Keyword Search in RDF Databases

Charalampos S. Nikolaou
charnik@di.uoa.gr

Department of Informatics & Telecommunications
University of Athens

MSc Dissertation Presentation
April 15, 2011
Outline

Background

User Requirements

Our Approach

Implementation

Experimental Evaluation

Other Directions to Keyword Search

Conclusions & Future Work
Background
Keyword Search on (Semi-)Structured data

Data model
Graph-based data model
 ▶ Schema-aware
 ▶ Schema-agnostic (comes with specialized indexes)
Keyword Search on (Semi-)Structured data

Data model
Graph-based data model
 ▶ Schema-aware
 ▶ Schema-agnostic (comes with specialized indexes)

Exploration Algorithms
 ▶ Backward Expansion
 ▶ Bidirectional Expansion
 ▶ Variants of the above
Keyword Search on (Semi-)Structured data

Data model
Graph-based data model
 ▶ Schema-aware
 ▶ Schema-agnostic (comes with specialized indexes)

Structure of the Answer
 ▶ Trees
 ▶ Graphs
 ▶ Nodes/Entities
 ▶ (Multi-)Relations

Exploration Algorithms
 ▶ Backward Expansion
 ▶ Bidirectional Expansion
 ▶ Variants of the above
Keyword Search on (Semi-)Structured data

Data model
Graph-based data model
 ▶ Schema-aware
 ▶ Schema-agnostic (comes with specialized indexes)

Exploration Algorithms
 ▶ Backward Expansion
 ▶ Bidirectional Expansion
 ▶ Variants of the above

Structure of the Answer
 ▶ Trees
 ▶ Graphs
 ▶ Nodes/Entities
 ▶ (Multi-)Relations

Ranking/Scoring of Answers
 ▶ TF/IDF and other more complex measures from IR
 ▶ Node/Edge weights
 ▶ Page Rank like, Hub/Authority nodes
 ▶ Path length
 ▶ Number of nodes/edges
Keyword Search on (Semi-)Structured data

Data model
Graph-based data model
- Schema-aware ✓
- Schema-agnostic (comes with specialized indexes)

Exploration Algorithms
- Backward Expansion
- Bidirectional Expansion
- Variants of the above ✓

Structure of the Answer
- Trees
- Graphs
- Nodes/Entities ✓
- (Multi-)Relations

Ranking/Scoring of Answers
- TF/IDF and other more complex measures from IR ✓
- Node/Edge weights ✓
- Page Rank like, Hub/Authority nodes ✓
- Path length ✓
- Number of nodes/edges ✓
User Requirements
Use Case
Historians interested in the evolution of Biotechnology and Renewable Energy (see Papyrus Project)
Requirements

Use Case
Historians interested in the evolution of Biotechnology and Renewable Energy (see Papyrus Project)

1. Search for information about certain concepts, facts, events e.g., stem cells and public opinion
Requirements

Use Case
Historians interested in the evolution of Biotechnology and Renewable Energy (see Papyrus Project)

1. Search for information about certain concepts, facts, events
2. Search may involve temporal restrictions
 e.g., evolution of biotechnology in 20th century
Requirements

Use Case

Historians interested in the evolution of Biotechnology and Renewable Energy (see Papyrus Project)

1. Search for information about certain concepts, facts, events
2. Search may involve temporal restrictions
3. Source of information may contain indefinite temporal information
 e.g., “around 7000 BC biotechnology involved brewing beer, fermenting wine and baking bread with help of yeast”
Our Approach
Data Model

- Extension of the temporal RDF data model with indefinite time intervals for the validity of a triple: \((s, p, o)[i]\)
- Validity of a resource \(r\): \((r, subclass, Resource)[i]\)
Data Model

- Extension of the temporal RDF data model with indefinite time intervals for the validity of a triple: \((s, p, o)[i]\)
- Validity of a resource \(r\): \((r, \text{subclass}, \text{Resource})[i]\)
- Indefinite time intervals (set \(I\)): \((s_1, s_2, e_1, e_2)\), where \(s_1, s_2, e_1, e_2\) are natural numbers

\[
\begin{array}{cccc}
 & s_1 & _ & _ & s_2 & _ & _ & _ & _ & _ & _ & e_1 & _ & e_2 \\
\end{array}
\]
Data Model

