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Abstract

We consider sparse (or toric) elimination theory in order to de-
scribe, by combinatorial means, the monomials appearing in the (sparse)
resultant of a given overconstrained algebraic system. A modification
of reverse search allows us to enumerate all mixed cell configurations of
the given Newton polytopes so as to compute the extreme monomials
of the Newton polytope of the resultant. We consider specializations of
the resultant to a polynomial in a constant number of variables (typi-
cally up to 3) and propose a combinatorial algorithm for computing its
Newton polytope; our algorithm need only examine the silhoutte of the
secondary polytope with respect to an orthogonal projection in a space
of as many dimensions. We describe the Newton polygon of the im-
plicit equation of a rational parametric curve in a self-contained manner
by purely combinatorial arguments; the complexity of our method is
almost linear in the cardinality of the supports of the parametric poly-
nomials. We extend certain of these results to describing the Newton
polytope of the implicit equation of a polynomial parametric surface.

Classification: Algebraic geometry, Discrete geometry.

Keywords: Sparse (toric) resultant, implicitization, triangulation, secondary polytope,
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1 Extended abstract

Consider the resultant of an overconstrained system of polynomial equa-
tions with corresponding Newton polytopes P0, . . . , Pn ⊂ R

n. The (sparse)
resultant is a polynomial in all coefficients of an algebraic system of n + 1
polynomials in n variables which are to be eliminated. We use sparse (toric)
elimination theory in order to exploit the sparseness of the polynomials. In
many applications, the coefficients are themselves polynomials in a few pa-
rameters, and we wish to compute the resultant as a polynomial in these
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parameters. This paper studies the problem of computing the Newton poly-
tope of interesting specializations of the (sparse) resultant.

There exists a surjection between the mixed cell configurations of the
Minkowski sum P = P0 + . . .+Pn and the extreme monomials. By means of
the Cayley trick the problem of enumerating all regular tight mixed subdivi-
sions of P is reduced to enumerating regular triangulations. The latter are
in bijection with the vertices of the secondary polytope. We briefly exam-
ine the problem of describing, by purely combinatorial means, the Newton
polytope of the (sparse) resultant in all symbolic coefficients. We concen-
trate on mixed-cell configurations following [13], instead of considering all
mixed subdivisions. Then, we examine the Newton polytope of the resul-
tant after specializing all but a few (typically one to three) coefficients. Our
motivation comes from the u-resultant, which is used to compute all real
roots of a system by the primitive-element method [4], see also the Rational
Univariate Representation [14].

Another motivation is to describe, without any algebraic computation,
the Newton polytope of the implicit equation of a parameterized curve or
surface. Implicitization is a crucial problem in geometric applications and
can be reduced to linear algebra, once the implicit support is known. Our
presentation is self-contained and examines triangulations of point sets in
the plane, for the case of rational parametric curves. This allows us to give
discrete algorithms that do not rely on any symbolic computation, with
complexity linear in the cardinality of the support of the parametric poly-
nomials. We also specify certain coefficients in the implicity equation. We
extend certain of these results to describing the Newton polytope of the
implicit equation of a polynomial parametric surface.

1.1 Previous work

The most closely related work is in [8, 9], where sparse elimination is applied
to predict the Newton polytope of any implicit equation. That method
had to compute all mixed subdivisions by enumerating all vertices on the
secondary polytope. Our paper improves that approach by focusing on
mixed-cell configurations and the vertices on the silhouette of the secondary
polytope.

More recently, [18] offered algorithms to compute the Newton polytope
of the implicit equation of any hypersurface parameterized by Laurent poly-
nomials. Their approach is based on tropical geometry and the ensuing
algorithms rely solely on combinatorial geometry and linear algebra. It cov-
ers arbitrary implicit ideals thus including the object of our study which is
principal implicit ideals. On the other hand, our approach handles rational
parameterizations hence supercedes Laurent parameterizations.

In [11], the extreme terms of the Sylvester resultant are described. Here,
we emphasize on giving a self-contained and straightforward description of
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the Newton polygon of implicit curves by exploiting the theory of sparse
elimination.

1.2 Main results

We describe an algorithm that enumerates only the vertices of the secondary
polytope corresponding to mixed-cell configurations thus allowing us to com-
pute efficiently the extreme monomials in all symbolic coefficients. The al-
gorithm combines ideas from [13, 12] and uses reverse search techniques for
space efficiency.

We offer an algorithm that enumerates only the vertices on the silhouette
of the secondary polytope, instead of computing all of its vertices, when
computing the Newton polytope of the resultant under a specialization of
all but a few coefficients. This algorithm can be used to attack the problem of
implicitization of polynomial parametric curves or surfaces. Second, we give
a full description of a polygon containing the Newton polygon of rational
parametric curves by an elementary method, and discuss its extension to
parametric surfaces. This polygon is optimal if the actual coefficients are
sufficiently generic. We are able to determine the coefficients of the extreme
monomials in the implicit equation of a curve as a corollary of [11], where the
extreme terms in the (classical) resultant of two polynomials are described.

We describe a polygon containing the Newton polygon of the implicit
equation of a rational parametric curve. We illustrate our method with the
following theorem and an example. The proof of the theorem along with the
rest of the results can be found in subsection 5.1.

Consider the parameterization x = P0(t)/Q(t), y = P1(t)/Q(t) which
leads to polynomials f0 = xQ(t) − P0(t), fi = yQ(t) − P1(t) in C[t]. The
corresponding supports are denoted by {ai}, {bj} ∈ Z. To bound the upper
hull, with respect to direction (1, 1), of the implicit polygon, we select those
points in the supports of fi which have coefficients in C[x] or C[y], respec-
tively. Now, we give an instance of our results for bounding the powers of
x, y in the implicit equation.

Theorem 1.1. (i) The maximum power of x in the implicit equation is
bm − b0 = bm. When this is attained, the maximum power of y is

(a+
R − a+

L ) + X (b+
m) · (an − a+

R),

where a+
R, a+

L are the rightmost and leftmost selected points (not neces-
sarily distinct) in A0, and X (b+

m) = 1 if bm is selected and X (b+
m) = 0

otherwise. A similar result holds for y, with the roles of x and y, A0

and A1 exchanged.

(ii) If the extreme values of the powers of x and y in case (i) do not coincide
to bm and an, respectively, then the upper right corner of the polygon
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containing the Newton polygon consists of either a two-edge polygonal
line connecting the points having these values as coordinates if none
of the four points a0, b0, an, bm is selected or just an edge connecting
these points otherwise.

A different selection criterion shall lead to a description of the lower hull
wrt (1, 1) of the implicit polygon.

Example 1.1. For the folium of Descartes ([8, Exam.6.2]) x = 3t2/(t3 +
1), y = 3t/(t3 + 1) with implicit equation φ = x3 + y3 − 3xy = 0, we have
f0 = xt3 − 3t2 + x, f1 = yt3 − 3t + y and supports A0 = {0+, 2−, 3+}, A1 =
{0+, 1−, 3+}. The denoted selection is the same under both selection criteria
(see subsection 5.1), and satisfies the assumptions of the lemmas relevent for
computing the lower hull of the polygon. The set C = κ(A0, A1) has four-
teen triangulations. Our method yields vertices (3, 3), (0, 3), (3, 0), (1, 1). By
degree bounds we end up with vertices (0, 3), (3, 0), (1, 1) which are optimal.
The polygon predicted by degree bounds alone contains the additional vertex
(0, 0) which leads to a possible implicit support with five more vertices.

We extend our results to describing the Newton polytope of the implicit
equation of a polynomial parametric surface.

