policy and concluding
remarks are given in Section VI and VII.

II. SOS

Before proceeding to the analysis and modeling of this
techno-economic SoS, one should list the constituent systems
(see Fig. 1). As shown in Fig. 1(a), there are five interdepen-
dent systems. The competitor analysis (CA), budget allocation
(BU), capital and operational expenses (CAPEX + OPEX), de-
mand forecast (DE), and network externalities (NE). It should
be noted that all the constituent systems are able to interact with
each other.

The CA is a system that analyses the market, provides in-
formation about the base prices of the services, the number of
current and potential competitors along with their strengths and
weaknesses, possible opportunities for new markets entrance
and finally defining strategies [25, Sec. 2]. Budget Allocation
is a critical system that actually makes real a techno-economic
investment; it quantifies strategy, costs, prices, cash flows, and
assets. CAPEX and OPEX are the systems that actually deal
with the absolute technical part and the operational part of the
telecommunications network. These systems are responsible for
the provision of high data rates to the end user. Central offices,
local exchanges, switches, and kilometers of fiber, real estate,
and installation are some of the elements incorporated in these
systems. Demand forecast is a system used to estimate the deliv-
ered service success by making various scenarios about service
penetration. Finally, network externalities is a critical system
describing part of the emerging behavior of SoS telecom net-
works [26, Ch. 10]. In this study, the dependence of customers’
number on external factors such as price is incorporated in the
network externalities system. This, along with the rest sys-
tems, will define the expected revenues of the network. The
described techno-economic SoS roll-out space is encapsulating
great uncertainty and time-varying behavior, thus some kind
of adaptation is needed in order to fulfill the common mission
(revenues maximization). This is mainly achieved by dynamic
connectivity among constituent systems of the SoS as can be
depicted from Fig. 1(b) [27, Fig. 2] This figure is outlining two
different time stamps (t1, t2) of connectivity among systems,
characterized as pre (t1) and post (t2) investment phases. The
inclusion of feedback between SoS outcome (revenues) and BU
system, highlights the dynamic and adaptive nature of the SoS.
This case is further examined in Section V-B with a portion of
revenues to be used on boosting the budgeting strategy. Fur-
thermore in Fig. 1(c), key dimensions of techno-economic SoS
[27], [28] are illustrated, in order to identify connectivity, het-
erogeneity and autonomy in each of the constituent systems. The
CAPEX+OPEX system was divided toward accurate descrip-
tion, identifying mainly the difference of machine and human.
Following the taxonomy concept, the rest of the systems are
also placed in the SoS taxonomy space enlightening variations
among them.

Fig. 1. Technoeconomic network under investigation. (a) Typical represen-
tation. (b) Dynamic configuration representation in two different time stamps.
(c) Taxonomy-based representation of constituent systems.
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III. PROBLEM STATEMENT

In this section, the problem of a telecommunications network
investment from the provider’s perspective is stated using the
SoS methodology as described in the previous section. The
goal is to dynamically allocate the available budget in order to
deploy a telecom network while maximizing provider’s profit
and taking into account several constraints of the considered
variables.

As previously described, there are several issues—systems
participating in a telecom investment problem. In detail, such
investments include capital and operational expenses, services
pricing policy, subscribers demand, competition analysis along
with public incentives, and budget constraints. Each system of
the techno-economic SoS will be modeled in the next section
with a specific mathematic formula. All these mathematical
representations will be consolidated in one common function
that will further represent the main objective of the SoS, which
is profitability. By combining the SoS analysis of the previous
section, one can derive a simple form objective function H(X),
describing the profitability of the project.

H (X) =
years of study∑

y=1

(Suby
∗Py ) + Incentives − BUTotal

(1)
where

H(X) the objective Function;
y year under investigation;
Suby the subscribers that use the internet service provider
(ISP) network the specific year y;
Py the annual price of the provided service at year y;
BUTotal the total available budget for the whole period of
study;
Incentives public contribution;
X the array of decision variables.

