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Abstract. Sensor technology is mandatory in order to build and provide context-aware applications in 

modern mobile environments. However, some limitations in current solutions prevent the wide 

deployment and use of such applications. One of them is that all systems assume that each node has all 

the necessary sensors attached to it. Another one is the fact that all applications rely on proprietary 

sensor platforms, which restricts the deployment of these applications only to computing nodes that are 

compatible with these platforms. In this paper we address both issues and describe some solutions, 

implemented in the context of the European research project IPAC. 

 

 

1. Introduction 
Context and situation awareness are key ingredients of modern and future mobile applications. The 

vision is that nomadic users can freely move and still enjoy context-aware behavior from the 

computing systems they use. Such behavior is perceived through intelligent applications that sense the 

user’s context and adapt accordingly. Obviously, the substrate for implementing context-aware services 

is to have appropriate sensing elements that can detect changes in the environment and/or user 

behavior. Typical sensors that are already used in many applications are weather sensors (e.g., 

temperature, humidity) and positioning sensors (e.g., GPS receivers). However, until now most of the 

proposed and existing platforms for mobile context aware applications make two basic assumptions:  

a) all mobile nodes have all the sensing devices they require, and  

b) the sensing component of the system has been developed on top of a specific sensor technology 

(i.e., a sensor solution provided by a specific vendor).  

In this paper we present the approach followed in the IPAC (Integrated Platform for Autonomic 

Computing) project [1][7] in order to relax these assumptions and provide greater flexibility in creating 

context-aware systems. The first assumption is handled through a publish-subscribe scheme for 

exchanging sensor data between the nodes. In this way nodes that do not have attached sensors, can 

still exploit sensor data provided by sensor-enabled neighbors. The second assumption is relaxed by 

using smart sensors. Smart sensors are sensing devices that follow a specific standard and, hence, are 

fully interoperable. Their main characteristic is plug-and-play behavior, achieved through the 

Transducer Electronic DataSheets (TEDS) that are embedded in them. In the following sections we 

provide more details on our work.  

 

2. Collaborative Sensing: the approach of Context Foraging 
 

2.1 System Architecture Overview 
Let us assume an architecture where several highly mobile nodes execute situation-aware applications. 

These are based on rules, called Situation Classification Rules (SCR), that have conditions related to 

context classes (e.g., Temperature, Location). An example of such rule is: 

(Temperature>80) ^ (Humidity <10) ^ (Smoke=true) � Fire 

The head of the rule (i.e., Fire) is the situation that holds if all conditions are satisfied. Hence, in order 

the nodes to demonstrate adaptive and context-aware behavior they must have the necessary context 

values (i.e., instances of context classes). The concept of collaborative sensing is heavily based on the 

assumption that not all nodes have sensors, and context values, at their disposal. In general, we have 

three categories of nodes in our scheme (which is called Context Foraging):  

 

Context Requestors (CR). They request context (sensor) values from their neighborhood. Each Context 

Request is of the form:  

CReq := Ci op Vi , where Ci is a context class, Vi ∈  value set of Ci, op∈{>, <, =, <=, >=}. 

The Context Request is derived from the conditions of an SCR that cannot be locally evaluated. 

Each CReq has a Spatial Validity (SVCReq) which is the range within which the context values included 

in the request are valid/useful for the requesting node. If we assume that we adopt circular spatial 

modeling, then SVCReq is the radius of a circle, with center the current position of the Context 

Requestor. The SVCReq value is “inherited” by the respective SCR that produced the CReq. This circular 



region includes all nodes that can provide valid values for the CReq context classes. Context Requests 

may be disseminated periodically (we assume that an information dissemination scheme based on 

probabilistic broadcasting is used). This period is called the Temporal Validity of the request (TVCReq). 

 

Context Providers (CP). They transmit sensor values (Context Responses, CRes) if these match with 

some registered CReqs. Each context provider has an index data structure used for two purposes: a) as 

a registry of all context requests received, and b) as a mechanism that matches events (fresh sensor 

values) with CReqs. The main idea is that context requests will be registered (with their respective 

timeouts) in this index. The sensor stream will be also fed into this index so that sensor values that 

match some requests generate events that are disseminated through the network. 

A context response is a set that contains one or more (context class, context value) pairs:  

CRes := {C1 = V1, …, Ci = Vi}, Vi
∈value set of Ci. 