1.3 Paper structure

The paper is organized as follows. The next section introduces our main
concepts from sparse elimination and focuses on the Newton polytope of
the sparse resultant. We use the Cayley trick to reduce the computation of
its vertices to computing certain triangulations in higher-dimensional space,
thus introducing the secondary polytope. Section 3 focuses on the enu-
meration of mixed cell configurations, whereas section 4 proposes methods
for enumerating the vertices on the silhouette of the secondary polytope.
Section 5 fully describes the Newton polytope of the implicit equation of
rational parametric curves, with a discussion of the problem for parametric
surfaces. The appendix contains ancillary results.

2 Sparse Elimination

The central object of study in sparse (or toric) elimination theory is the
sparse (or toric) resultant. The sparse resultant depends only on the mono-
mials of the equations with nonzero coefficients therefore for sparse systems
it has lower degree than its classical (or projective) counterpart; see [10] for
more information.

Definition 2.1. The sparse (or toric) resultant R of polynomials fi ∈
C[x1, . . . , xn], i = 0, . . . , n, is the unique (up to sign) irreducible polynomial
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in Z[ci,j], which vanishes iff the fi have a common root in the corresponding
toric variety.

We recall now some crucial notions of sparse elimination theory. The
support A(f) of a polynomial f is the set of the exponent vectors of its
monomials with nonzero coefficients. The Newton polytope N(f) of f is the
convex hull of its support. The Minkowski sum A + B of convex polytopes
A,B ⊂ R

n is the set A + B = {a + b | a ∈ A, b ∈ B} ⊂ R
n.

Let f0, . . . , fn, be n + 1 Laurent polynomials in C[x1, . . . , xn] with sym-
bolic coefficients ci,j and corresponding Newton polytopes P0, . . . , Pn ⊂ R

n.
Suppose that the Minkowski sum P = P0 + . . .+Pn ⊂ R

n is a n-dimensional
convex polytope; otherwise, we consider an essential subset of the polytopes.

Definition 2.2. [10, 17] A tight mixed subdivision of P , is a collection of
n-dimensional convex polytopes R, called (Minkowski) cells, st.: (1) They
form a polyhedral complex that partitions P , and (2) Every cell R is a
Minkowski sum of subsets Fi of Pi:

R = F0 + · · · + Fn, Fi ⊂ Pi, dim(R) = dim(F0) + · · · + dim(Fn) = n.

A cell R is called i-mixed, or vi-mixed, if it is the Minkowski sum of n one-
dimensional segments Ej ⊂ Pj and one vertex vi ∈ Pi: R = E0 + · · ·+ vi +
· · · + En.

A mixed subdivision is called regular if it is obtained as the projection of
the lower hull of the Minkowski sum of lifted polytopes P̂i := {(pi, ωi(pi)) | pi ∈
Pi}. If the lifting function ω := {ωi . . . , ωn} is sufficiently generic, the in-
duced mixed subdivision is tight.

Two mixed subdivisions are equivalent if they have the same mixed cells.
The equivalence classes are called mixed cell configurations [13].

A monomial of the sparse resultant is called extreme if its exponent
vector is a vertex of the Newton polytope N(R) of the resultant.

Theorem 2.1. [17] For every sufficiently generic lifting function ω, we
obtain an extreme monomial of R, of the form

± ·
n

∏

i=0

∏

R

c
Vol(R)
i,vi

, (1)

where the second product is over all i-mixed cells R of the regular tight mixed
subdivision of P =

∑n
i=0 Pi, induced by ω, and ci,vi

is the coefficient of the
monomial of fi corresponding to vertex vi.

Corollary 2.2. There exists a surjection between the mixed cell configura-
tions and the extreme monomials of the sparse resultant.
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Theorem 2.1 reduces the problem of computing the extreme monomials
of the sparse resultant to the problem of computing all mixed cell config-
urations of the Minkowski sum of the Newton polytopes. Given supports
A0, . . . , An, the Cayley embedding κ introduces a new point set

C := κ (A0, A1, . . . , An) =
n
⋃

i=0

(Ai × {ei}) ⊂ R
2n+1,

where ei are an affine basis of R
n. The dimension of the convex hull of C is

d ≤ 2n.

Theorem 2.3. [The Cayley Trick] [13, 15] There exists a bijection between
the regular tight mixed subdivisions of the Minkowski sum P and the regular
triangulations of C.

c

ba

(d,1)

(c,0)

(a,0)

(e,1)
ê({a,b,c,},{d,e,f})

f e

d

(f,1)

(b,0)

Figure 1: Application of the Cayley Trick for two triangles.

3 Enumeration of Mixed Cell Configurations

The set of regular triangulations of C is very well understood thanks to a
bijection to the vertices of a polytope the so called secondary polytope Σ(C)
of C. In particular, for every regular triangulation of C there is a vertex
in Σ(C), and two vertices in Σ(C) are connected by an edge if they can be
obtained from each other by a local modification called bistellar flip.

Bistellar flips are the generalization of edge flips in the two dimensional
case. They are based on certain subsets of C called circuits.

We now switch to a more general notation. Let A ⊂ R
d be a set of points

and T1 a regular triangulation of A. A circuit Z = {z1, . . . , zk} is a minimal
affinely dependent subset of A, satisfying a unique (up to a constant) affine
equation λ1z1 + . . . + λkzk = 0 where all λi are non zero and

∑

λi = 0. Z
can be written in the form Z = (Z+, Z−), where Z+ = {zi | λi > 0} and
Z− = {zi | λi < 0} This is usually called Radon’s property.

A circuit Z has exactly two triangulations T Z
+ = {Z \ {zi} | zi ∈ Z+}

and T Z
− = {Z \ {zi} | zi ∈ Z−}.
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The link of a set σ ⊂ A in a triangulation T of A is defined as

linkT σ := {ρ ⊂ A | ρ ∩ σ = ∅, ρ ∪ σ ∈ T }.

Now the bistellar flip on Z can be defined as follows:

Definition 3.1. Let T1 be a triangulation of A that contains one of the two
triangulations of Z, say T Z

+ . Suppose that all the cells σ ∈ T Z
+ have the

same link L in T1. Then the circuit Z supports a flip in T1 which gives the
triangulation T2:

T2 := T1 \ {ρ ∪ σ | ρ ∈ L, σ ∈ T Z
+ } ∪ {ρ ∪ σ | ρ ∈ L, σ ∈ T Z

− }.

If all the cells σ ∈ T Z
+ do not have the same link L in T1, then the circuit Z

does not support a flip in T1.

The following theorem allows us to explore the set of regular triangula-
tions of a point set using bistellar flips.

Theorem 3.1. [10] For every set A of points affinely spanning R
d there is

a polytope Σ(A) in R
|A|−d−1 such that its vertices correspond to the regular

triangulations of A and there is an edge between two vertices if and only if
the two corresponding triangulations are obtained one from the other by a
bistellar flip.

There are two standard methods to construct the secondary polytope of
a point set A. The first one, due to Gelfand, Kapranov and Zelevinskii [10],
gives for each triangulation T of A (not necessarily regular), coordinates:

(vT )i =
∑

σ:σ∈T,i∈Vert(σ)

Vol(σ), i = 1, . . . , |A|.

The |A|-dimensional vector vT corresponding to every triangulation T of
A, is called the volume vector of T . Then, Σ(A) ⊂ R

|A| is defined as the
convex hull of all the volume vectors. Volume vectors of triangulations that
are not regular fall into the interior of some face of Σ(A). However, the
secondary polytope constructed this way is not full-dimensional but resides
in an (|A| − d − 1) - dimensional subspace.

The second method, due to Billera and Sturmfels [2], describes the sec-
ondary polytope as the Minkowski integral of the fibers of the affine projec-
tion π : ∆A → conv(A), where ∆A is a simplex with |A| vertices of dimension
|A| − 1, and π bijects the vertices of ∆A to A.