The objective function in (1) will be inserted along with its
constraints, limits, etc., in a Genetic Algorithm (GA) environ-
ment in order to be optimized. More specific, GAs [29]–[31]
is a stochastic global search method that actually emulates the
process of natural selection. It belongs to a large category named
evolutionary algorithms (EAs), which is using techniques that
are inspired from natural evolution such as mutation, crossover,
and selection. The metric that actually points to the proper set of
chromosomes is the objective function [32, pp. 1–4]. The objec-
tive function is used to measure how the solutions (individuals)
are performing. In our case of a maximization problem, the high-
est the numerical value of the objective function, the highest the
result of the appropriate individuals will be. In variants of GAs
the fitness function [32, pp. 1–8] is also used in order to trans-
form the objective function into a measure of relative fitness [33,
Ch. 1.4]. In our case, we will only use the objective function
as measure of suitability. The main characteristic [32, pp. 1–5]
of GAs that forced to select them in the proposed framework is
mainly the fact that GAs are not searching for a single point,
instead they perform a complete search over a population in par-
allel that is extremely helpful in a complex nonlinear problem
(NLP). Stochastic global search methods such as GAs are gen-
erally used in NLPs. These methods are fitting perfectly in NLP

problems with respect to the size of solution space. Even though
computing time is becoming higher following global stochastic
methods, multicore computer machines overcome most of the
handicaps. In addition, the whole stochastic process includes
a sense of probability that actually represents better real-world
NLPs. GAs belong to global stochastic methods. More specific,
GA simulates natural processes such as selection with some
kind of intelligence during the phase of exploitation over the
solution space.

The selection of proper parameters and methods of GAs is
of high importance affecting its convergence speed as well as
the quality of the derived results. Various tests along with ex-
haustive loops were performed using the MATLAB GA toolbox
helping the GA to avoid trapping to local optima. Thus, in or-
der to enhance the reliability of results, 1000 runs of the GA
were performed in each optimization substudy. Clustering the
gained experience of this pseudoadaptation of GA configura-
tion, authors concluded with great confidence on the parameters
and methods over the solution space. Details on MATLAB GAs
configuration are shown as follows.

1) Population: Initial = 20, in each GA running.
2) Mutation: Gaussian type was used (which further de-

creases in every new generation of GA “children”
members).

3) Crossover Fraction: Enabled and set to 1.0 (meaning that
all the “children” of each GA run are crossover children
except of course from the elite individuals∗.

4) Elitism: Enabled (as mentioned in crossover previously
asterisk∗ characterizing the individuals as elite solutions.)

IV. SOS MODELING

A. CAPEX and OPEX

In order to estimate the required CAPEX needs (number of
network components) throughout the study period, simultaneous
efforts required on components cost prediction and broadband
access forecasting. Components cost is following telecommu-
nication market evolution with respect to substantial learning
curves while broadband access forecasts are carried out accord-
ing to the methodology described in [34, Seq. 3.3]. Next para-
graph is allocated in component pricing evolution and demand
forecast is evaluated in Section IV-3.

For each component cost prediction, a price curve (learning
curve) is calculated representing the component’s cost through-
out the study period. In fact, the price P(t) of each network
element is assumed to follow the extended learning curve [35,
eq. (6.1)]

P (t) = P (0)
[
nr (0)−1

{
1 + eln[nr (0)1 −1]− 2 ln 9

Δ T t
}−1

]log2 K

(2)
where P(0) is the price of the component in the reference year 0,
nr(0) is referring to the units of the component that were sold in
the reference year 0, ΔT is the time that is needed for the total
production to grow from 10% to 90% of the maximum value and
K is a learning curve coefficient that actually points to the price
reduction that happens when the production volume is doubled.
In cases where historical data are available, the parameters K and
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TABLE I
PARAMETERS BASED ON VOLUME CLASS

Volume Class nr (0) ΔT Example

Old fast 0.5 5 Fiber termination
Mature medium 0.1 10 Fiber cables
New medium 0.01 10 Switches
New slow 0.01 20 Lasers
Emerging medium 0.001 10 WDM∗/TDM∗∗ components
Straight line 0.1 1000 Cable installation

∗ Wavelength-division multiplexing (WDM).
∗∗Time-division multiplexing (TDM).