A context response has also a spatial validity parameter which is the maximum of the individual 

spatial validity values included in the response.  

The index structure used for the subscription registration and matchmaking is depicted in Fig.1. In 

this index, the FILTERS array contains the context conditions (also called event filters or subscriptions) 

received through incoming CReqs and is sorted in descending order for the ‘<’ and ‘<=’ operators and 

in ascending order for all other operators. Sorted arrays are used because the readings in this index 

(new context values, generated by sensors) are expected to considerably outnumber the updates (new 

event subscriptions). The EQUALS array (also stores contextual conditions) constitutes an optimization 

in order to avoid unnecessary filters. For example, for the event “contextClass[1] = 22”, we do not 

create an additional filter in the FILTERS array of the ‘=’ operator since there is an overlap with an 

existing filter (“contextClass[1] >20”). SV values are used for setting the spatial validity parameter in 

the context response. Since, in nomadic computing nodes relocate frequently, we do not want to store 

all the event filters infinitely in the index since the spatial validity of the respective events (i.e., context 

responses) is affected by the nodes’ mobility (for both types of nodes, CR and CP). For that purpose, 

we use timeouts for the filters (timeout values) that are scheduled in a typical job scheduler.  
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Fig.1. The index used in Context Providers 

 

Context Relays (CRel). Nodes that do not have the sensors required by a context request or are not 

interested in the context response contents. CRels just forward messages.  

 

2.2 Performance Evaluation 
In order to assess the performance of the proposed scheme we ran several simulations, where we 

compared it to an alternative scheme, also suitable for nomadic computing. This scheme (called 

Context Polling or CPol for brevity) is simpler and with some inherent limitations but, in our opinion, 

seems to be one of the most promising alternatives for the specific domain. In CPol, each Context 

Requestor periodically sends CReqs to other nodes. If the Context Providers, satisfy some (parts of) 

requests, they immediately send their context responses and discard the CReq. Hence, the scheme is 

totally stateless, which is also one of its key advantages.  

In order to assess the performance of the context foraging scheme we ran several simulation 

scenarios, using the following metrics: 

1) Number of exchanged messages (#Msg). It involves CReq, CRes and their forwards. 

2) Average Situation Detection Ratio (ASDR). The average SDR over all Context Requestors. 

Situation Detection Ratio for a CR i is defined as:  

SDRi = A/B 

where A: number of SCRs fired by node i, B: number of SCRs that should be ideally fired by node i. 

The parameter (counter) B is increased by one each time a combination of sensor values that would 

trigger a SCR of the node i is observed within the area where the rule is spatially valid. 



The simulations compare the performance of the two schemes, CFor (for Context Foraging) and 

CPol. The setup is described in Table 1. Table 2 shows the SCR rules used in the CRs. No CR has 

sensors, while each CP has only one of the sensor types (context classes). 

 

Table 1. Simulation Setup Table 2. Simulation Setup 

# of nodes 100 

Mobility model Random waypoint 

Max pause time: 20  

Min speed: 0 

# of SCR per CR 2 

SV of SCRs 110  

Communication  

range 

50 

 

Rule # of CRs 

SCR1: (Temperature>80) ^ (Humidity <20) � Event 1 

SCR2: (GasA>40) ^ (GasB>50) � Event 2 

1/3 of CRs 

SCR3: (Humidity <20) ^ (Smoke=true) � Event 3 

SCR4: (GasB>50) ^ (Smoke=true) � Event 4 

1/3 of CRs 

SCR5: (Temperature>80) ^ (Smoke=true) � Event 5 

SCR6: (GasA>50) ^ (Smoke=true) � Event 6 

1/3 of CRs 

 

 

Several scenarios were executed, where the parameters of Table 1 were adjusted. In all scenarios, the 

number of messages for CFor is much lower than for CPol, with insignificant reduction in the situation 

detection capability of the nodes (ASDR). Fig. 2 and 3 are two typical figures of the results. More 

results and a more detailed description of the Context Foraging scheme can be found in [2]. 
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Fig.2. ASDR as a function of the max speed Fig. 3. #Msg as a function of the max speed 

 

3. Smart Sensors 
A "smart sensor" is a transducer (sensor or actuator) which provides extra functionality beyond that 

provided by a regular sensor. "Smart sensors" enable easier integration in networked environments 

because they process the measured data and they transform them in appropriate units. For example, a 

“smart sensor” that measures temperature, can transform the output voltage of a regular sensor into 

temperature data that represents Celsius or Fahrenheit degrees internally. This can be done because 

each “smart sensor” has a transducer electronic data sheet (TEDS). This is a memory device attached to 

the transducer, which stores some data related with identification, calibration, data correction and 

measurement range.  