- Extension of the temporal RDF data model with indefinite time intervals for the validity of a triple: \((s, p, o)[i]\)
- Validity of a resource \(r\): \((r, \text{subclass}, \text{Resource})[i]\)
- Indefinite time intervals (set \(I\)): \((s_1, s_2, e_1, e_2)\), where \(s_1, s_2, e_1, e_2\) are natural numbers
 \[
 s_1 \underbrace{\ldots}_{s_2} e_1 \underbrace{\ldots}_{e_2}
 \]
- Indefinite time point: \((s, e, s, e)\)
 \[
 s \underbrace{\ldots}_{e}
 \]
Query Language

- Keyword-based language extended with temporal constraints expressed in a controlled natural language

Definition

A query is a pair \((KL, \phi)\). The expression \(KL\) is a list of keywords and \(\phi\) is a finite conjunction of formulas of the form \(R c\), where \(R \in TR\) and \(c \in I\).
Query Language

- Keyword-based language extended with temporal constraints expressed in a controlled natural language
- Temporal constraints (set TR):
 - Allen’s temporal relations: before, after, meets, met by, overlaps, overlapped by, starts, started by, finishes, finished by, during, contains
 - Other lexical forms (formal/informal) used in speech and writing
Query Language

- Keyword-based language extended with temporal constraints expressed in a controlled natural language
- Temporal constraints (set TR):
 - Allen’s temporal relations: before, after, meets, met by, overlaps, overlapped by, starts, started by, finishes, finished by, during, contains
 - Other lexical forms (formal/informal) used in speech and writing
- Time intervals: $[s_1 - s_2, e_3 - e_4]$, with each s_i (e_i) being of the form $yyyy/mm/dd$
Example

Database

Berlin has been a city since some point in the 12th century

(ex:city, rdf:type, rdfs:Class).
(ex:city, rdfs:label, "City").
(ex:berlin, foaf:name, "Berlin").
Database

Berlin has been a city since some point in the 12th century

(ex:city, rdf:type, rdfs:Class).
(ex:city, rdfs:label, "City").
(ex:berlin, foaf:name, "Berlin").

Information needs (1)

I would like information about cities during the period 1200 – 1210

city during [1200, 1210]
Example

Database
Berlin has been a city since some point in the 12th century

(ex:city, rdf:type, rdfs:Class).
(ex:city, rdfs:label, "City").
(ex:berlin, foaf:name, "Berlin").

Information needs (1)
I would like information about cities during the period 1200 – 1210

city during [1200, 1210]

Answer
There is such a city named Berlin
Database
Berlin has been a city since some point in the 12th century
(ex:city, rdf:type, rdfs:Class).
(ex:city, rdfs:label, "City").
(ex:berlin, foaf:name, "Berlin").

Information needs (2)
I would like information about cities during the period 1100 – 1110
city during [1100, 1110]
Example

Database
Berlin has been a city since some point in the 12th century

(ex:city, rdf:type, rdfs:Class).
(ex:city, rdfs:label, "City").
(ex:berlin, foaf:name, "Berlin").

Information needs (2)
I would like information about cities during the period 1100 – 1110

Answer
There is possibly a city named Berlin
Example

The ideal answer
The answer to both questions should include the individual “Berlin” and the class “City”, but in the second case these two entities should have lower score to convey the notion of possibility.
Data Structures

Data graph
The underlying RDF graph
Data Structures

Data graph
The underlying RDF graph

Schema graph
A summary of the data graph, containing *data-driven* schema information
Data Structures

Data graph
The underlying RDF graph

Schema graph
A summary of the data graph, containing data-driven schema information

Query graph
Super graph of schema graph containing elements from the RDF graph
Data graph

<table>
<thead>
<tr>
<th>Subject</th>
<th>Predicate</th>
<th>Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>pro1</td>
<td>type</td>
<td>Project</td>
</tr>
<tr>
<td>pro2</td>
<td>type</td>
<td>Project</td>
</tr>
<tr>
<td>pro1</td>
<td>name</td>
<td>Papyrus</td>
</tr>
<tr>
<td>pub1</td>
<td>type</td>
<td>Publication</td>
</tr>
<tr>
<td>pub1</td>
<td>author</td>
<td>res1</td>
</tr>
<tr>
<td>pub1</td>
<td>author</td>
<td>res2</td>
</tr>
<tr>
<td>pub2</td>
<td>type</td>
<td>Publication</td>
</tr>
<tr>
<td>res1</td>
<td>type</td>
<td>Researcher</td>
</tr>
<tr>
<td>res2</td>
<td>type</td>
<td>Researcher</td>
</tr>
<tr>
<td>univ1</td>
<td>name</td>
<td>DI&T</td>
</tr>
<tr>
<td>res1</td>
<td>name</td>
<td>Y. Ioannidis</td>
</tr>
<tr>
<td>res1</td>
<td>worksAt</td>
<td>univ1</td>
</tr>
<tr>
<td>univ1</td>
<td>type</td>
<td>University</td>
</tr>
<tr>
<td>univ2</td>
<td>type</td>
<td>University</td>
</tr>
<tr>
<td>University</td>
<td>subclass</td>
<td>Agent</td>
</tr>
<tr>
<td>Agent</td>
<td>subclass</td>
<td>Resource</td>
</tr>
<tr>
<td>pub1</td>
<td>hasProject</td>
<td>pro1</td>
</tr>
</tbody>
</table>