TABLE II
K VALUES FOR COMPONENT GROUPS

Component Group K Value

Civil work 1
Copper 1
Installation 1
Sites and enterprises 0.95
Fiber 0.9
Electronics 0.8
Advanced optical components 0.7

ΔT can be determined using a standard regression analysis. In
the analysis presented hereafter, the parameters of the learning
curve are stored in a database built within the techno-economic
tool, which contains more than 1000 different network compo-
nents [12, Fig. 2]. The components and subsystems are grouped
in several volume classes as presented by [35, Table 7.2]. Ex-
ample values used for the various volume classes are shown
in Table I [35, Table 7.2]. In the same way the K parameter is
estimated based on type of component or subsystem, reflecting
the learning process from other similar components or systems
in Table II [35, Table 7.1].

In addition, the volume classes are chosen to cover the two
aspects of cost components: the type and maturity of cost com-
ponents. The definition Old, Mature, etc., stands for the years
during which the specific components were offered in the mar-
ket. The definition Fast, Medium, etc., stands for time in years
to grow the total production volume from 10% to 90% of its
maximum value. For example, for the components used in the
analysis presented herein, the installation or civil work costs are
part of the straight line class, fiber cables costs are in the mature
medium class, lasers are new slow class components, switches
belong to the new medium class and new optoelectronic devices
used at the PON architectures under study are emerging medium
class components.

In case the components are new and no historical costs exist,
a priori value has to be chosen. Examples are shown in Tables I
and II. Typical values of the learning curve coefficient are from
1 (100%) (meaning no cost reduction) to 0.7 (70%), giving 30%
reduction for doubling of production volume. An additional dou-
bling of the production will reduce the cost by 51%. Using the
network component prices through the extended learning curve
modeling, CAPEX calculation for the FTTC network is now
feasible. OPEX is modeled as a percentage (10%) of CAPEX

Fig. 2. Cost per user in FTTC network implementation.

[36, p. 111] in order to avoid further increasing the complexity
of the problem.

Fig. 2 illustrates the SoS incremental cost (cost per user).The
presented curve, obtained using polynomial fitting in MATLAB
from simulated data of study [24, Figs. 5 and 6], which fur-
ther consolidate data also from [12, Fig. 2] and [35, Tables 7.1
and 7.2]. The cost per user can be modeled as a two-session
exponential of the following form:

Cost per user = a1
∗exp (β1

∗users) + a2
∗exp (β2

∗users) .
(3)

It is initially high due to large investments and low initial
utilization of the network. As the roll out of the network is
proceeding and more customers are connected to the network the
SoS incremental cost (per user) reduces. The shape of the cost
per user function is similar to price curves figures illustrating the
additional cost for the implementation of the techno-economic
SoS.

B. Budget Allocation

Budget plays an important role in network diversification but
also in economic benefits that derive from a telecommunication
investment [37, Tables I and II]. An initial amount is given as
entry to the algorithm that is split through the years of investment
study in order to cover the initial needs as well as split the
additional costs of CAPEX and OPEX through the following
interaction as shown in Fig. 3.

The aforementioned interaction produces a matrix-based rep-
resentation, in each GA run, for our reference, as can be de-
picted in Fig. 4. For the following matrix (indicative example),
15 million Euro(15 M€) budget was used as test case and it was
split through years the same way the GA will do based on the
aforementioned block diagram. The cumulative sum of the ma-
trix below shows that a total budget of 13.40 million Euros was
spent. Residual of 1.60 million Euros was not enough to cover
extra network building costs thus disposing did not happen.

The budget used every year, implementing dynamic allocation
based on pricing and demand as described in Fig. 3, is calculated
as follows:

Bi = Adcapex (i) + Adopex (i) (4)

subject to pricing and demand, where
Bi budget of each year i;
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Fig. 3. Block diagram for budget allocation.

Fig. 4. Budget strategy for 10-year period.

Adcapex(i) added CAPEX every year to support new sub-
scribers;
Adopex(i) added OPEX every year to support new sub-
scribers.

In particular, the total budget over the study period should not
exceed the initial available budget. The simplest functional form
satisfying the aforementioned interaction and splitting though
year’s matrix can be written as follows:

years∑

i

Bi ≤ BUTotal (5)

BUTotal , initially allocated budget for the investment, for all
the study period.