Figure 2: Secondary polytope of a quadrilateral.
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We can enumerate all regular triangulations of the set C indroduced by
the Cayley embedding κ (see section 2), by computing a spanning tree of the
secondary polytope Σ(C). For efficiency we use reverse search techniques as
proposed in [12].

Following [13], we exploit the surjection from the mixed-cell configura-
tions onto the vertices of the Newton polytope of the resultant, and enu-
merate only a subset of the vertices of Σ(C).

Bistellar flips can be defined over the mixed-cell configurations. Enu-
meration of mixed-cell configurations is based on circuits of a regular trian-
gulation with certain properties; these are characterized in [13]. They are
called odd and even circuits, based on their cardinality as tuplets of subsets
of the initial supports Ai. The simplices of these circuits are images, or
subsets of images when they are not full dimensional, via κ of mixed cells
of the Minkowski sum of the supports Ai. We allow bistellar flips only on
these circuits.

The algorithm runs in time O(D2s2LP (|C| − D − 1, s)|R|) and space
O(Ds), where D = 2n + 1, s is the number of any dimensional simplices in
a triangulation of C, and |R| is the number of mixed-cell configurations, see
[12] for details.

dim(Z)=2dim(Z)=1

U2U1

X1 X2

Y Y

X1

X2

X3

dim(Z)=1

Y

X1
X2

Figure 3: Odd circuits (left and right figures), and a non suitable circuit.

4 Enumerating silhouettes of Σ(C)

Applications such as the computation of the u-resultant or implicitization
of polynomial parametric curves or surfaces call for the computation of the
Newton polytope of the resultant after a specialization of some coefficients.
This is equivalent to enumerating the vertices lying on the silhouette of the
secondary polytope Σ(C) with respect to some suitably defined projection.
For example, the projection of Σ(C) to R

2 solves the problem of implici-
tization of polynomial curves, the projection to R

3 the one of polynomial
surfaces etc. Interestingly, the approache of this section and of section 5
give the same result for the case of polynomial parametric curves, althought
they use different criteria, the first based on volume vectors and the latter
on mixed volumes. The silhouette can be obtained naively by computing
all the vertices of Σ(C) corresponding to mixed cell configurations and then
projecting them to the subspace of smaller dimension. For efficiency we want
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to enumerate only a subset of the previous vertices lying on a silhouette of
Σ(C) with respect to a projection to be defined by the problem.

4.1 The projection of Σ(C) in dimension one.

Suppose that we project Σ(C), of dimension D, to a line by deleting all coor-
dinates except the first one (vT )1. Then the convex hull of the projection of
Σ(C) has only two vertices vTmax , vTmin

corresponding to the triangulations
Tmax and Tmin of the secondary polytope which maximize and minimize
coordinate (v)1 respectively. Translating the problem to its algebraic coun-
terpart, we wish to specialize all but one coefficient appearing in a single
monomial. The Newton polytope of the specialized resultant is a possible
degenerate segment. We utilize the algorithm of section 3 modified so as to
apply the following criteria:

Lemma 4.1. [Maximization criterion] Let Tinit be a triangulation of C,
Z ⊂ C a circuit of Tinit supporting a flip and a1 ∈ C. Suppose that the
induced triangulation T Z

init of Z has simplices σi, i ∈ I. Then the following
criterion decides if flipping on circuit Z, leads to a new triangulation T
satisfying (vT )1 > (vTinit

)1 (R):

∀i ∈ I [a1 ∈ Vert(σi)] ⇐⇒ ¬R

Proof. Let TZ
init, T

Z be the triangulations of Z induced by Tinit and T re-
spectively, L the common link of all simplices σi, and σ′

j , j ∈ J the simplices

of TZ .
Suppose that ∀i ∈ I [a1 ∈ Vert(σi)]. This implies that ∀i ∈ I [a1 ∈

Vert(σi ∪ ρ)], ρ ∈ L and thus (vTinit
)1 =

∑

∀i∈I,ρ∈L Vol(CH(σi ∪ ρ)) =
Vol(CH(Z ∪ L)). Since there is a unique triangulation of Z such that a1 is
a vertex of all its simplices, the conclusion follows.

Now suppose that there is a simplex σk, k ∈ I such that a1 is not a
vertex of it. Then a1 is not a vertex of σk ∪ ρ, ρ ∈ L and (vTinit

)1 =
∑

∀i∈I\k,ρ∈L Vol(CH(σi ∪ ρ)) < Vol(CH(Z ∪ L)) = (vT )1.

σ σ′

1
σ′

2

ρρ

Figure 4: Application of the maximization criterion, a1 is star shaped vertex.
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The previous lemma allows us to compute a set of candidate circuits with
the property that flipping on each one of them increases coordinate (v)1 of
the volume vector. Now we wish to choose among the candidate circuits,
the one with maximum increase in (v)1 coordinate.

Lemma 4.2. Let Z1, . . . , Zs be a set of circuits satisfying (R) with links
L1, . . . , Ls respectively and T1, . . . ,Ts the corresponding triangulations ob-
tained by perfoming a bistellar flip on them. Then the triangulation T̄ with
(vT̄ )1 = max{(vTj

)1 | j = 1, . . . , s} is the one obtained by perfoming a bis-
tellar flip on circuit Z̄ such that

Vol(CH(Z̄ ∪ L̄)) = max{Vol(CH(Zj ∪ Lj)) | j = 1, . . . , s},

where Vol(CH(Z ∪ L)) =
∑

σ∈T Z ,ρ∈L Vol(CH(σ ∪ ρ)).

Proof. A flip on one of the candidate circuits Zj in the triangulation Tinit

results in a new triangulation Tj, in which point a1 is a vertex of all the

simplices in the induced triangulation T
Zj

j of Zj . This suggests that the
best circuit among all candidates is the circuit with maximum associated
volume.

The previous results can be modified accordingly to provide the vertex
T̂ with minimum (v)1-coordinate among all the neighbours of vertex Tinit.
or the vertex with minimum increase/decrease in (v)1-coordinate.

In order to compute vertices Tmax and Tmin, we have to apply these
results to an initial triangulation Tinit. Depending on the setting, the output
of these criteria might be the empty set. This means that relation (R) (or its
analogous one for the case of minimization) does not hold for every adjacent
vertex of Tinit. In such a case, the next vertex to be enumerated is decided
by the criteria of the initial algorithm of section 3. The space and time
complexities of the new algorithm are the same with those of section 3, but
for settings where there exists a path from Tinit to Tmax, Tmin consisting
of vertices with an absolutely monotonic sequence of (v)1-coordinates, then
the projection algorithm provides the shortest path.

4.2 The projection of Σ(C) in two and three dimensions.

Suppose that we project Σ(C) of dimension D, to the plane defined by the
first two coordinates (v)1, (v)2. Initially we apply the criteria of the previous
section in order to find the vertices of Σ(C) that are extreme with respect
to each of the variables we project to; thus we can compute triangulations
T max

(v)1
,T min

(v)1
,T max

(v)2
and T min

(v)2
. Now we have to compute the vertices that fill

the rest of the silhouette of Σ(C). Unfortunately every combination of our
criteria is not sufficient for this, as it is illustrated by the following example:
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Example 4.1. Starting with a triangulation Tinit we compute the vertex
T max

(v)2
with maximum (v)2-coordinate. From T max

(v)2
we wish to flip towards

vertex T max
(v)1

with maximum (v)1-coordinate. If the circuits supporting a
flip in T max

(v)2
are Z1, . . . , Zk, then we have to choose on which circuit to flip

in order to compute the next vertex of Σ(C) that lies on the silhouette. In
the setting shown in figure 5, there is no combination of our criteria applied
to (v)1 and (v)2 that can characterize the vertex under consideration.

max(v)2{T | (v)T1 > (v)Tinit

1 } = T1

min(v)2{T | (v)T1 > (v)Tinit

1 } = T2

T
max
(v)2

T1
T2

Figure 5: A case where every combination of combinatorial criteria fails.

