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Indtroduction Definition of the problem

Compute the Newton Polytope of the Resultant
Without Computing the Resultant!

A system of equations, f1, f2 ∈ C[x ]

f1 = a + bx3 = 0

f2 = cx5 + d = 0

The Newton polytope N(R) is the segment defined by the points:

v1 = (5, 0, 3, 0), v2 = (0, 5, 0, 3).

The (Sylvester) resultant of f1, f2 is the polynomial

R = b5d3 − a5c3 ∈ Z[a, b, c, d ]
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Toric Elimination Theory

Why Toric (Sparse) Elimination Theory?

Real life examples: equations are often sparse.

Exploits the structure of polynomials.

Considers only affine roots.

Toric resultant matrices are (usually) smaller than projective
resultant matrices.
They can be defined even if the projective resultant matrix
vanishes identically.

Toric resultants eliminate all variables at once.

Applications: polynomial system solving, variable elimination,
implicitization etc.
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Toric Elimination Theory Geometry

Newton Polytopes

Definition

The support A of a (Laurent) polynomial f =
∑

cαxα ∈ C[x±1]
is the set of the exponents α, of its monomials with nonzero
coefficient.

The Newton polytope N(f ) of a polynomial f
is the convex hull of its support A.

Newton polytopes model the sparseness of a polynomial.

f (x , y) = a1x + a2y + a3xy ,
g(x , y) = b0+b1x+b2y+b3x2+b4xy+b5y2
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Toric Elimination Theory Geometry

Minkowski Sum

Definition

The Minkowski sum of two convex polytopes P1 and P2 is the convex
polytope

P = P1 + P2 := {p1 + p2 | p1 ∈ P1, p2 ∈ P2}

Minkowski addition of polytopes N(f ) + N(g) corresponds to
polynomial multiplication f · g.
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Toric Elimination Theory Geometry

Mixed Volume

Definition

The mixed volume MV (P1, . . . , Pn), Pi ⊂ Rn is the unique real
function st.:

1 It is multilinear wrt Minkowski addition and scalar multiplication:
MV (P1, . . . , λPk + µP ′

k , . . . , Pn) =
λMV (P1, . . . , Pk , . . . , Pn) + µMV (P1, . . . , Pk , . . . , Pn)

2 MV (P1, . . . , Pn) = n! · Vol(P), if P1 = . . . = Pn = P.

Computation of Mixed Volume is done using mixed subdivisions.
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Toric Elimination Theory Geometry

Mixed Subdivisions

Definition

Let P = P0 + . . . + Pn ⊂ Rn, be a n-dimensional convex polytope.
A tight mixed subdivision of P, is a collection of n-dimensional convex
polytopes R, called cells, st.:

they form a polyhedral complex that partitions P and

every cell R is a Minkowski sum of faces of the polytopes Pi :

R = F0 + · · ·+ Fn, dim(R) = dim(F0) + · · ·+ dim(Fn) = n,

Definition

A cell R is called i −mixed if it is a Minkowski sum of n edges Ej ⊂ Pj

and one vertex vi ∈ Pi ,

R = E0 + · · ·+ vi + · · ·+ En.
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Toric Elimination Theory Geometry

Construction of a Regular Tight Mixed Subdivision

For the convex polytopes P0, . . . , Pn ⊂ Rn, we construct a regular tight
mixed subdivision of P = P0 + . . . + Pn:

1 We choose affine liftings ωi : Pi → R and define the lifted
polytopes

P̂i := {(pi , ωi(pi)) | pi ∈ Pi}.
2 We form the Minkowski sum P̂ =

∑n
i=0 P̂i .

3 We project the lower-hull of P̂ onto P. The lower-hull facets induce
a regular mixed subdivision of P.
If ωi are generic, the induced regular mixed subdivision is tight.
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Toric Elimination Theory Geometry

Examples of Mixed (and not mixed) Subdivisions
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Toric Elimination Theory Geometry

Computation of (Partial) Mixed Volumes

Theorem

If P0, . . . , Pn ⊂ Rn, are convex polytopes and S is a mixed subdivision
of the Minkowski sum P =

∑n
i=0 Pi , then

MV−i(P0, . . . , Pi−1, Pi+1, . . . , Pn) =
∑

R

Vol(R),

where the sum is over all i-mixed cells R of S.

Christos Konaxis ( µ
Q

λ∀) Triangulations and Resultants July 2006 12 / 51



Toric Elimination Theory Geometry

An Application of Mixed Volumes: Bernstein Bound

Theorem (Bézout)

The number of isolated roots in Cn of the polynomial system
f1 = . . . = fn = 0, fi ∈ C[x1, . . . , xn], is at most d1 . . . dn,
where di = degree(fi). Moreover, if we count roots at infinity with
multiplicities, or the fi are generic, then the bound is exact (in Pn).

Theorem (Bernstein,Kushnirenko, Khovanskii)

The number of roots in (C∗)n of the polynomial system
f1 = . . . = fn = 0, fi ∈ C[x±1

1 , . . . , x±1
n ], is at most MV (P1, . . . , Pn) .