C. Demand Forecast

In order to forecast the broadband subscriptions, a four pa-
rameter logistic model as in [34, Sec. 3.3], known as TERA
(Techno-Economics Results from ACTS) project, was used. S
curves are found in various fields such as business and tech-

Fig. 5. Subscribers without competition. The presented curve, obtained using
polynomial fitting in MATLAB from simulated data by study [24, (2)] having
as reference in [34, Sec. 3.3] and selected market saturation equal to 30 K.

nology. Looking into the anatomy of S-curve the shallow start
described mathematically as lower asymptote. Then, we have a
rapid growth and later the slope arches upwards until it reaches
the maximum. This point of maximum growth is called point of
inflexion. In business as in our case, the curve starts with a shal-
low start mainly because of the early adopters of the provided
service, then follows a rapid growth meaning that the technol-
ogy is adopted from many users, and finally, a little growth is
maintained that usually indicates saturation and mature market.
The aggregate demand for subscriptions is given on [34, p. 24]

Yt =
M

(1 + eα+βt)γ (6)

where Yt is the demand (subscriptions) at specific time t, M is
the saturation level or total market potential and α, β, and γ
are parameters, which can be estimated by a regression analy-
sis using historical data of existing broadband connections. A
schematic representation of S-curve is illustrated in Fig. 5.

D. Network Externalities Model (Service Pricing)

Another important point that needs to be carefully modeled
is the services price. The annual service price was set as an
independent variable whose value is properly chosen by the GA
so as covering the investment needs and leading to profitability.
However, as indicated by Shy [38, eq. (1)], there is a close
relation between the subscription fee p (service price) and the
number of subscribers x

p = [1 − βx(p)]aNx(p) = aNx(p) − βaNx2 (p) (7a)

where α, β > 0 price network parameters and N potential sub-
scribers. Simplifying the aforementioned equation by adding
b1 ,= βαN , b2 = αN > 0 (see Fig. 6), we can rewrite as

p = −b1x
2 + b2x. (7b)

As shown in (7b), there are two equilibriums xL and xH

given by

xL =
b2 −

√
b2
2 − 4b1p

2b1
(8a)

xH =
b2 +

√
b2
2 − 4b1p

2b1
. (8b)
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Fig. 6. Shy [38, Fig. 1]. Demand for a network good under network effects
as a function of the number of subscribers. Three equilibria are associated with
the subscription price as denoted.

Fig. 7. Price versus demand. Curve fitting was used using simulated data from
Rokkas study [24] with ten years extension following Shy [38, (1)] solution as
before.

It should be noted that xL is an unstable equilibrium in the
sense that a small increase in the number of subscribers would
induce consumers to subscribe. Therefore, the total demand for
the network good is given by xH . It is then straightforward
to show that there is an interdependence between the demand
model and service price. In fact, one can perform the previously
described process [see (6) and (7b)] and use the solution xL

as the saturation level M of the demand model. A schematic
representation of price–demand is illustrated in Fig. 7.

E. CA, Balancing Market

The CA is an important member system of the SoS dealing
with advantages that can be gained depending on the sequence of
investors. For example, government provides incentives for new
technology deployments. This is usually an important amount
of money to cover the initial expenses of network construction.

In this study, a total public funding of CAPEX/2 is assumed.
Taking into account a Greenfield case (no infrastructure for
the new services is present) and duopoly, the public funding
is further distributed to investors according to the following

Fig. 8. Subscribers with competition present. The presented curve, obtained
using polynomial fitting in MATLAB from simulated data by study [24, (2)]
having as reference in [34, Sec. 3.3] and selected market saturation equal to
34 K, with each curve representing the impact of each B factor of (10).

indicative equation:

Incenting =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

A1% ∗ CAPEX
2

,X1 = 1,X2 = 0

A2% ∗ CAPEX
2

,X1 = 0,X2 = 1

A3% ∗ CAPEX
2

,X1 = 1,X2 = 1

(9)

[A1 , A2 , A3]= [80, 20, 50]where X1 ,X2 variables correspond
to the two operators willing to invest in FTTC network deploy-
ments and Ax factors selected toward provision of an advantage
to investors willing to start before others. X1 is attached to the
investor under investigation and X2 is directly attached to its
competitor. In detail.