We can overcome this difficulty by switching from combinatorial to geo-
metric criteria. In particular, we utilize the well known CCW determinant
[7], which decides the relative orientation of any three points in a plane.
Suppose that T1, . . . ,Tr are the neighbours of vertex T max

(v)2
, with greater

(v)1 coordinate. A vertex Ti for which CCW(T max
(v)2

,Ti,Tj) holds, for some

Tj ∈ {T1, . . . ,Tk}, cannot lie on the silhouette. This is essentially Jarvis’
algorithm for computing the Convex Hull of points in the plane; it is an
instance of the gift-wrapping paradigm [7].

In general, we follow the gift-wrapping algorithm. To fully describe it
we need to compute the first edge, and to specify the procedure for discov-
ering new edges. The former can be done by applying the above methods
for projecting to a line. Specifically, by applying the combinatorial criteria
from the one dimensional projection, we can obtain from the set of all adja-
cent vertices to Tinit, the ones with greater (v)1-coordinate. Then we apply
Jarvis’ algorithm to this set of vertices to obtain the next vertex on the sil-
houette. For moving to neighbouring edges, we use the previous discussion
of selecting candidates and selecting among them by use of CCW. This is a
well-known algorithm with output sensitive complexity. It suffers from high
space requirements; for this, we can use reverse search to minimize memory
consumption [1, 12].

The previous discussion can be generalized for the case where we project
to a subspace of dimension three.

5 The Newton polytope of the Implicit equation

Implicitization is the problem of switching from a parametric representa-
tion of a hypersurface to an algebraic one, as the zero set of a polynomial
equation.
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Let h0, . . . , hn ∈ C[t1, . . . , tr] be polynomials in n parameters ti. The
implicitization problem is to compute the prime ideal I of all polynomi-
als φ ∈ C[x0, . . . , xn] which satisfy φ(h0, . . . , hn) ≡ 0 in C[t1, . . . , tr]. We
are interested in the case where r = n, and hi are rational expressions in
C(t1, . . . , tn). Then I = 〈φ〉 is a principal ideal. In this case we have a
rational parameterization of a hypersurface defined by

xi =
Pi(t)

Q(t)
, gcd(Pi(t), Q(t)) = 1, i = 0, . . . , n, t = (t1, . . . , tn). (2)

Notice that φ ∈ C[x0, . . . , xn] is uniquely defined up to sign. The xi are
called implicit variables and the support of φ is the implicit support.

Let us define polynomials fi(t) = xiQ(t) − Pi(t) ∈ (C[xi])[t], and let
cij (0 ≤ j ≤ mi), qi (0 ≤ i ≤ k) denote the coefficients of polynomials
Pi(t) and Q(t) respectively. The support of polynomial fi is of the form
Ai = {ai0, . . . , aimi

} ⊂ Z
n. The assumption gcd(Pi(t), Q(t)) = 1 implies

that all Pi(t) have a nonzero constant term or Q(t) has a nonzero constant
term, hence we have that ai0 = 0 for every i, hence there is always a nonzero
constant term in all fi.

There exist several algorithms for this problem, mostly based on resul-
tants and Groebner bases; see e.g. [3, 5, 6, 8, 9, 18] and references thereof.
We focus on computing the Newton polytope of the implicit equation, or
implicit polytope under the assumption of generic coefficients relative to the
given supports. The motivation is that, knowledge of a good superset of
the implicit support reduces the computation of the implicit equation to a
a problem in linear algebra; see, e.g. [5, 9, 18].

The work in [18] is based on geometric characterizations of the tropical
variety of the prime ideal I. The authors consider Laurent polynomial pa-
rameterizations; this is a special case of rational parameterizations, where
the denominator Q(t) is a single monomial tM , M being the largest negative
exponent of Laurent monomials. In [8, 9] tools from toric elimination the-
ory lead to an algorithm for obtaining a superset of the implicit support by
computing the Newton polytope of the toric resultant by means of theorem
2.1.

The methods of section 4 offer an algorithm to compute the Newton
polytope of polynomial parameterizations. For instance, in the case of para-
metric curves we project upon a00, a10. In this section though, we offer direct
methods, in conjuction with the application of degree bounds (cf Prop. 5.1)
in order to specify a polytope guaranteed to contain the implicit polytope.
Proper containment occurs when the actual coefficients are not sufficiently
generic so terms are cancelled; otherwise, the polytope we obtain is optimal.
It is typically smaller than the one predicted solely by degree bounds.

Proposition 5.1. Let S ⊂ Z
n be the union of the supports of polynomials

fi. Then, the total degree of the implicit equation φ is bounded by the volume
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of the convex hull CH(S) multiplied by n!. The degree of φ in xj is bounded
by the mixed volume of the fi, i 6= j.

The polygon constructed below should be intersected with that predicted
by the degree bounds of Proposition 5.1.

We now focus on polynomial and rational parametric curves and explic-
itly describe the implicit polygon. Our method has complexity linear in
the cardinality of supports. Then, we extend our approach to polynomial
parametric surfaces and offer results leading to an algorithm for the Newton
polytope. The polytope we obtain is the same as in [8, 9] but we improve
upon the complexity of the latter in all cases.

5.1 Polynomial parametric curves

We consider polynomial parameterizations of curves. In this case f0 =
x− P0(t), f1 = y −P1(t) ∈ (C[x, y])[t], and the supports of f0, f1 are of the
form A0 = {a0, a1, . . . , am} and A1 = {b0, b1, . . . , bn} where points ai and bj

are sorted in ascending order. Points a0, b0 are always equal to zero. The
new point set

C = κ(A0, A1) = {(a0, 0), . . . , (an, 0), (b0, 1), . . . , (bm, 1)},

introduced by the Cayley embedding κ is a subset of Z
2. For convenience,

we shall abuse notation omitting the extra coordinate. The convex hull of
the set C is a quadrangle and Σ(C) is a polytope in R

m+n of dimension
m + n − 3, usually called associahedron [10, 16]. Every circuit of Σ(C) is
either even or odd due to the structure of C, and every triangulation of this
set is regular, and corresponds to a mixed cell configuration of A0 + A1.

The resultant R(f0, f1, t) is a polynomial in (C[x, y])[cij ]. We consider
the specialization of coefficients cij in the resultant in order to study the
implicit equation of the curve; generically, this specialization yields the im-
plicit equation. The Newton polytope of the implicit equation is a subset
of Z

2. Its vertices, as indicated by theorem 2.1, are obtained from those
extreme monomials of R(f0, f1, t) which are associated with points a0 and
b0. Since every triangle of a triangulation T of C corresponds to a mixed
cell of a mixed subdivision of A0 + A1, we can rewrite relation (1) as:

±
1

∏

i=0

∏

R

c
Vol(R)
i,p , (3)

where R is an i-mixed cell with vertex p ∈ Ai and ci,p is the coefficient of
the monomial with exponent p.

After the specialization of the coefficients of f0, f1, the terms of (3) asso-
ciated with mixed cells having a vertex p other than a0, b0 contribute only a
coefficient to the corresponding term of the implicit equation. This implies
that the only mixed cells that we need to consider are the ones with vertex
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a0 or b0 (or both). For any triangulation T , these mixed cells correspond to
triangles with vertices a0, bl, br where l, r ∈ {0, . . . ,m}, or b0, al, ar, where
l, r ∈ {0, . . . , n}.

The following lemmas determine the polytope containing the Newton
polytope of the implicit equation.

Lemma 5.2. If P0 or P1 (or both) contain a constant term, then the Newton
polygon of the implicit equation is the triangle with vertices (0, 0), (bm, 0), (0, an).