Figure: a) RDF triples b) Data graph
Schema and Query graphs

Figure: a) schema graph
Schema and Query graphs

Figure: a) schema graph b) query graph for koubarakis publications during 2010
Keyword Search Algorithm

Query processing in 4 phases:

1. *Keyword Interpretation (KI)*: Interpret keywords as RDF graph elements (*keyword elements*) and construct the query graph.
Keyword Search Algorithm

Query processing in 4 phases:

1. *Keyword Interpretation (KI)*: Interpret keywords as RDF graph elements (*keyword elements*) and construct the query graph.

2. *Graph Exploration (GE)*: Explore the query graph starting from keyword elements for finding top-k subgraphs.

Running query: koubarakis publications during 2010
Keyword Search Algorithm

Query processing in 4 phases:

1. **Keyword Interpretation (KI):** Interpret keywords as RDF graph elements (keyword elements) and construct the query graph.

2. **Graph Exploration (GE):** Explore the query graph starting from keyword elements for finding top-\(k\) subgraphs.

3. **Query Mapping (QM):** Map top-\(k\) subgraphs to SPARQL queries and evaluate them.

Running query koubarakis publications during 2010
Keyword Search Algorithm

Query processing in 4 phases:

1. *Keyword Interpretation (KI)*: Interpret keywords as RDF graph elements (*keyword elements*) and construct the query graph

2. *Graph Exploration (GE)*: Explore the query graph starting from keyword elements for finding top-\(k\) subgraphs

3. *Query Mapping (QM)*: Map top-\(k\) subgraphs to SPARQL queries and evaluate them

4. *Entity Transformation (ET)*: Transform and rank entities appearing in subgraphs and results from query evaluation to entities
Keyword Search Algorithm

Query processing in 4 phases:

1. **Keyword Interpretation (KI):** Interpret keywords as RDF graph elements (*keyword elements*) and construct the query graph

2. **Graph Exploration (GE):** Explore the query graph starting from keyword elements for finding top-\(k\) subgraphs

3. **Query Mapping (QM):** Map top-\(k\) subgraphs to SPARQL queries and evaluate them

4. **Entity Transformation (ET):** Transform and rank entities appearing in subgraphs and results from query evaluation to entities

Running query

koubarakis publications during 2010
Keyword Interpretation

koubarakis publications during 2010
Keyword Interpretation

koubarakis publications during 2010
Graph Exploration

koubarakis publications during 2010
Graph Exploration

koubarakis publications during 2010
Graph Exploration

koubarakis publications during 2010
Query Mapping
koubarakis publications during 2010
Query Mapping

koubarakis publications during 2010
Query Mapping

koubarakis publications during 2010
Conjunctive query

\[\text{name}(x,"Koubarakis") \land \text{type}(x, \text{Researcher}) \land \text{author}(y,x) \land \text{year}(y,"2010") \land \text{type}(y, \text{Publication})\]
Query Mapping

koubarakis publications during 2010

SPARQL Query

```
SELECT ?x ?y ?xl ?yl
WHERE {
    ?x rdf:type ex:Researcher .
    ?x foaf:name "Manolis Koubarakis" .
    ?x rdf:type ex:Publication .
    ?x ex:year "2010" .
}
```
Query Mapping

koubarakis publications during 2010

Table: SPARQL result

<table>
<thead>
<tr>
<th>?x</th>
<th>?y</th>
<th>?xl</th>
<th>?yl</th>
</tr>
</thead>
<tbody>
<tr>
<td>res₁</td>
<td>pub₁</td>
<td>“Manolis Koubarakis”</td>
<td></td>
</tr>
</tbody>
</table>
Table: Answer