1) X1 = 1, X2 = 0, the operator under investigation starts
investing BEFORE its competitor;

2) X1 = 0, X2 = 1, the operator under investigation starts
investing AFTER competitor investment;

3) X1 = 1, X2 = 1, the operator under investigation starts
investing exactly THE SAME TIME with competitor.

The sequence of investors does not only affect the gained
public funding portion but also the number of subscribers that
can be attracted by the operator (potential market share). This
can be modeled by following equation and depicted in Fig. 8:

Subscribers =
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

B1% ∗ Total Available Users,X1 = 1,X2 = 0

B2% ∗ Total Available Users,X1 = 0,X2 = 1

B3% ∗ Total Available Users,X1 = 1,X2 = 1

(10)

[B1 , B2 , B3] = [60, 40, 50] where X1 ,X2 variables for the
two FTTC network operators willing to invest as shown before
at incenting modeling and Bx factors selected toward provision
of an advantage to investors willing to start before others in
terms of market share.

V. RESULTS

FTTC/VDSL architecture for the last mile is investigated as
a case study of the proposed framework. The area is described
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TABLE III
PARAMETER VALUES USED FOR CASE STUDY

Name Parameters Used Equation, Figure

Cost per user α1 = 6.158 e + 04, α2 = 850.4, (3), Fig. 2
β1 = −2.794, β2 = −0.1489

Demand α = −2.237, β = 0.5636, γ = 1 (6), Fig. 5
M = solution xL from (8a)

Service price versus
demand

a = −4.273e-07, b = 0.006487, c =
451.9

Result solving [see
(6) and (7b)], Fig. 7

a∗x2 + b∗x + c = 0, second-order
polynomial

in terms of subscriber density and geographical characteristics.
The area model chosen corresponds to a dense urban area with
a surface of 12 km2 and 5 641 customers per km2. It is assumed
that there is one central office, serving 65 536 customers in
total. The total available budget is assumed to be 35 M€ for
the whole study period of 10 years maximum. The starting year
of operator’s investment will be decided by the optimization
process using GAs. In order to avoid trapping on local extrema,
the GA is running 1000 times. In order to maximize provider’s
profit at the end of the study period, the following nonlinear
programming problem is stated following the objective function
that is presented in Section III.

Maximize objective Function H(x) [see Section III, (1)], sub-
ject to
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Incentives [see(9)],Budget [see(5)], Subscribers [see(10)],

Pricing Models [see(6) and (7b)].

Decision Variables Array X[0 . . .12] of optimization:

X0 ,Starting Year of Investment,

X1 ,X2 as described firstly in (9),

X3 . . .X12 , service price each year of the total

10 of study.

Contraints :

⎧
⎪⎨

⎪⎩

1 ≤ X0 ≤ 10

0 ≤ X1 ,X2 ≤ 1

X3 ≤ X4 . . ..X11 ≤ X12 .
(11)

The values that were used for the parameters in the equations
of Section IV (SoS Modeling) are illustrated in Table III.

Using the estimated parameters along with constituent sys-
tems’ mathematical models, an optimum strategy for the incre-
mental network deployment (dynamic budget allocation) lead-
ing to profit maximization at the end of the study period will be
investigated and proposed. The nonlinear programming (NLP)
problem is solved as mentioned in Section III using the GA and
implemented in MATLAB.

From the derived results, it is deduced that in almost 90% of
the cases the FTTC investment is started in the first two years.
This is somehow expected and can be attributed to the longer
network’s operation period leading to increased revenues, and
thus, profits. A profitability of ∼100 M€ is observed in the
majority of the simulation runs. Another interesting result is

Fig. 9. Maximum Profit of investment with 5 M€ budget. Starting year of
investment is 1. X1 = X2 = 0 is not a valid assignment in problem since
nobody starts investing.