Proof. To compute vertices (bm, 0) and (0, 0) consider the triangulation T
of C obtained by drawing edge (a0, bm). The only 0-mixed cell with vertex
a0 corresponding to T is R = a0 + (b0, bm) with volume equal to bm; there
are no 1-mixed cells with vertex b0. The etxreme monomial associated with
such a triangulation is of the form (x − c00)

bmcam

1m, which after specializing
c00, c1m and expanding gives monomials in x with exponents bm, bm−1, . . . , 0.

For vertex (0, an) consider the triangulation T ′ obtained by drawing
edge (b0, an). The only 1-mixed cell with vertex b0 corresponding to T ′ is
R = b0 + (a0, an) with volume equal to an; there are no 0-mixed cells with
vertex a0. The etxreme monomial associated with this triangulation is of
the form (y−c10)

ancbm

0n , which after specializing c10, c0n and expanding gives
monomials in y with exponents an, an−1, . . . , 0.

To complete the proof it suffices to observe that every triangulation
of C having edges of the form (a0, bj), 0 < j < m and (bj , ai), i > 0
leads to an extreme monomial which specializes to a polynomial in x of the
implicit equation of degree bj . Therefore we obtain monomials of the implicit
equation with exponents (bj , 0), . . . , (0, 0) which all lie in the interior of the
triangle.

Similarly, every triangulation of C having edges of the form (b0, ai), 0 <
i < n and (ai, bj), j > 0 leads to an extreme monomial which specializes to
a polynomial in y of the implicit equation of degree ai. Therefore we obtain
monomials of the implicit equation with exponents (0, ai), . . . , (0, 0) which
all lie in the interior of the triangle (see Figure (6).

a0a0a0a0 aiai anananan

b0b0b0b0 bjbj bmbmbmbm

T T ′

Figure 6: The triangulations of C that give the vertices of the Newton
polytope of the implicit equation.

Lemma 5.3. If P0, P1 contain no constant terms, then the Newton poly-
gon of the implicit equation is the quadrilateral with vertices (b1, 0), (bm, 0),
(0, an), (0, a1).
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Proof. If c00, c10 are both equal to zero, then the extreme monomials as-
sociated with points a0 and b0 are specialized to monomials of the implicit
equation in x or y respectively thus not producing any constant terms which
would imply that point (0, 0) is a vertex of the Newton polytope of the im-
plicit equation. The proof of the previous lemma implies that, when y = 0,
the smallest exponent of x is b1, which is obtained by a triangulation con-
taining edges (a0, b1) and (b1, ai), i > 0. Similarly, the smallest exponent of
y is a1.

Now we use [11, Prop.15] to arrive at the following; recall that the im-
plicit equation is defined up to a sign.

Corollary 5.4. The coefficient of xbm is c(−1)(1+an)bmcan

1m and that of yan

is c(−1)an(1+bm)cbm

0n , where c ∈ {−1, 1}.

Example 5.1. Parameterization x = 2t3 − t + 1, y = t4 − 2t2 + 3 yields
implicit equation φ = 608 − 136x + 569y + 168y2 − 72x2 − 32xy − 4x3 −
16x2y − x4 + 16y3 Our method yields the vertices (0, 0), (4, 0), (0, 3) which
are optimal. The degree bounds describe a larger quadrilateral with vertices
(0, 0), (4, 0), (1, 3), (0, 3). Corollary 5.4 predicts, for x4, coefficient (−1)16 =
1, and for y3, coefficient (−1)1524 = −16, up to a fixed sign which equals
−1 here.

Example 5.2. Parameterization x = t+ t2, y = 2t− t2 yields implicit equa-
tion φ = 6x − 3y + x2 + 2xy + y2. The previous lemma yields vertices
(1, 0), (2, 0), (0, 2), (0, 1), which defines the actual implicit polygon. Here
the degree bounds imply a larger triangle, with vertices (0, 0), (2, 0), (0, 2).
Corollary 5.4 predicts, for x2 and y2, coefficients (−1)6(−1)2 = 1 and
(−1)6(1)2 = 1 respectively.

Example 5.3. For the Fröberg-Dickenstein example [9, Exam.3.3], x =
t48−t56−t60−t62−t63, y = t32, our method yields vertices (32, 0), (0, 48), (0, 63),
which define the actual implicit polygon. Here the degree bounds describe
the larger quadrilateral with vertices (0, 0), (32, 0), (32, 31), (0, 63).

5.2 Rational parametric curves

Now we turn to the case of rational parameteric curves. In this case f0(t) =
xQ(t)−P0(t), f1(t) = yQ(t)−P1(t) ∈ (C[x, y])[t], and the supports of f0, f1

are of the form A0 = {a0, a1, . . . , an} and A1 = {b0, b1, . . . , bm} where points
ai and bj are sorted in ascending order; a0 = b0 = 0. Points in A0, A1 are
embedded by κ in R

2. The embedded points are denoted by (ai, 0), (bi, 1);
by abusing notation, we will ommit the extra coordinate.

Recall that each p ∈ A0 ∪ A1 corresponds to a monomial of f0, f1. The
corresponding coefficient, if we consider the first polynomial, lies either in C

or is a linear polynomial in C[x]; the latter is a monomial qix or a binomial

15



qix + c0i, where qi, c0i ∈ C. An analogous description holds for the second
polynomial.

Definition 5.1. Let V,W be non-empty subsets of Z. A selection is a pair
of sets S, T such that S ⊆ V and T ⊆ W .

With respect to the sets A0 and A1, we now define two selection criteria:

• The first selects the exponents in A0 or A1 corresponding to coef-
ficients which are non-constant polynomials in C[x] or C[y], respec-
tively; hence, they are either linear monomials or linear binomials.
The selected points are those in the support of the denominator Q(t);
if Q(t), P0(t), P1(t) have the same support, then all points are selected.

• The second selection picks the exponents in A0 or A1 corresponding to
coefficients which are monomials in C[x] or C[y] respectively. In this
case there is at least one non-selected point coming from the numerator
Pi(t).

In order to denote that a point ai ∈ A0 or bi ∈ A1 is selected (non-selected),
we write a+

i or b+
i (resp. a−i or b−i ).

The use of the first criterion on the sets A0 and A1 produces a selec-
tion S0, S1 that has the following important properties: (i) |S0| ≥ 1 and
|S1| ≥ 1, i.e., at least one exponent from both A0 and A1 is selected since
Q(t) 6= 0; (ii) because we have assumed that the denominators of the ratio-
nal parameterization are the same polynomial, S0 = S1, i.e., ai is selected iff
there exists a selected point with equal coordinate bj = ai, for indices i, j > 0
not necessarily equal (in particular, the same argument is true for a0, b0 be-
cause, if a0 is selected, then q0 6= 0 which implies that b0 is also selected).
Unfortunately, the second criterion does not guarantee any of these two
properties. In general, using either criterion, there may exist several selected
points, and a0, b0 need not be selected. For example, the case of polynomial
parameterizations yields A0 = {a+

0 , a−1 , . . . , a−n }, A1 = {b+
0 , b−1 , . . . , b−m}.

We shall consider only i-mixed cells associated with a selected vertex in
Ai. For any triangulation T , these mixed cells correspond either to triangles
with vertices {a+

i , bl, br}, where l, r ∈ {0, . . . ,m}, or to {al, ar, b
+
j }, where

l, r ∈ {0, . . . , n}. Given a selection and a triangulation, we set

x =
∑

i,l,r

Vol(a+
i , bl, br), y =

∑

l,r,j

Vol(al, ar, b
+
j ), (4)

where i, j range over all selected points in A0 and A1 respectively, and we
sum up the normalized volumes of mixed triangles.

