pFusion: A P2P Architecture for Internet-Scale Content-Based Search and Retrieval

Demetrios Zeinalipour-Yazti, Vana Kalogeraki and Dimitrios Gunopulos

Charalampos S. Nikolaou charnik@di.uoa.gr

Department of Informatics and Telecommunications

3 June 2008

Introduction

Unstructured P2P Networks Gnutella v4.0 Paper Objectives

Content-Based Search in P2P

Problem Definition Search in Unstructured P2P Networks Experimental Evaluation

Topologically-Aware Overlay Networks

Network Mismatch Network Topologies Experimental Evaluation

pFusion

pFusion Architecture

Conclusions

Unstructured P2P Networks

- A set of nodes (peers) with same responsibilities (no client-server differentiation).
- Every node is connected to a set of other nodes and all form an overlay network (a logical/application level network over a physical one).
- No global knowledge of any kind is maintained at any peer.
- Resource discovery is done by message exchange between neighbouring peers.

Bootstrapping

Bootstrapping is the process during which a peer connects to a P2P network.

- A Gnutella complied P2P network provides a number of central servers.
- Each server maintains a set of online peers in its so called *hostcache* (or *GWebCache*).
- The peers in a hostcache satisfy certain properties (long uptime / light-loaded / permanent servents) that make them ideal to respond to pings.

Note that the neighbours of a peer may span over geographically long distances (e.g. from Alaska to Madagascar).

Bootstrapping (cont.)

- To join such a network (e.g LimeWire), a peer must connect to one of its servers and get a list of online peers.
- Then it sends to a subset of them a ping message and connects to a specific number of peers which will answer back with a pong message.
- These peers form the neighbours (or routing table) of the newly connected peer and may span over geographically long distances.

Query Routing

A query is submitted to the network in a BFS-like manner. The notion of TTL (Time-To-Live) is inserted in order to bound the depth of the search space. A peer issuing a query:

- sends to all of its neighbour peers the query,
- each such peer decrease the TTL, forwards the query respectively and
- matches the query against its local storage returning the results (QueryHit) to the peer from which it received the query.

Figure: Query/QueryHit

Objectives

The paper proposes the **pFusion** architecture which endeavours to improve:

- 1. the accuracy of the query results (deals with query routing) and
- 2. the network latency between geographically distant peers (deals with the neighbour set).

Problem Definition

Setting:

 A network of peers where each node maintains a collection of documents.

Goal:

- Effectively query the distributed documents by keywords.
- Consume the less possible network resources.

Agnostic Techniques

- a) TTL-based Breadth-First-Search (BFS)
 - Each peer forwards the query to all its neighbors.
 - Excessive network and resource consumption.
- b) Random BFS (RBFS)
 - Each peer forwards the query to a random subset of neighbours.
 - Some important segments may become unreachable.

Techniques using Past Statistics

- a) Most Results in Past Heuristic (>RES)
 - Query peers with the most results in the last K queries.
 - Usually explores the larger network segments, but fails to explore peers with the most relevant content.
- b) Intelligent Search Mechanism (ISM)
 - Each peer maintains a query/queryhit profile for its neighbours.
 - Uses the cosine similarity to drive the queries to the results.

Figure: Querying P2P network using ISM

Intelligent Search Mechanism (ISM)

1. Profile mechanism: (LRU replacement policy)

Query	Connection & Hits	Timestamp
Stevie Ray Vaughan	(peer1,20), (peer4,50),	100002222
Bireli Lagrene	(peer2,10)	100065652
Eva Cassidy	NULL	100022453

2. **Relevance Rank (RR)**: Ranking neighbours by similarity and queryhit. For a query q and each neighbour P_i the RR is defined as:

$$RR(P_i, q) = \sum_{j = QueryHit\ by\ P_i} Qsim(q_j, q)^a * S(P_i, q_j)$$

, where Qsim is the cosine similarity and $S(P_i, q_j)$ is the number of results returned by P_i for query q_j .

Note: if v_1 and v_2 are the featured vectors of resources r_1 and r_2 then the similarity between them is defined as the inverse of the angle of v_1 , v_2 .

Search: Experimental Evaluation

- The ISM achieves in some cases 100% Recall Rate while using 40-50% less Messages and 30-40% less Time than BFS.
- Scales well to large environments (since only local information is utilized).
- Performs best with high locality of queries.

