
Collaborative Sensing over Smart Sensors

Vassileios Tsetsos, Nikolaos Silvestros, and Stathes Hadjiefthymiades

b.tsetsos@di.uoa.gr, grad0887@di.uoa.gr, shadj@di.uoa.gr

Pervasive Computing Research Group,

Dept of Informatics and Telecommunications, University of Athens

Panepistimiopolis, Ilissia, 15784, Greece

Abstract. Sensor technology is mandatory in order to build and provide context-aware applications in

modern mobile environments. However, some limitations in current solutions prevent the wide

deployment and use of such applications. One of them is that all systems assume that each node has all

the necessary sensors attached to it. Another one is the fact that all applications rely on proprietary

sensor platforms, which restricts the deployment of these applications only to computing nodes that are

compatible with these platforms. In this paper we address both issues and describe some solutions,

implemented in the context of the European research project IPAC.

1. Introduction
Context and situation awareness are key ingredients of modern and future mobile applications. The

vision is that nomadic users can freely move and still enjoy context-aware behavior from the

computing systems they use. Such behavior is perceived through intelligent applications that sense the

user’s context and adapt accordingly. Obviously, the substrate for implementing context-aware services

is to have appropriate sensing elements that can detect changes in the environment and/or user

behavior. Typical sensors that are already used in many applications are weather sensors (e.g.,

temperature, humidity) and positioning sensors (e.g., GPS receivers). However, until now most of the

proposed and existing platforms for mobile context aware applications make two basic assumptions:

a) all mobile nodes have all the sensing devices they require, and

b) the sensing component of the system has been developed on top of a specific sensor technology

(i.e., a sensor solution provided by a specific vendor).

In this paper we present the approach followed in the IPAC (Integrated Platform for Autonomic

Computing) project [1][7] in order to relax these assumptions and provide greater flexibility in creating

context-aware systems. The first assumption is handled through a publish-subscribe scheme for

exchanging sensor data between the nodes. In this way nodes that do not have attached sensors, can

still exploit sensor data provided by sensor-enabled neighbors. The second assumption is relaxed by

using smart sensors. Smart sensors are sensing devices that follow a specific standard and, hence, are

fully interoperable. Their main characteristic is plug-and-play behavior, achieved through the

Transducer Electronic DataSheets (TEDS) that are embedded in them. In the following sections we

provide more details on our work.

2. Collaborative Sensing: the approach of Context Foraging

2.1 System Architecture Overview
Let us assume an architecture where several highly mobile nodes execute situation-aware applications.

These are based on rules, called Situation Classification Rules (SCR), that have conditions related to

context classes (e.g., Temperature, Location). An example of such rule is:

(Temperature>80) ^ (Humidity <10) ^ (Smoke=true) � Fire

The head of the rule (i.e., Fire) is the situation that holds if all conditions are satisfied. Hence, in order

the nodes to demonstrate adaptive and context-aware behavior they must have the necessary context

values (i.e., instances of context classes). The concept of collaborative sensing is heavily based on the

assumption that not all nodes have sensors, and context values, at their disposal. In general, we have

three categories of nodes in our scheme (which is called Context Foraging):

Context Requestors (CR). They request context (sensor) values from their neighborhood. Each Context

Request is of the form:

CReq := Ci op Vi , where Ci is a context class, Vi ∈ value set of Ci, op∈{>, <, =, <=, >=}.

The Context Request is derived from the conditions of an SCR that cannot be locally evaluated.

Each CReq has a Spatial Validity (SVCReq) which is the range within which the context values included

in the request are valid/useful for the requesting node. If we assume that we adopt circular spatial

modeling, then SVCReq is the radius of a circle, with center the current position of the Context

Requestor. The SVCReq value is “inherited” by the respective SCR that produced the CReq. This circular

region includes all nodes that can provide valid values for the CReq context classes. Context Requests

may be disseminated periodically (we assume that an information dissemination scheme based on

probabilistic broadcasting is used). This period is called the Temporal Validity of the request (TVCReq).

Context Providers (CP). They transmit sensor values (Context Responses, CRes) if these match with

some registered CReqs. Each context provider has an index data structure used for two purposes: a) as

a registry of all context requests received, and b) as a mechanism that matches events (fresh sensor

values) with CReqs. The main idea is that context requests will be registered (with their respective

timeouts) in this index. The sensor stream will be also fed into this index so that sensor values that

match some requests generate events that are disseminated through the network.

A context response is a set that contains one or more (context class, context value) pairs:

CRes := {C1 = V1, …, Ci = Vi}, Vi
∈value set of Ci.

A context response has also a spatial validity parameter which is the maximum of the individual

spatial validity values included in the response.