In the following result, we use the concept of upper (resp. lower) hull
of a convex polytope in R

d wrt some direction v ∈ R
d: it is the subset of

facets (i.e. faces of maximum-dimension) whose inner normal vector has a
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non-positive (resp. non-negative) inner product with v. Notice that we can
define a new convex polytope by “gluing” together the upper hull of some
arbitrary polytope in R

d and the lower hull of another polytope in R
d, as

long as they are defined wrt the same direction v ∈ R
d.

The resultant R(f0, f1, t) lies in (C[x, y])[cij , qk]. We consider the spe-
cialization of coefficients cij , qk in order to study φ; generically, this spe-
cialization yields the implicit equation. The vertices of N(R) are given by
theorem 2.1 and expression (3). The vertices of the implicit polygon are
exponents of extreme monomials of R(f0, f1, t) which have been specialized.

Theorem 5.5. Consider points (x, y) defined by expressions (4). The poly-
gon defined by the upper hull of points (x, y) under the first selection and the
lower hull of points (x, y) under the second selection contains the implicit
polygon N(φ).

Proof. Consider the extreme terms of the resultant, given by theorem 2.1
and expression (3). After the specialization of the coefficients, those associ-
ated with i-mixed cells having a non-selected vertex p ∈ Ai contribute only
a coefficient in C to the corresponding term of φ. This is why they are not
taken into account in (4).

Now consider the first selection. By maximizing x or y, as defined in (4),
it is clear that we shall obtain the maximum possible powers in the terms
which are polynomials in x and y respectively, hence the largest degrees in
x, y in φ. Under certain genericity assumptions, we shall obtain all vertices in
the implicit polygon, which appear in its upper hull with respect to vector
(1, 1). If genericity fails, the implicit polygon will contain vertices with
smaller coordinates.

The second selection minimizes the powers of coefficients corresponding
to monomials in the implicit variables. All other coefficients are in C or are
binomials in x (or y), so they contain a constant term, hence their product
will contain a constant, assuming generic coefficients in the parametric equa-
tions. Therefore these are vertices on the lower hull with respect to (1, 1).
If genericity fails, then fewer terms appear in φ and the implicit polygon is
interior to the lower hull computed.

For any p ∈ P , we define functions X (p+) and X (p−) where X (p+) = 1
if p is selected and X (p+) = 0 otherwise, and X (p−) = 1 if there exists some
non-selected point p− ∈ P and X (p−) = 0 otherwise.

The following results determine the polygon that contains N(φ).

Lemma 5.6. The maximum power of x in the implicit equation is generi-
cally

bm − b0 = bm.

When this is attained, the maximum power of y is generically

(a+
R − a+

L ) + X (b+
m) · (an − a+

R),
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where a+
R, a+

L are the rightmost and leftmost selected points (not necessarily
distinct) in A0. A similar result holds for y with the roles of x and y, and
A0 and A1 exchanged.

Proof. There is always at least one selected point in each of A0 and A1.
This implies that the maximum power of x is equal to bm − b0 = bm and
is attained by any triangulation with at least two edges (a+

i , b0), (a
+
j , bm),

where i ≤ j.
In order to obtain the maximum power of y possible when the maximum

power of x is attained, we must choose from the previous set of triangu-
lations, one where a maximum part of segment (a0, an) is visible by some
selected points b+

k ∈ A1. Such a triangulation must contain edges (a+
L , b0)

and (a+
R, bm) in order to maximize the power of x and y simultaneously.

Assume that point b0 is selected. Then point a0 must also be selected
and a+

L = a0. If all other selected points in A1 (if any) lie inside (b0, bm),
then X (b+

m) = 0; the maximum value of y is a+
R − a+

L = a+
R which reduces to

zero if a+
R = a0 (point a0 is the only one selected in A0; polynomial case).

It is obtained by drawing edge (b0, a
+
R). If bm is selected then X (b+

m) = 1
and segment (a+

R, an) is also visible from selected points in A1 (namely bm)
hence the maximum power of y is a+

R + (an − a+
R) = an.

Now assume that point b0 is not selected, hence point a0 is not selected. If
all selected points in A1 lie inside (b0, bm), then X (b+

m) = 0 and the maximum
value of y is a+

R − a+
L . It is obtained by drawing edges (b+

i , a+
L ), (b+

i , a+
R), for

some selected point b+
i . If bm is selected then X (b+

m) = 1 and segment
(a+

R, an) is also visible from selected points in A1 (namely bm) hence the
maximum power of y is (a+

R − a+
L ) + (an − a+

R) = an − a+
L .

a0 a0a0a0 a
+
i

anan a
+
na

−
na

+
R

a
+
R

a
+
L a

+
L

b
+
i

b0b0b0b0 bm bmb
−
m b

+
m

b
+
Rb

+
R b

+
Lb

+
L

Figure 7: The triangulations of C that give the points ymax|x=bm
(left sub-

figure) and xmax|y=an (right subfigure).

In a similar fashion, we can also show the following results:

Lemma 5.7. Suppose that the maximum power of x equal to bm is attained;
then the minimum power of y is, generically,

X (b+
m) · (an − a+

R) + (1 −X (b−i )) · (a+
R − a+

L )

where a+
R, a+

L are the rightmost and leftmost selected points in A0. A similar
result holds for y with the roles of x and y, and A0 and A1 exchanged.
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R

b
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b
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b
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b
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Figure 8: The triangulations of C that give the points ymin|x=bm
(left sub-

figure) and xmin|y=an (right subfigure).

Lemma 5.8. Provided that each of the sets A0 and A1 contains at least one
non-selected point, the minimum power of x in the implicit equation is 0.
When this is attained, the maximum power of y is

an −
(

1 −X (b+
m)

)

· (an − a−R),

where a−R is the rightmost non-selected point in A0.

As mentioned in Theorem 5.5, the lower part of the polygon containing
the implicit polygon N(φ) is formed by the convex hull of the points defined
by expressions (4) under the second selection criterion. For simplicity of
the analysis that follows, we first consider some special cases which give
degenerate results, as described in the following lemma.

Lemma 5.9. Suppose that the set A0 contains no selected point. Then,
under the second selection criterion,

(i) if no point in the set A1 is selected, the convex hull of the points defined
by expressions (4) degenerates to the point (0, 0);

(ii) if all the points in the set A1 are selected, the convex hull of the points
defined by expressions (4) degenerates to the point (0, an);

(iii) if the set A1 contains at least one selected and at least one non-selected
point, the convex hull of the points defined by expressions (4) degener-
ates to the line segment with endpoints (0, 0) and (0, an).

A similar result holds if the set A1 contains no selected point.
In the following, we asume that each of the sets A0 and A1 contains at

least one selected point. Then, we have:

Lemma 5.10. Provided that each of the sets A0 and A1 contains at least
one non-selected point, the minimum power of y in the implicit equation is
0. When this is attained, the maximum power of x is

bm −X (a−n ) · (bm − b−R) −
(

1 −X (a+
0 ) · X (b+

m)
)

· b−L ,

where b−L , b−R are the leftmost and rightmost non-selected points in A1.
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Lemma 5.11. Provided that each of the sets A0 and A1 contains at least
one non-selected point, the minimum power of x equal to 0 is attained; then,
the minimum power of y is

X (b+
0 ) · a−L + X (b+

m) · (an − a−R),

where a−L , a−R are the leftmost and rightmost non-selected points in A0. A
similar result holds for y with the roles of x and y, and A0 and A1 exchanged.

Lemma 5.12. Let ymax|x=0 = an−
(

1−X (b+
m)

)

· (an−a−R) be the maximum
value of the power of y when the power of x attains its minimum value 0,
and xmin|y=an = X (a+

n ) · (bm − b+
R)+(1−X (a−i )) · (b+

R − b+
L ) be the minimum

value of the power of x when the power of y attains its maximum value an.
If ymax|x=0 6= an, which also implies that xmin|y=an 6= 0, then the upper left
corner of the polygon containing N(φ) consists of the edge connecting the
points (0, ymax|x=0) and (xmin|y=an , an).