Fig. 10. Pivot chart showing maximum profit for various starting years BE-
FORE competitor for 35 M€ budget.

that in more than half of the 1000 cases, the operator decides to
invest before his competitor. This can be mainly explained by the
extra benefits (incentives) received by the first investor. In these
cases, a maximum profit of 103 M€ is observed (see Fig. 9).
As illustrated in the same figure, a delayed decision (invest after
the competitor) results in significant profit losses. An interesting
case is the simultaneous investment of both operators, which is
the second best choice as the profitability remains in good levels.

It is interesting to note that starting the investment early
enough even though the CAPEX costs are high—for new tech-
nology equipment—is beneficial for the profit margin. This is
attributed especially to market share gained margin and this can
be observed in the following figure (see Fig. 10), comparing
profit for different starting years of investment.

Another issue that plays a significant role in the maximization
of investment’s profitability is the services pricing policy during
the study period. It should be noted that an extremely aggressive
policy was followed in the case of maximum profit described in
Fig. 9. According to this policy, the annual price of the services
is forced to be reduced each year. In the case of maximum profit,
the evolution of annual price of the provided service is depicted
in the following figure (see Fig. 11).
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Fig. 11. Yearly pricing selected for 35 M€ budget.

Fig. 12. Pivot chart showing maximum profit when starting at year 1, BE-
FORE competitor for various budgets.

On the other hand, if the operator decides not to proceed to
price reduction, a profit limitation is observed. This was not
entirely expected since one would consider that high prices
will lead to increased revenues, and thus, to increased profits.
However, a thorough look at SoS modeling will reveal that
there is no one-way relationship between price and revenues.
This can be attributed to the complex interdependence between
price and subscribers. A price reduction policy may speed up
service adoption, and thus, increase the number of customers,
and consequently, the received revenues even in low prices.

Inextricably linked to the pricing policies and the entrance
decisions is the extent of network deployment. In the cases of
maximum profit where the operator under investigation starts
first the investment and follows a price reduction policy, net-
work deployment is extended and almost reaches the end of the
study period. On the other hand, in low profit cases, network
construction is limited. One more interesting point is that in the
majority of cases where we have a significant profit over the
years of study, profitability is observed after the fourth year.

A. Composite Budget Analysis in Order to Capture Dynamic
Behavior of the SoS

The available total budget is a point of great debate and should
be further investigated in order to identify possible sensitivities.
Toward this direction, a series of simulation runs were per-
formed assuming −20%, −10%, 10%, and 20% budget change,
respectively. The obtained results are illustrated in Fig. 12.

Fig. 13. Maximum profit of investment with 35 M€ budget. Starting year of
investment is 1. X = 0 equals to after competition investing, and X = 1 equals
to start investing before competition. Assuming aggressive adoption of market
shares.

From Fig. 12, it is deduced that the case of 42 M€ budget
leads to the maximum profit. It is straightforward to understand
that a bigger amount of budget is required to further expand the
network, in order to meet the high demand due to price reduction
policy that was followed.

In order to study the combined effect of budget and potential
market share, a new series of runs were performed assuming 35
M€ budget and a more optimistic expectation for the potential
subscribers depending on the order of investment

Subscribers =
⎧
⎪⎨

⎪⎩

Γ1% ∗ Total Available Users,X1 = 1,X2 = 0

Γ2% ∗ Total Available Users,X1 = 0,X2 = 1

Γ3% ∗ Total Available Users,X1 = 1,X2 = 1

(12)

[Γ1 , Γ2 , Γ3] = [80, 20, 50].
Γx factors (similar to βx ) selected toward provision of an

advantage to investors willing to start before others in terms of
market share.

As shown in Fig. 13, a significant increase in the market share
is not followed by a proportional profit (∼119 M€) increase un-
less it is accompanied by a higher budget. This is expected since
the gained market share (more subscribers) cannot be supported
due to the limited budget that prevents the construction of re-
quired network.

Concerning yearly pricing policy following the starting year
of the investment, looking into the gathered data, we can produce
the following two different case pivot charts as illustrated in the
following figure (see Fig. 14).