The index structure used for the subscription registration and matchmaking is depicted in Fig.1. In

this index, the FILTERS array contains the context conditions (also called event filters or subscriptions)

received through incoming CReqs and is sorted in descending order for the ‘<’ and ‘<=’ operators and

in ascending order for all other operators. Sorted arrays are used because the readings in this index

(new context values, generated by sensors) are expected to considerably outnumber the updates (new

event subscriptions). The EQUALS array (also stores contextual conditions) constitutes an optimization

in order to avoid unnecessary filters. For example, for the event “contextClass[1] = 22”, we do not

create an additional filter in the FILTERS array of the ‘=’ operator since there is an overlap with an

existing filter (“contextClass[1] >20”). SV values are used for setting the spatial validity parameter in

the context response. Since, in nomadic computing nodes relocate frequently, we do not want to store

all the event filters infinitely in the index since the spatial validity of the respective events (i.e., context

responses) is affected by the nodes’ mobility (for both types of nodes, CR and CP). For that purpose,

we use timeouts for the filters (timeout values) that are scheduled in a typical job scheduler.

contextClass[1]

contextClass[N]

>

<

<=

……333020

……2:402:302:20

value

timeout

op: array

FILTERS: array

22

EQUALS: array

2:12

value timeout

……60120100 SV

10

SV

Fig.1. The index used in Context Providers

Context Relays (CRel). Nodes that do not have the sensors required by a context request or are not

interested in the context response contents. CRels just forward messages.

2.2 Performance Evaluation
In order to assess the performance of the proposed scheme we ran several simulations, where we

compared it to an alternative scheme, also suitable for nomadic computing. This scheme (called

Context Polling or CPol for brevity) is simpler and with some inherent limitations but, in our opinion,

seems to be one of the most promising alternatives for the specific domain. In CPol, each Context

Requestor periodically sends CReqs to other nodes. If the Context Providers, satisfy some (parts of)

requests, they immediately send their context responses and discard the CReq. Hence, the scheme is

totally stateless, which is also one of its key advantages.

In order to assess the performance of the context foraging scheme we ran several simulation

scenarios, using the following metrics:

1) Number of exchanged messages (#Msg). It involves CReq, CRes and their forwards.

2) Average Situation Detection Ratio (ASDR). The average SDR over all Context Requestors.

Situation Detection Ratio for a CR i is defined as:

SDRi = A/B

where A: number of SCRs fired by node i, B: number of SCRs that should be ideally fired by node i.

The parameter (counter) B is increased by one each time a combination of sensor values that would

trigger a SCR of the node i is observed within the area where the rule is spatially valid.

The simulations compare the performance of the two schemes, CFor (for Context Foraging) and

CPol. The setup is described in Table 1. Table 2 shows the SCR rules used in the CRs. No CR has

sensors, while each CP has only one of the sensor types (context classes).

Table 1. Simulation Setup Table 2. Simulation Setup

of nodes 100

Mobility model Random waypoint

Max pause time: 20

Min speed: 0

of SCR per CR 2

SV of SCRs 110

Communication

range

50

Rule # of CRs

SCR1: (Temperature>80) ^ (Humidity <20) � Event 1

SCR2: (GasA>40) ^ (GasB>50) � Event 2

1/3 of CRs

SCR3: (Humidity <20) ^ (Smoke=true) � Event 3

SCR4: (GasB>50) ^ (Smoke=true) � Event 4

1/3 of CRs

SCR5: (Temperature>80) ^ (Smoke=true) � Event 5

SCR6: (GasA>50) ^ (Smoke=true) � Event 6

1/3 of CRs

Several scenarios were executed, where the parameters of Table 1 were adjusted. In all scenarios, the

number of messages for CFor is much lower than for CPol, with insignificant reduction in the situation

detection capability of the nodes (ASDR). Fig. 2 and 3 are two typical figures of the results. More

results and a more detailed description of the Context Foraging scheme can be found in [2].

0.00

0.20

0.40

0.60

0.80

1.00

0 1 2 4 10 20
max speed

A
S

D
R

CFor10 CFor5 CPol1 CPol2

0

100000

200000

300000

400000

500000

600000

700000

0 1 2 4 10 20
max speed

#
M

s
g

CFor10 CFor5 CPol1 CPol2

Fig.2. ASDR as a function of the max speed Fig. 3. #Msg as a function of the max speed

3. Smart Sensors
A "smart sensor" is a transducer (sensor or actuator) which provides extra functionality beyond that

provided by a regular sensor. "Smart sensors" enable easier integration in networked environments

because they process the measured data and they transform them in appropriate units. For example, a

“smart sensor” that measures temperature, can transform the output voltage of a regular sensor into

temperature data that represents Celsius or Fahrenheit degrees internally. This can be done because

each “smart sensor” has a transducer electronic data sheet (TEDS). This is a memory device attached to

the transducer, which stores some data related with identification, calibration, data correction and

measurement range.

In our approach, we use “smart sensors” which comply to the IEEE 1451 family of standards [3].

IEEE 1451 describes a set of open, common and network-independent interfaces for connecting

transducers to instruments, systems and networks through analog, digital, wired or wireless interfaces.