If the fi are generic then the bound is exact.
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Toric Elimination Theory Toric resultants

Definition of the Toric Resultant

Definition

Let f0, . . . , fn ∈ C[x±
1 , . . . , x±

n ], be n + 1 Laurent polynomials in n
variables with symbolic coefficients ci,j .
The toric or sparse resultant R of the fi is the unique (up to sign)
irreducible polynomial in Z[ci,j ] which vanishes iff the fi have a common
root in (C∗)n.
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Toric Elimination Theory Toric resultants

Properties of the Toric Resultant

Suppose that the supports A0, . . . , An of the Laurent polynomials fi
generate Zn.

The toric resultant R is a homogenous polynomial in the symbolic
coefficients of each fi , of degree equal to the partial mixed volume

MV−i := MV (P0, . . . , Pi−1, Pi+1, . . . , Pn).

Reduces to: the projective resultant for dense polynomials,
the Sylvester resultant for two univariate polynomials and
to the determinant of a system of linear equations.

Construction of the resultant matrix uses mixed subdivisions.
Generalization of Macauley’s construction [D’ Andrea ’01]:
There exists a matrix M st. R = det(M)/det(M ′), M ′: submatrix
of M.
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Toric Elimination Theory Toric resultants

The Extreme Monomials of the Toric Resultant

Definition

Let ω be a generic lifting function. A monomial initω(R) of the toric
resultant R is an extreme monomial corresponding to ω iff its exponent
vector is a vertex of the Newton polytope N(R) with normal vector ω.
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Toric Elimination Theory Toric resultants

Computation of the Extreme Monomials

Let Pi = N(fi), i = 0, . . . , n, be n-dimensional Newton polytopes.

Theorem (Sturmfels)

For every generic lifting function ω, we obtain an extreme monomial of
R, of the form

initω(R) = c ·
n∏

i=0

∏
R

cVol(R)
i,vi

,

where the second product is over all i-mixed cells of the regular tight
mixed subdivision of P =

∑n
i=0 Pi , induced by ω and ci,vi

is the
coefficient of the monomial of fi corresponding to the vertex vi .
The constant c is +1 or -1.
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Toric Elimination Theory Toric resultants

Mixed Cell Configurations

Two regular tight mixed subdivisions of P are equivalent if the
have the same mixed cells. We will call the equivalence classes
mixed cell configurations.

Sturmfels theorem establishes an one to one and onto
correspondence between the mixed cell configurations of the
Minkowski sum P and the extreme monomials of R.

To compute the Newton polytope of the toric resultant,
we have to compute all mixed cell configurations of P.
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Triangulations Definitions

Triangulations of Point Sets

Definition

A triangulation T of a (finite) point set A ⊂ Rn is a collection of
n-dimensional simplices Ti ⊂ P = conv(A), called the cells of T , st.:

The cells partition P.

Every pair of cells intersect at a common facet (possibly empty).

A point set A, a triangulation of P and a partition that is not a triangulation.
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Triangulations Definitions

Regular Triangulations of Point Sets

Definition

A triangulation T is called regular if there exists a generic lifting
function ω such that T is obtained by the projection onto P of the lower
facets of the set Â := {(a, ω(a)) | a ∈ A}.
The vector w with coordinates the values ω(a), is called the weight
vector of the triangulation.
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Triangulations Computing Triangulations

Circuits of a Triangulation

To compute all regular triangulations of a point set A,
we start with one and we transform it locally.

For the local transformations we use circuits.

A circuit Z is a minimal affinely dependent subset of A.

Every subset of a circuit Z is a simplex of some dimension.

Every circuit has exactly two triangulations T+, T−.
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Triangulations Computing Triangulations

Examples of Circuits

Circuits of small dimension and the corresponding triangulations.
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Triangulations Computing Triangulations

Computing Triangulations Using Circuits

Not all circuits are suitable for transformation of a triangulation T .
For a suitable circuit Z , we say that T is supported on Z .

If T is supported on Z , the transformation consists of changing
the current triangulation of Z (say T+), to the other ( T−).

This operation is called a (bistellar) flip over Z .

The new triangulation T ′ may not be regular.
A flip is followed by a regularity check.
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Triangulations Computing Triangulations

Examples of Bistellar Flips
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Triangulations Computing Triangulations

Examples of Bistellar Flips
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Triangulations Secondary Polytopes

The Secondary Polytope of a Point Set

For a triangulation T of a point set A we define the volume vector:

φT = (ϕ1, . . . , ϕ|A|), ϕi =
∑

σ∈T , ai∈σ

Vol(σ),

where ϕi is the sum of the volumes of all cells σ having point ai as
its vertex.

The secondary polytope Σ(A) is the convex hull of the volume
vectors of all triangulations of A.

The dimension of the secondary polytope is |A| − n − 1.