<table>
<thead>
<tr>
<th>Rank</th>
<th>Entity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>“Manolis Koubarakis”</td>
</tr>
<tr>
<td>2</td>
<td>Publication</td>
</tr>
<tr>
<td>3</td>
<td>pub_1</td>
</tr>
<tr>
<td>4</td>
<td>Researcher</td>
</tr>
</tbody>
</table>
Entity Transformation

koubarakis publications during 2010

<table>
<thead>
<tr>
<th>Rank</th>
<th>Entity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>“Manolis Koubarakis”</td>
</tr>
<tr>
<td>2</td>
<td>Publication</td>
</tr>
<tr>
<td>3</td>
<td>pub_1</td>
</tr>
<tr>
<td>4</td>
<td>Researcher</td>
</tr>
</tbody>
</table>

How ranking is performed?
For any cost function $c_f : V \cup E \rightarrow [0, 1]$:

$$C_G = \sum_{p_i \in P} \sum_{n \in p_i} c_f(n)$$
Scoring Functions
Scoring of a graph (cont'd)

For any cost function $c_f : V \cup E \rightarrow [0, 1]$:

$$C_G = \sum_{p_i \in P} \sum_{n \in p_i} c_f(n)$$

Path length

$$c_f(n) \equiv c_p(n) = 1/diam_G, \text{ for any element } n$$
Scoring Functions
Scoring of a graph (cont'd)

For any cost function $c_f : V \cup E \rightarrow [0, 1]$:

$$C_G = \sum_{p_i \in P} \sum_{n \in p_i} c_f(n)$$

Path length

$$c_f(n) \equiv c_p(n) = \frac{1}{\text{diam}_G}, \text{ for any element } n$$

Keyword Matching

$$c_f(n) \equiv c_{kw}(n) = \begin{cases}
\varepsilon > 0, & \text{if } 1 - \text{sim}(n) = 0 \\
1 - \text{sim}(n), & \text{otherwise}
\end{cases}$$
Scoring Functions

Scoring of a graph

Popularity

\[c_f(n) \equiv c_{pop}(n) = \begin{cases}
1 - \frac{|n_{agg}|}{|V|}, & \text{if } n \in V_C \\
1 - \frac{|n_{inc}|}{|V|}, & \text{if } n \in V_E \\
1 - \frac{|n_{agg}|}{|E|}, & \text{if } n \in L_R
\end{cases} \]
Scoring Functions

Scoring of a graph

Popularity

\[c_f(n) \equiv c_{\text{pop}}(n) = \begin{cases}
1 - \frac{|n_{\text{agg}}|}{|V|}, & \text{if } n \in V_C \\
1 - \frac{|n_{\text{inc}}|}{|V|}, & \text{if } n \in V_E \\
1 - \frac{|n_{\text{agg}}|}{|E|}, & \text{if } n \in L_R
\end{cases} \]

Combine

\[c_f(n) \equiv c_{\text{comb}}(n) = c_p(n) \times c_{\text{kw}}(n) \times c_{\text{pop}}(n) \]
Scoring Functions

Scoring of an entity

Entity Cost

Represents the weighted average of the cost of an entity over the subgraphs it appears

\[
\text{Cost}(e, S) = \frac{C_{cf}(e) \times \text{minSGCost}}{|SGS(e)|} \sum_{SG_i \in SGS(e)} \frac{1}{C_{cf}(SG_i)}
\]
Scoring Functions

Scoring of an entity

Entity Cost

Represents the weighted average of the cost of an entity over the subgraphs it appears

\[
Cost(e, S) = \frac{C_{cf}(e) \times \text{minSGCost}}{|SG_S(e)|} \sum_{SG_i \in SG_S(e)} \frac{1}{C_{cf}(SG_i)}
\]

Final Entity Cost

Represents the average cost of an entity derived both during graph exploration and query mapping

\[
Cost(e) = \begin{cases}
\frac{Cost(e, SGE) + Cost(e, QE)}{2}, & \text{if } e \in SGE \cap QE \\
Cost(e, SGE), & \text{if } e \in SGE \text{ and } e \notin QE \\
Cost(e, QE), & \text{if } e \in QE \text{ and } e \notin SGE
\end{cases}
\]
Implementation
System Architecture