Corollary 5.13. Let xmax|y=0 = bm−X (a−n )·(bm−b−R)−
(

1−X (a+
0 )·X (b+

m)
)

·
b−L be the maximum value of the power of x when the power of y attains its
minimum value 0, and ymin|x=bm

= X (b+
m)·(an−a+

R)+(1−X (b−i ))·(a+
R−a+

L )
be the minimum value of the power of y when the power of x attains its
maximum value bm. If xmax|y=0 6= bm, which also implies that ymin|x=bm

6=
0, then the lower right corner of the polygon containing N(φ) consists of the
edge connecting the points (xmax|y=0, 0) and (bm, ymin|x=bm

).

Lemma 5.14. Let ymin|x=0 = X (b+
0 )·a−L +X (b+

m)·(an−a−R) be the minimum
value of the power of y when the power of x attains its minimum value 0,
and xmin|y=0 = X (a+

0 ) · b−L +X (a+
n ) · (bm − b−R) be the minimum value of the

power of x when the power of y attains its minimum value 0. If ymin|x=0 6= 0,
which also implies that xmin|y=0 6= 0, then the lower left corner of the poly-
gon containing N(φ) consists of the edge connecting the points (0, ymin|x=0)
and (xmin|y=0, 0) unless all four points a0, b0, an, bm are selected in which
case the corner consists of the edges connecting (0, ymin|x=0) to point p to

(xmin|y=0, 0) where p = (b−L , an − a−R) if
b−
L

a−
L

<
bm−b−

R

an−a−
R

and p = (bm − b−R, a−L )

if
b−
L

a−
L

>
bm−b−

R

an−a−
R

.

Proof. We start by noting that the values ymin|x=0 and xmin|y=0 are equal
to 0 if at least one of the points a0, b0 is not selected and at least one of
an, bm is not selected.

Let us consider the remaining cases. First, suppose that both a0, b0

are selected but not both an, bm are selected. In this case, ymin|x=0 = a−L
and xmin|y=0 = b−L ; we will show that in this case, the interior of the axis-
parallel rectangle with vertices the two points (0, a−L ) and (b−L , 0) is empty.
Suppose for contradiction that there exists a triangulation T corresponding
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to a point in the interior of this rectangle. Let us start at the triangle
of T which touches the edge (a0, b0) and move from triangle to triangle
by crossing edges (ai, bj) of T until we reach such an edge with at least
one of its endpoints being a non-selected point. Suppose that this edge is
(ai′ , bj′) where ai′ is non-selected; then bj′ is selected, otherwise we would
have stopped earlier since we have seen edges incident on bj′ before the
edge (ai′ , bj′) . Then, clearly, all the points in {b0, . . . , bi′} are selected
points in A1 and additionally, ai′ either coincides with or is to the right
of a−L . In either case, the value of the power of y is no less than a−L , a
contradiction. The case is symmetric if we stop at an edge (ai′ , bj′) where
bj′ is non-selected.

Next, suppose that not both a0, b0 are selected but both an, bm are se-
lected. In this case, ymin|x=0 = an − a−R and xmin|y=0 = bm − b−R; This case
is left-to-right symmetric to the previous one; therefore, in this case as well,
the rectangle with vertices the points (0, an−a−R) and (bm−b−R, 0) has empty
interior.

Finally, suppose that all four points a0, b0, an, bm are selected. In this
case, ymin|x=0 = a−L + an − a−R and xmin|y=0 = b−L + bm − b−R; we will
show that in this case, the lower hull of the polygon containing n(φ) con-
tains a two-edge polygonal line connecting the points (0, a−L + an − a−R)
and (b−L + bm − b−R, 0). First, note that there exist triangulations corre-
sponding to the points (b−L , an − a−R) and (bm − b−R, a−L ); the former involves
the edges (a0, b

−
L ), (a−R, b−L ), and (a−R, bm), and the latter the (symmetric)

edges (b0, a
−
L ), (b−R, a−L ), and (b−R, an). The four points (0, a−L + an − a−R),

(b−L + bm − b−R, 0), (b−L , an − a−R), and (bm − b−R, a−L ) form a parallelogram

which degenerates into a line segment if
b−
L

a−
L

=
bm−b−

R

an−a−
R

; it is not difficult to

see that if
b−
L

a−
L

<
bm−b−

R

an−a−
R

, it is point (b−L , an − a−R) that lies below the line

through (0, a−L + an − a−R) and (b−L + bm − b−R, 0), whereas if
b−
L

a−
L

>
bm−b−

R

an−a−
R

, it

is point (bm − b−R, a−L ) that lies below that line. Due to the symmetries in

the setting, it suffices to consider that
b−
L

a−
L

<
bm−b−

R

an−a−
R

and to show that there

are no triangulations that correspond to points that have x-coordinate no
more than b−L and lie below the line through the points (0, a−L +an−a−R) and
(b−L , an − a−R). Suppose for contradiction that such a triangulation, say, T ,
existed. Then, by applying on T the triangle-to-triangle walking argument
presented earlier in this proof, we will move from the triangle of T touching
the edge (a0, b0) to other triangles until an edge (ai′ , bj′) is reached exactly
one of whose endpoints is a non-selected vertex. Let us apply the same
argument starting from the triangle of T that touches the edge (an, bm);
in this case, we stop at an edge (ai′′ , bj′′). Since T corresponds to a point
with x-coordinate no more than b−L and since all four points a0, b0, an, bm

are selected, it cannot be the case that both bj′ and bj′′ are non-selected;
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moreover, since the point is below the line through (0, a−L + an − a−R) and
(b−L , an − a−R), its y-coordinate is less than a−L + an − a−R, and hence nor
both ai′ and ai′′ can be non-selected either. Due to symmetry, suppose
that ai′ and bj′′ are non-selected. Then, the point corresponding to T has
x-coordinate at least equal to bm − b−R and y-coordinate at least equal to

a−L . But because
b−
L

a−
L

<
bm−b−

R

an−a−
R

, any such point lies above the line through

(0, a−L + an − a−R) and (b−L , an − a−R), a contradiction.

Lemma 5.15. Let ymax|x=bm
= (a+

R − a+
L ) +X (b+

m) · (an − a+
R) be the max-

imum value of the power of y when the power of x attains its maximum
value bm, and xmax|y=an = (b+

R − b+
L ) + X (a+

n ) · (bn − b+
R) be the maximum

value of the power of x when the power of y attains its maximum value an.
If ymax|x=bm

6= an, which also implies that xmax|y=an 6= bm, then the upper
right corner of the polygon containing N(φ) consists of the edge connecting
the points (0, ymax|x=bm

) and (xmax|y=an , 0) unless none of the four points
a0, b0, an, bm is selected in which case the corner consists of the edges con-
necting (xmax|y=an , an) to point p to (bm, ymax|x=bm

) where p = (b+
R, an−a+

L )

if
an−a+

R

bm−b+
R

>
a+

L

b+
L

and p = (bm − b+
L , a+

R) if
an−a+

R

bm−b+
R

<
a+

L

b+
L

.