The important conclusion from the aforementioned running
cases is that all the sequences of prices that produce the maxi-
mum profit besides the aforementioned referred safe approach
of lowering the value every year also select similar values for
all the budgets under study for the first year. This is a low risk
approach as it comes up from the results post process showing
the lack of any kind of adaptation (either in pricing or network
diversification) in the algorithm complex objective Function.
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Fig. 14. (a) Pivot chart showing average price of first year when starting at year
1, BEFORE competitor for various budgets. (b) Pivot chart showing average
price of first year when starting at year 1, AFTER competitor for various budgets.

It is also interesting to look into a case study of the afore-
mentioned multiple runs as standalone walkthrough in order to
provide a better insight on the information that is encapsulated
in the complex objective function and GA decisions. The basic
run case of 35 M€ initial budget along with generous incentives
produces more than 100 M€ profit, since the operator under
study selects to get into the investment before the competi-
tor. More specific the CAPEX+OPEX expenses are up to the
seventh year of operation due to the finite amount of operator
budget (spends ∼34 M€). After this year, the subscribers that
the operator under study can support are kept constant since
based on the problem statement no resources can be further
allocated due to limited budget. From the aforementioned ex-
tended postprocess analysis, it is obvious that CAPEX+OPEX
expenses are getting suspended after some years of investment
study. This is attributed mainly to the limited available budget.
It would be also extremely helpful if any additional information
can be extracted concerning the absolute limits in budgeting of
the investment under study. This could probably lead to possi-
ble saturation observation after exceeding a specific amount of
available budget. For the needs of this kind of study, the GA
Input was supplied with a set of various budgets, starting from
50 M€ up to 110 M€. 1000 cases for each budget were exam-
ined and the data are further presented in the following figures.

Fig. 15. Pivot chart showing cash flow of the operator under study that selects
to get first into the investment the early first year of the total 10 under study.

Fig. 16. Pivot chart showing potential subscribers that can be serviced by the
operator under study over the years of study period for 70 M€, 90 M€, and 110
M€ budget.

Fig. 15 presents the maximum profit that can be achieved for
various budgets with the operator under study to be the first that
gets into the investment. After 50 M€ of budgeting, the profit
based on the trend line (also illustrated) is reaching a limit of
∼123 M€. This is a first indication of possible saturation that has
to be further examined. To support this statement, the gathered
data are getting into a postprocess again and the SoS behavior
is observed.

Picking the data that provide the same maximum profit with
different starting budgets from the aforementioned illustration
(see Fig. 15), the following composite figures (see Figs. 16–19)
are produced that enhance the knowledge about the operation of
the modeled SoS. Fig. 16 presents the potential subscribers that
budget-case investments can support each year for 70, 90, and
100 M€ cases. It is interesting to point out that for budgets of
50 M€ and 60 M€ the CAPEX + OPEX expenses are incurred
up to the eighth year of the total study in contrast with the
rest higher budget cases where additional money are spent on
year 9. Apart from the extra budget that is consumed in these
higher budgets, the profit is equal for all the cases under study.
More specifically the extra budget (∼10 M€) that is consumed
in 110 M€ budget (see Fig. 18) case is actually an attempt to
support more subscribers that could lead to more profits based
on problem statement. The question that arises is why the extra
positions of available subscribers are not covered as can be
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Fig. 17. Pivot chart showing actual subscribers that are using the service by
the operator under study over the years of study period for 70 M€, 90 M€, and
110 M€ budget.

Fig. 18. Pivot chart comparing maximum available budget and actual budget
(including incentives) that was used for each case 70 M€, 90 M€, and 110 M€
budget.

Fig. 19. Market Saturation region indicative plot in sample S-curve demand
function.

deduced in Fig. 17 and subscribers’ number remains well below
140 K. The answer is found in the indicative Fig. 19 where the
market saturation case is pointed in the graph. Therefore, based
on the Demand Modeling that was employed in the test case,
the market saturation is reached earlier than any finite budgeting
limitation and actually suppresses the plausible profits.

The lack of any kind of adaptation as mentioned earlier (see
Fig. 14) and the problem initial statement with limited budget
that led to market saturation, triggered the authors to move to
the following additional study section that will cover another

Fig. 20. Maximum profit of investment with 25 M€ budget. Starting year
of investment is 1. X = 0 equals to after competition investing, and X = 1
equals to start investing before competition. Assuming aggressive investment in
network construction of yearly profits.

characteristic of SoS, the reconfiguration in order to achieve the
higher mission (increase profitability).