Figure: The architecture of the keyword querying system
System Implementation

RDF Store:
System Implementation

RDF Store: Sesame
System Implementation

RDF Store: **Sesame**

Keyword index and full-text search:
System Implementation

RDF Store: **Sesame**

Keyword index and full-text search: **LuceneSail**
System Implementation

RDF Store: **Sesame**

Keyword index and full-text search: **LuceneSail**

Query Processor:
System Implementation

RDF Store: [Sesame]

Keyword index and full-text search: [LuceneSail]

Query Processor: [Java implementation]
Experimental Evaluation
Experimental Setup

Machine

- CPU: Intel(R) Core(TM)2 Quad CPU Q9650 @ 3.00 GHz, L2 6144 KB
- Main Memory: 4 GB, 1033 MHz
- Hard Disk: 750 GB, 7200 rpm, 8 MB Buffer
Experimental Setup

Machine

- CPU: Intel(R) Core(TM)2 Quad CPU Q9650 @ 3.00 GHz, L2 6144 KB
- Main Memory: 4 GB, 1033 MHz
- Hard Disk: 750 GB, 7200 rpm, 8 MB Buffer

Datasets

- History Ontology (HO)
- Semantic Web Dog Food Ontology (SWDF)
- Digital Bibliography & Library Project Ontology (DBLP)
Experimental Setup

Machine

- CPU: Intel(R) Core(TM)2 Quad CPU Q9650 @ 3.00 GHz, L2 6144 KB
- Main Memory: 4 GB, 1033 MHz
- Hard Disk: 750 GB, 7200 rpm, 8 MB Buffer

Datasets

- History Ontology (HO)
- Semantic Web Dog Food Ontology (SWDF)
- Digital Bibliography & Library Project Ontology (DBLP)

Evaluated Dimensions

- Efficiency: Load Scalability, Query Answering Performance
- Effectiveness: Precision/Recall, F-measure, NDCG
Dataset Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Triples</th>
<th>Classes</th>
<th>Properties</th>
<th>Instances</th>
<th>Avg. Inst./Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>HO</td>
<td>8,327</td>
<td>367</td>
<td>727</td>
<td>1,405</td>
<td>4</td>
</tr>
<tr>
<td>SWDF</td>
<td>88,996</td>
<td>96</td>
<td>369</td>
<td>8,580</td>
<td>89</td>
</tr>
<tr>
<td>DBLP</td>
<td>55,364,046</td>
<td>12</td>
<td>20</td>
<td>3,609,294</td>
<td>300,775</td>
</tr>
</tbody>
</table>

HO: High schema complexity and small number of instances
SWDF: Medium schema complexity and number of instances
DBLP: Low schema complexity and high number of instances
Efficiency
Load/Service Scalability

users ≡ # sessions ≡ # queries

Figure: Load scalability for a) HO/SWDF and b) DBLP
Efficiency

Index Performance (cont’d)

Figure: Index construction (DBLP)
Efficiency

Index Performance

Figure: a) Index construction time, b) Load times of schema graph index
Efficiency
Scoring Function Performance (cont’d)

Figure: Tasks performance: HO
Efficiency

Scoring Function Performance (cont’d)

Figure: Tasks performance: SWDF
Efficiency

Scoring Function Performance

Figure: Tasks performance: DBLP
Efficiency

Scoring Function Performance

Conclusion

Scoring functions have similar computational characteristics
Figure: Tasks performance: HO
Efficiency

Query Performance (cont’d)

Figure: Tasks performance: SWDF
Efficiency

Query Performance (cont’d)

Figure: Tasks performance: DBLP
Efficiency
Query Performance

Table: Tasks performance: Overall contribution

<table>
<thead>
<tr>
<th></th>
<th>KI</th>
<th>GE</th>
<th>QM</th>
<th>ET</th>
</tr>
</thead>
<tbody>
<tr>
<td>HO</td>
<td>0.23</td>
<td>0.60</td>
<td>0.13</td>
<td>0.02</td>
</tr>
<tr>
<td>SWDF</td>
<td>0.35</td>
<td>0.52</td>
<td>0.11</td>
<td>0.01</td>
</tr>
<tr>
<td>DBLP</td>
<td>0.90</td>
<td>0.05</td>
<td>0.04</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Efficiency
Query Performance

Table: Tasks performance: Overall contribution

<table>
<thead>
<tr>
<th></th>
<th>KI</th>
<th>GE</th>
<th>QM</th>
<th>ET</th>
</tr>
</thead>
<tbody>
<tr>
<td>HO</td>
<td>0.23</td>
<td>0.60</td>
<td>0.13</td>
<td>0.02</td>
</tr>
<tr>
<td>SWDF</td>
<td>0.35</td>
<td>0.52</td>
<td>0.11</td>
<td>0.01</td>
</tr>
<tr>
<td>DBLP</td>
<td>0.90</td>
<td>0.05</td>
<td>0.04</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Conclusions