Its main goals are a) the development of network and vendor independent transducer interfaces, b) to

allow transducers to be hot-swapped, and c) to minimize manual system configuration.

According to these standards, each “smart sensor” consists of two main components: a transducer

interface module (TIM) and a network capable application processor (NCAP). A TIM contains one or

more transducers, signal processing units, A/D and/or D/A converters and an interface through which it

can communicate with the NCAP. An NCAP is the system that interconnects one or more TIMs with

the user network or host processor. It can have many different communication interfaces with the

outside world. Through the TEDS, implemented in TIMs, one can easily have access to transducer data

through network interfaces and also have the capability of “plug and play” TIMs, accessed

automatically after their connection with NCAP.

The two standards of IEEE 1451 that are of interest for us are IEEE 1451.0 and IEEE 1451.2.

IEEE 1451.0 describes common commands, functions and operations and the structure of the TEDS.

Many different wired or wireless protocols can be used to connect TIM and NCAP. IEEE 1451.2

describes the physical layer for a point-to-point communication between an NCAP and a TIM based on

serial protocols such as RS-232 and USB.

Obviously, such type of sensors are quite useful for really open and interoperable context-aware

environments. However, after an extensive market survey, it turned out that no actual implementations

are available, apart from some obsolete development kits. The main reason for this is the continuous

evolution of the standard that makes sensor vendors reluctant to adopt it. Hence, we are currently

implementing the standard using the Sun SPOT [4] nodes as TIMs. The sensors of each TIM are the

sensors that each Sun SPOT carries by default and some external ones (e.g., GPS) which are connected

to SPOTs through the SPOT I/O ports. Regarding the NCAP, we develop a software version of it

because, as already mentioned, no available hardware implementations are available. TIMs and NCAP

communicate through a USB interface, based on the IEEE 1451.2 standard. We implement all the

specifications of subsystems and interfaces that are required for building a large scale testbed for smart

sensors. The communication between the NCAP and the applications is performed through an HTTP

API defined in the standard. This API is invoked by an IPAC middleware service that is responsible for

providing the applications access to sensors (Sensor Elements Component Proxy, SEC). The overall

architecture of each IPAC node that is equipped with smart sensors is shown in Fig.4. Given this

approach, an IPAC application can easily interact with different compliant sensor nodes that have the

TIM-part of IEEE 1451 installed, through an abstract API.

The implementation of the serial communication (IEEE 1451.2) will be based on the open source

project JDDAC [4] and particularly on Java Transducer Interface (JTI) [5]. On the other hand, no

existing software implementation of IEEE 1451.0 is available and the core parts of the standard are

developed from scratch.

TCP

HTTP

IPAC HW

OS

IPAC

MW

SEC

Proxy

TIMIPAC APPLICATION

IPAC node

USB

NCAP

Sun SPOT
Java Virtual Machine

IEEE

1451.2

IEEE

1451.0

IEEE

1451.2

IEEE

1451.0

Fig. 4. An IEEE 1451-compliant architecture based on Sun SPOTs

4. Conclusions and Future Work
In this paper we briefly presented the overall architecture for a collaborative sensing infrastructure over

smart sensors. The proposed approach can enable advanced context-aware applications in completely

ad hoc networks of mobile nodes. Of course, in order to fully exploit such a solution, further progress is

required, especially regarding the sensor infrastructure. Specifically, the IEEE 1451 standard is still

evolving. Unless the standard becomes mature and stable, and standard-compliant hardware is

available, the vision for such open sensing environments cannot be fully realized. We are currently

finalizing the implementation of such system over the Sun SPOT platform. Our next step is to port the

IEEE 1451 implementation to the Crossbow motes platform (over TinyOS) in order to test the

interoperability between these two completely different platforms. Another topic that is of interest to

our team is the implementation of the IEEE 1451.5 standard that refers to the wireless communication

between the NCAP and the TIM. Finally, we aim at exposing our work as an open source project that

can be the basis for collaboration in this very hot research area.

5. References
[1] Integrated Platform for Autonomic Computing, http://ipac.di.uoa.gr

[2] Tsetsos, V., Hadjiefthymiades, S. "An Innovative Architecture for Context Foraging", 8th

International ACM Workshop on Data Engineering for Wireless and Mobile Access (MobIDE),

Providence, Rhode Island, USA, June, 2009

[3] Lee, K., “IEEE 1451: A Standard in Support of Smart Transducer Networking”, IEEE

Instrumentation and Measurement Technology Conference Baltimore, MD USA, May 1-4, 2000

[4] Sun SPOT World, http://www.sunspotworld.com/

[5] Java Distributed Data Acquisition and Control, https://jddac.dev.java.net/

[6] Java Transducer Interface, https://jti.dev.java.net/

[7] C. Panayiotou, E. Fytros, V. Tsetsos, G. Samaras, S. Hadjiefthymiades, D. Piquet, "Integrated

Platform for Autonomic Computing", poster paper published at IEEE SECON, Rome, Italy, June, 2009