Figure: Recall Rate and Message exchange for different quering methods

Network Mismatch

Nature of P2P networks:

- they are usually network-agnostic (recall that a peer in Alaska may have a neighbour in Madagascar).
- Physical with Overlay network mismatch (messages are routed physically through the Internet, but logically, peers constitute the application routers).
- The network mismatch between the Physical and the Overlay layer results in high latencies and excessive network resource consumption.
- Smaller latency => Faster interaction and higher data transfer rates.

Network-Efficient Topologies

Why not making short links? => Network-aware (topologically-aware) P2P networks.

- Random topology (Network-agnostic).
- Short-Long (SL) topology (Network-aware).
- Binning SL (BinSL) topology (Network-aware).

Random Topology

- Each peer randomly connects to k other peers.
- This is the technique used in most systems (implementing Gnutella v0.4 protocol — FrostWire, LimeWire, etc.).

Advantages:

- Simplicity.
- Needs only local knowledge.
- Leads to connected topologies if degree > logn.

Disadvantages:

- Doesn' t take into account the underlying network.
- Excessive network resource consumption.

Short Long Topology

- Build a global latency adjacency matrix.
- Each peer connects to k/2 closest peers (Short Links).
- It then connects to k/2 random peers (Long Links).

Note: Choosing only
Short Links yields disconnected topologies.

Consequences:

- The construction of the adjacency matrix requires global knowledge (e.g. each peer pings its neighbors and sends this info to a centralized index).
- Impractical technique due to index size.

BinSL Topology

- 1. Each node calculates the RTT to k well-known landmarks.
 - The numeric ordering of the landmarks defines the bin of a node.
 - Furthermore latencies are divided into level ranges, e.g. $Level_0 = [0, 100)ms$, $Level_1 = [100, 200)ms$, $Level_3 = rest$.
 - $BinCode = Landmarks : Levels = l_2l_1l_3 : 011$
- 2. Each peer then connects to k/2 peers that have the same bin code.
- 3. It then connects to k/2 random peers.

Consequences:

- Depends on the number and quality of landmarks.
- Bin codes have to be stored in a central database.
- Both the central database and the landmarks may become a point of bottleneck.

DDNO — Distributed Domain Name Order

Motivation: 58% of the Gnutella network (300,000 IPs) belongs to only 20 ISPs.

- Connect to d/2 nodes (*siblings*) in the same domain (locate them without any global knowledge).
- Connect to d/2 random nodes.

Solution: Deploy a ZoneCache which tells a node towards which direction to move (done by the DDNO Module).

Figure: Domain Name Lookup in a DDNO topology

Domain Name Lookup

- 1. A peer connects to d/2 (geographically random) peers according to Gnutella's bootstraping method and sends to one of them a lookupDN msg.
- 2. Each peer that receives *msg* forwards it to one of its neighbours consulting its *ZoneCache*.
- 3. When a peer in the same domain name receives *msg* broadcasts it to its siblings and they all respond with a *LookupOK* msg to the initial peer.

Split-Hash	Neighbor	# Hops	Timestamp
9A78DF	Socket3	3	10000000
421CDE	Socket1	2	10012000
			•••
2AB356	Socket1	2	10160000

Random/DDNO Performance

- We perform a query and measure the delay until the expected answer arrive.
- We observe that a DDNO network minimizes this delay for all search methods (BFS, RBFS, >RES and ISM) by 30% over Random.

Figure: Query answering delay in Random and DDNO network topologies

pFusion Architecture

By Merging the ISM method and the DDNO Module over a DDNO network topology we take the **pFusion** architecture.

Query Routing:

- Only pose the query to the sibling peers.
- If the results are not satisfactory reissue the query to all neighbours.

Time-efficient when there is a locality of interests (e.g. news / events).

Conclusions

- Organizing the overlay network using only local information is feasible and it leads to significant improvement in query latency.
- 2. ISM succeeds high recall rates using a bare minimum of messages.
- 3. But... what about the time needed for bootstraping in a DDNO network? The paper does not provide any experiment on this issue.

References

pFusion: A P2P Architecture for Internet-Scale Content-Based Search and Retrieval, IEEE Transactions on Parallel and Distributed Systems, vol. 18, no. 6, June 2007.

- Demetrios Zeinalipour-Yazti,

 Content-Based Search in Internet-Scale Peer-to-Peer Systems,

 Presentation Slides, http://www.cs.ucy.ac.cy/~dzeina/,
 2006.
- Karbhari, P. Ammar, M. Dhamdhere, A. Raj, H. Riley, G. F. Zegura, E. Bootstrapping in Gnutella: A Measurement Study, ISSU 3015, pages 22-32, 2004.
 - The Gnutella Protocol Specification v0.4. 1.

The End

Thank you!