HO: QP dominated by graph exploration

SWDF: QP rather fairly distributed among querying tasks

DBLP: QP dominated by keyword indexing
Effectiveness
Measurement methodology (cont’d)

Precision (or how succinct is the answer)

\[P = \frac{\#(\text{relevant items retrieved})}{\#(\text{retrieved items})} \]
Effectiveness
Measurement methodology (cont’d)

Precision (or how succinct is the answer)

\[P = \frac{\#(\text{relevant items retrieved})}{\#(\text{retrieved items})} \]

Recall (or how much did it cover the question)

\[R = \frac{\#(\text{relevant items retrieved})}{\#(\text{relevant items})} \]
Effectiveness

Measurement methodology (cont’d)

Precision (or how succinct is the answer)

\[P = \frac{\#(\text{relevant items retrieved})}{\#(\text{retrieved items})} \]

Recall (or how much did it cover the question)

\[R = \frac{\#(\text{relevant items retrieved})}{\#(\text{relevant items})} \]

F1-measure (or how much it is to the point)

\[F_1 = \frac{2PR}{P + R} \]
Effectiveness
Measurement methodology

NDCG (or how good was the ranking)

\[NDCG_k = \frac{r_1 + \sum_{i=2}^{k} \frac{r_i}{\log_2(i)}}{IDCG_k}, \quad k = 15 \]
Effectiveness
Measurement methodology

NDCG (or how good was the ranking)

\[NDCG_k = \frac{r_1 + \sum_{i=2}^{k} \frac{r_i}{\log_2(i)}}{IDCG_k}, \quad k = 15 \]

Judgement

- 5 history experts
- 20 keyword queries (2-3 keywords each)
- Relevance judgements for relevant entities
Effectiveness

Figure: Effectiveness evaluation results (HO)
Other Directions to Keyword Search
Other Directions to Keyword Search

Browsing

- Rich interfaces for result exploration, discovery of hidden inter-connections, and query refinement
- Zero-effort web publishing
Other Directions to Keyword Search

Result Snippets

Generation of small passage descriptions for quick judgement of results
Other Directions to Keyword Search

Result Clustering

Clustering of results according to different interpretations of the semantics of the query
Other Directions to Keyword Search

Query Cleaning

- Semantic linkage and spelling corrections of database-relevant query keywords
- Segmentation of nearby query keywords so that each segment corresponds to a high quality data term
Conclusions & Future Work
Conclusions

- Design & implementation of a keyword-based system on RDF graphs with indefinite temporal information
Conclusions

- Design & implementation of a keyword-based system on RDF graphs with indefinite temporal information
- Evaluation results: rather scalable
Conclusions

- Design & implementation of a keyword-based system on RDF graphs with indefinite temporal information
- Evaluation results: rather scalable, modest performance
Conclusions

- Design & implementation of a keyword-based system on RDF graphs with indefinite temporal information
- Evaluation results: rather scalable, modest performance, modest effectiveness
Conclusions

- Design & implementation of a keyword-based system on RDF graphs with indefinite temporal information
- Evaluation results: rather scalable, modest performance, modest effectiveness
- Keyword interpretation and graph exploration call for improvement
Future Work

- Sesame/LuceneSail substitution by BigOWLIM
Future Work

- Sesame/Lucene/Sail substitution by BigOWLIM
- Keyword interpretation and graph exploration improvement

Challenge: Integration and querying of semi-structured data and linked-data, stored in different formats (RDF, XML) and data sources (ontologies, knowledge bases, databases)

Schema-agnostic or hybrid data model
Future Work

- Sesame/LuceneSail substitution by BigOWLIM
- Keyword interpretation and graph exploration improvement
- Challenge: Integration and querying of semi-structured data and linked-data, stored in different formats (RDF, XML) and data sources (ontologies, knowledge bases, databases)
Future Work

- Sesame/LuceneSail substitution by BigOWLIM
- Keyword interpretation and graph exploration improvement
- Challenge: Integration and querying of semi-structured data and linked-data, stored in different formats (RDF, XML) and data sources (ontologies, knowledge bases, databases)
- Schema-agnostic or hybrid data model
This is the End...
Check my dissertation