Example 5.4. For the unit circle ([8, Exam.6.1]) x = 2t/(t2 + 1), y =
(1 − t2)/(t2 + 1) we have f0 = xt2 − 2t + x, f1 = (y + 1)t2 + (y − 1) and
supports A0 = {0+, 1−, 2+}, A1 = {0+, 2+}. The set C = κ(A0, A1) has five
triangulations shown in figure 9 which, after applying Theorem 2.1, give the
terms y2 − 1, x2y2 − 2x2y + x2 and x2y2 + 2x2y + x2. Our method yields
vertices (2, 2), (2, 0), (0, 2), (0, 0). By degree bounds we end up with vertices
(2, 0), (0, 2), (0, 0). Interestingly, to see the cancelation of term x2y2 it does
not suffice to consider only terms coming from extremal monomials in the
resultant.

a
+
0

a
+
0a

+
0a

+
0a

+
0

a
−
1a

−
1a

−
1a

−
1a

−
1

a
+
2

a
+
2a

+
2a

+
2a

+
2

b
+
0b

+
0

b
+
0b

+
0b

+
0 b

+
1b

+
1

b
+
1b

+
1b

+
1

(y − 1)(y + 1) (y − 1)2x2 x2(y + 1)2 (y − 1)(y − 1)x2 x2(y + 1)2

Figure 9: The triangulations of the set C of Example 5.4 and the corre-
sponding terms.

Example 5.5. For the folium of Descartes ([8, Exam.6.2]) x = 3t2/(t3 +
1), y = 3t/(t3 + 1) with implicit equation φ = x3 + y3 − 3xy = 0, we have
f0 = xt3 − 3t2 + x, f1 = yt3 − 3t + y and supports A0 = {0+, 2−, 3+}, A1 =
{0+, 1−, 3+}. The denoted selection is the same under both selection criteria,
and satisfies the assumptions of the lemmas relevent for computing the lower
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hull of the polygon. The set C = κ(A0, A1) has fourteen triangulations. Our
method yields vertices (3, 3), (0, 3), (3, 0), (1, 1). By degree bounds we end up
with vertices (0, 3), (3, 0), (1, 1) which are optimal. The polygon predicted
by degree bounds alone contains the additional vertex (0, 0) which leads to
a possible implicit support with five more vertices.

Example 5.6. Parametrization x = (2t3 + t + 1)/(t2 + 1), y = (t4 +
t3 − 1)/(t2 + 1) yields implicit equation φ = 59 − 21x + 110y + 52y2 −
13x2 − 48xy + 5x3 − 5x2y − x4 + 8y3 − 2x2y2 + 2x3y − 12xy2. The New-
ton polytope of φ has vertices (0, 3), (2, 2), (4, 0), (0, 0). The supports of
f0, f1 are A0 = {0+, 1−, 2+, 3−}, A1 = {0+, 2+, 3−, 4−} where the nota-
tion is under the first selection. The selection under the second criterion
gives A0 = {0−, 1−, 2+, 3−}, A1 = {0−, 2+, 3−, 4−}. Our method yields
the vertices (4, 2), (2, 3), (4, 0), (0, 0), (3, 0) and (0, 3). The intersection of
the polygon defined by these vertices, with the polygon predicted by degree
bounds rule out vertices (4, 2) and (2, 3) and introduces vertex (1, 3).

5.3 Parametric surfaces

This section considers polynomially parameterized surfaces. We use an ex-
ample to illustrate the problem of fully describing the Newton polytope of
the implicit equation. Let A,B,D ∈ Z

2 be the Newton polytopes of the three
polynomials, each containing (0, 0). The are embedded, by applying κ, into
R

4, with the embedded points being denoted by (ai, 0, 0), (bi, 1, 0), (di, 0, 1),
respectively.

Lemma 5.16. Consider some mixed subdivision ∆ of B and D in R
2. The

triangulation containing all simplices in R
4 defined by (a0, 0, 0) and any

mixed cell of ∆ achieves the maximum value of x, namely MV(B,D). A
symmetric result holds by switching between z and x or y.

Proof. The power of x is

∑

F

Vol4(CH(a0, F )) =
∑

F

Vol3(F ),

where F = (bi, bj) + (di, dj) ranges over all mixed cells of ∆, i.e. it is the
Minkowski sum of edges from B,D respectively, and CH(p, F ) is the simplex
with vertices a0 and those of F .

Lemma 5.17. If there is a constant term in at least one Pi, then there is a
vertex (0, 0, 0) in the implicit polytope, generically.

Proof. If there is a constant term in at least one Pi then, by expanding
the term which maximizes the power of one variable, we obtain a constant
term.
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The question is, for the maximum degree of x, what are the possible
degrees of y, z. By our example below, we see that it is possible to have
implicit vertices which (a) maximize one variable and minimize (namely to
0) the other two, and (b) maximize one variable, minimize (namely to 0)
another, whereas the third achieves a value smaller than its maximum.

We show by example that it may be hard to be describe the vertices a
priori, since this depends on the geometry of the problem. We concentrate
on the case of all A,B,D being straight-line segments, such that every two
of them are linearly independent. The Newton polytope vertices are denoted
by {a0 = 0, a1}, {b0 = 0, b1}, {d0 = 0, d1}.

5.3.1 An example

More specifically, we shall analyze a (sparse) example from [3]; the surface
is drawn in Figure 10. The parametric expressions are:

x = s t, y = s t2, z = s2. (5)

The corresponding polynomials are f0 = c00−c01st, f1 = c10 − c11st
2, f2 =

–2
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0

0.5

1

1.5

2

Figure 10: The surface parameterized by (5).

c20 − c21s
2, with supports

A = {(0, 0), (1, 1)}, B = {(0, 0), (1, 2)}, C = {(0, 0), (2, 0)}.

There are two possible mixed subdivisions, each containing exactly three
maximal cells, all of which are mixed; see Figure 11. By degree arguments

c00

c01

c10

c11 c20

c21

Figure 11: Mixed cells in the subdivisions, with vertex summands shown.
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the total implicit degree is bounded by 4 and variables x, y, z have degree
bounded by 4, 2, 2 respectively. The implicit equation is x4 − y2z = 0.

Let us now follow the approach of this paper to the same problem and
see how the two implicit terms could be obtained.

In applying lemma 5.16, there is a single facet F of H of the form F =
(bi, bj) + (di, dj), namely F = (b0, b1) + (d0, d1). The simplex CH(a0, F ) has
normalized volume 2 · 2 = 4, which yields the power of x in the specific
monomial as by lemma 5.16.

Now we show that there is no b0-mixed cell in the corresponding mixed
subdivision by showing that there is no 4-simplex (a0, a1) + b0 + (d0, d1).
If there were, it would intersect CH(a0, F ) in the 3-simplex defined by
a0, b0, d0, d1; in other words, the corresponding hyperplane would separate
b1, a1. This implies that the following Orientation determinant (see e.g. [7]),
with rows corresponding to a0, b0, d0, d1, should have opposite signs when
the last row expressed b1 or a1:

a0

b0

d0

d1

b1 or a1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 0 0
1 0 0 1 0
1 0 0 0 1
1 2 0 0 1
1 1 2 or 1 1 or 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. = 2 · 2 or 2 · 1,

hence the hypothesis that a b0-mixed cell exists does not hold. The same
method shows there is no d0-mixed cell either, therefore we conclude cor-
rectly that one implicit monomial is x4.

We now use b0 instead of a0 in lemma 5.16. There is a single relevant sim-
plex CH(b0, (a0, a1)+(d0, d1), with normalized volume 2, which is the power
of y. We can show that there is no a0-mixed cell in the mixed subdivision
as above.

But is there a d0-mixed cell corresponding to simplex CH(d0, (a0, a1) +
(b0, b1)? By using Orientation matrices we show this simplex exists in the
triangulation; in other words, the hyperplane of a0, a1, b0, d0 separates d1, b1:

a0

a1

b0

d0

d1 or b1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 0 0
1 1 1 0 0
1 0 0 1 0
1 0 0 0 1
1 2 or 1 0 or 2 0 or 1 1 or 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

1 1
2 0

∣

∣

∣

∣

= −2 or

∣

∣

∣

∣

1 1
1 2

∣

∣

∣

∣

= 1.

The d0-mixed cell has normalized volume 1, hence the implicit monomial is
y2z.
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