In our approach, we use “smart sensors” which comply to the IEEE 1451 family of standards [3]. 

IEEE 1451 describes a set of open, common and network-independent interfaces for connecting 

transducers to instruments, systems and networks through analog, digital, wired or wireless interfaces. 

Its main goals are a) the development of network and vendor independent transducer interfaces, b) to 

allow transducers to be hot-swapped, and c) to minimize manual system configuration. 

According to these standards, each “smart sensor” consists of two main components: a transducer 

interface module (TIM) and a network capable application processor (NCAP). A TIM contains one or 

more transducers, signal processing units, A/D and/or D/A converters and an interface through which it 

can communicate with the NCAP. An NCAP is the system that interconnects one or more TIMs with 

the user network or host processor. It can have many different communication interfaces with the 

outside world. Through the TEDS, implemented in TIMs, one can easily have access to transducer data 

through network interfaces and also have the capability of “plug and play” TIMs, accessed 

automatically after their connection with NCAP.  

The two standards of IEEE 1451 that are of interest for us are IEEE 1451.0 and IEEE 1451.2. 

IEEE 1451.0 describes common commands, functions and operations and the structure of the TEDS. 

Many different wired or wireless protocols can be used to connect TIM and NCAP. IEEE 1451.2 

describes the physical layer for a point-to-point communication between an NCAP and a TIM based on 

serial protocols such as RS-232 and USB. 

Obviously, such type of sensors are quite useful for really open and interoperable context-aware 

environments. However, after an extensive market survey, it turned out that no actual implementations 

are available, apart from some obsolete development kits. The main reason for this is the continuous 



evolution of the standard that makes sensor vendors reluctant to adopt it. Hence, we are currently 

implementing the standard using the Sun SPOT [4] nodes as TIMs. The sensors of each TIM are the 

sensors that each Sun SPOT carries by default and some external ones (e.g., GPS) which are connected 

to SPOTs through the SPOT I/O ports. Regarding the NCAP, we develop a software version of it 

because, as already mentioned, no available hardware implementations are available. TIMs and NCAP 

communicate through a USB interface, based on the IEEE 1451.2 standard. We implement all the 

specifications of subsystems and interfaces that are required for building a large scale testbed for smart 

sensors. The communication between the NCAP and the applications is performed through an HTTP 

API defined in the standard. This API is invoked by an IPAC middleware service that is responsible for 

providing the applications access to sensors (Sensor Elements Component Proxy, SEC). The overall 

architecture of each IPAC node that is equipped with smart sensors is shown in Fig.4. Given this 

approach, an IPAC application can easily interact with different compliant sensor nodes that have the 

TIM-part of IEEE 1451 installed, through an abstract API.   

The implementation of the serial communication (IEEE 1451.2) will be based on the open source 

project JDDAC [4] and particularly on Java Transducer Interface (JTI) [5]. On the other hand, no 

existing software implementation of IEEE 1451.0 is available and the core parts of the standard are 

developed from scratch. 
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Fig. 4. An IEEE 1451-compliant architecture based on Sun SPOTs 

 

4. Conclusions and Future Work 
In this paper we briefly presented the overall architecture for a collaborative sensing infrastructure over 

smart sensors. The proposed approach can enable advanced context-aware applications in completely 

ad hoc networks of mobile nodes. Of course, in order to fully exploit such a solution, further progress is 

required, especially regarding the sensor infrastructure. Specifically, the IEEE 1451 standard is still 

evolving. Unless the standard becomes mature and stable, and standard-compliant hardware is 

available, the vision for such open sensing environments cannot be fully realized. We are currently 

finalizing the implementation of such system over the Sun SPOT platform. Our next step is to port the 

IEEE 1451 implementation to the Crossbow motes platform (over TinyOS) in order to test the 

interoperability between these two completely different platforms. Another topic that is of interest to 

our team is the implementation of the IEEE 1451.5 standard that refers to the wireless communication 

between the NCAP and the TIM. Finally, we aim at exposing our work as an open source project that 

can be the basis for collaboration in this very hot research area. 
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