B. Adaptation and Reconfiguration—SoS Emergent Behavior.

In the analysis of the previous sections, it is assumed that the
profits of the investment are shared to the shareholders of the
operator’s company. However, this strategy is proved to be the
worst in terms of available budget. In order to investigate the im-
pact of partial profit reinvestment on both the required available
budget and the viability of the project, (4) must be transformed
to the following form. Assuming an available budget of 25 M€,
a series of optimization runs are performed again

years∑

i

Bi ≤ BUTotal +
years∑

i

(A%) ∗Profit (13)

A = [30, 50].
From the obtained results, it is deduced that, the maximum

profit (around 93 M€) is achieved by reinvesting 50% of the
annual profit in network extensions besides the small amount
of available budget. The case of starting the investment after
competitor is also shown and it produces really low profits (see
Fig. 20). This is a high risk case since if the operator under study
misses the investment entrance, a severe amount of money for
budgeting will be needed in order to gain market share capable
of providing adequate profits.

In order to compare the results derived with and without
reinvestment, a series of optimization runs are also performed
using (4). The maximum profit was ∼70 M€, which is much
lower than the case of profit reinvestment. This can be easily
explained by the fact that low available budget results in limited
network deployment. Thus, the growing demand cannot be met
by keeping the number of subscribers in low levels. It should also
be highlighted that the same conclusions are derived following
the advantageous strategies of pricing policy and investment
entrance.

This is a clear indication that telecom investments are not
static procedures. Contrary, more complicated strategies and
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adaptive policies should be adopted. This is of high importance,
especially in cases where the initial targets are missed over the
study period. In order to address such emergent behaviors of
the SoS under investigation, it is thus crucial to continuously
monitor the defined metrics of effectiveness and performance
of a successful investment. Interventions, in terms of pricing
policy or percentage of reinvestment, deviating from the initial
plan should be performed in order to keep profitability in the
desired levels.

VI. POLICY IMPLICATIONS

The aforementioned results reveal that policy implications are
necessary in order to speed up telecom investments, and finally,
converge to digital agenda objectives.

As illustrated, an aggressive pricing policy (annual reduction
of services prices) leads to profit maximization since more sub-
scribers are attracted. However, in many cases, such a policy
results in operators’ cash flow difficulties. Thus, governments
should consider the subsidization of some telecom services in or-
der to support telecom operators. Furthermore, price regulations
such as price cap regulation applicable to telecom investments
should also be considered and investigated.

Another issue that both telecom operators and governments
should pay attention to is the incentives that could be provided
from the latter. The derived results also depict that the investor
who moves first into the investment has a competitive advantage.
Although this can be attributed to his ability to gain more market
share, this is highly correlated to the fact that the first investor
receives more incentives in terms of public contribution. Thus,
governments should always investigate the possibility to provide
public contribution especially in cases where the risks (e.g., of
low demand) are high.

VII. CONCLUSION

In this paper, a new methodology based on an SoS approach
for modeling telecom investments in a duopoly environment
was proposed. This allows both the derivation of analytical re-
sults for the constituent systems and the planning of appropri-
ate strategies and adaptations improving operator’s profitability
while addressing market’s emergence behavior and uncertainty.
A dynamic budget allocation problem was proposed and used
in order to identify optimal policies (e.g., for services pricing
or revenues reinvestment). The formulated nonlinear program-
ming (NLP) problem of maximizing operator’s profit taking into
account several constraints is solved using a GA implemented
in MATLAB.

As expected, investing before the competitor resulted in
higher profitability. It was also shown that an aggressive pricing
policy that reduces services price every year led to profit max-
imization. However, price regulations such as price cap regula-
tion applicable to telecom investments should also be considered
and investigated.

Finally, partial revenues reinvestment is in favor of the budget
required from the operator. The final strategy that an operator
could follow is actually a mixture of corrective actions on an
initial strategic plan that could lead to maximum profitability.

The resulting optimal policies theoretically maximize the opera-
tor’s profitability, motivating new network deployments, which,
in turn, may lead to socio-economic development.
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