The vertices of the secondary polytope are in bijection with the
regular triangulations of A. Edges correspond to bistellar flips.
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Triangulations Secondary Polytopes

Examples of Secondary Polytopes

Secondary polytopes of a pentagon and a quadrilateral.
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Enumeration Algorithms The Cayley trick

The Cayley Embedding

Definition

Given polytopes P0, . . . , Pn, the Cayley embedding κ introduces a new
polytope

C := κ (P0, P1, . . . , Pn) = conv

(
n⋃

i=0

(Pi × {ei})

)
⊂ R2n+1,

where ei are an affine basis of Rn.
The dimension of the polytope C is d := 2n.
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Enumeration Algorithms The Cayley trick

Intuition
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Enumeration Algorithms The Cayley trick

The Cayley Trick

Theorem (The Cayley Trick)

There is a bijection between the tight regular mixed subdivisions of the
Minkowski sum P = P0 + · · ·+ Pn and the regular triangulations of the
polytope C = κ(P0, P1, . . . , Pn).
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Enumeration Algorithms The Cayley trick

An Example of the Cayley Trick
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Enumeration Algorithms Reverse search

Enumeration Using Reverse Search

Reverse search is a technique introduced by Avis and Fukuda
which allows the enumeration of large discrete objects with low
memory usage.

Runs in time proportional to the size of the objects to be
enumerated.

In addition to the usual adjacency relation between the objects,
parent - children relation is required to save memory.

Defines a tree structure underlying the graph of adjacency
relation.
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Enumeration Algorithms Reverse search

An Example of Enumeration Using Reverse Search

The adjacency relation (i), parent-children relation (ii) and the reverse search tree (iii).
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Enumeration Algorithms Enumeration of Regular Triangulations

The Algorithm [Imai, Masada, Takeuchi, Imai]

Enumerates all regular triangulations of a point set.

Variation of reverse search: parent-children relation defined by a
total order.

Total order by lexicographic ordering of volume vectors.

Two triangulations are adjacent iff one can be transformed from
the other via a bistellar flip.
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Enumeration Algorithms Enumeration of Regular Triangulations

The Algorithm (cont’d)

Time complexity: O(d2s2LP(n − d − 1, s)|R|),
d = dimension,

s = O(mb d+1
2 c) = #of any dimensional simplices in a triangulation,

|R| = #of regular triangulations, m = |A|.

Time complexity dominated by LP(n − d − 1, s).

Space complexity: O(ds).

If the points are in general position both space and time
complexities can be improved.
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Enumeration of Mixed Cell Configurations

Modification of the Algorithm

Enumerate only the mixed cell configurations.

Equivalently: enumerate only some of the vertices of the
secondary polytope.

Let M1 6= M2, mixed cell configurations.

M1 3 T1
flipZ−→ T2 ∈ M2.

Which are the circuits Z that make the above scheme work?
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Enumeration of Mixed Cell Configurations Points in General position

The Points are in General Position

General position assumption: every d + 1 points have a convex
hull of dimension d . Not three points collinear, four points
coplanar etc.

Every circuit is d-dimensional.
Consists of d + 2 points forming at most d simplices.

Lemma: Every cell of T is the image (via κ) of a cell of S.

Corollary: A cell T = (T0, . . . , Tn) is full dimensional iff ∀i Ti 6= ∅.
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Enumeration of Mixed Cell Configurations Points in General position

Characterization of Circuits

A circuit Z ⊂ T involves a mixed cell R ≡ κ(R) if

R 6∈ flipZ (T )

A flip on a circuit Z involving a mixed cell leads to a new mixed cell
configuration. (Provided that T is supported on Z ).

Which circuits involve mixed cells?

Those that have at least one simplex of the form κ(R),
R a mixed cell of S.

A suitable circuit contains a simplex of the form

I = κ(E0, . . . , vi , . . . , En)
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Enumeration of Mixed Cell Configurations Points in General position
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Enumeration of Mixed Cell Configurations Points in General position
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Enumeration of Mixed Cell Configurations Points Not in General Position

What if Points are Not in General Position?

We have circuits of arbitrary dimension.
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Enumeration of Mixed Cell Configurations Points Not in General Position

The Form of a k -dimensional Circuit

Every cell X of a triangulation T± of a k -dimensional circuit Z
is a k -face of a cell U ⊂ T .

Z can be written as: Z = (∅, {p, q} ∪ {r}) or Z = (∅, {q, r} ∪ {p}).
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Enumeration of Mixed Cell Configurations Points Not in General Position

The Form of a k -dimensional Circuit (cont’d)

Lemma

If T is supported on Z and X is a cell of the triangulation of Z induced
by T , then there exists a cell U = (U0, . . . , Un) ⊂ T , such that X is a
k-face of U and

Z = (Z0, . . . , Zr ∪ {c}, . . . , Zn), Zi ⊆ Ui , c ∈ Pr \ vert(Ur )
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Enumeration of Mixed Cell Configurations Points Not in General Position

Characterization of Circuits

Theorem

Let Z = (Z0, . . . , Zn) a circuit of T involving a mixed cell
R = (E0, . . . , vs, . . . , En). Then there exist 0 ≤ r ≤ n and c ∈ Pr st.:

Zi = Ei or Zi = ∅, if i 6= r

and

Zr = Er ∪ {c} or Zr = {vr} ∪ {c}, vr ∈ Er , if i = r .
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Enumeration of Mixed Cell Configurations Points Not in General Position

Characterization of Circuits (cont’d)

Suitable circuits are of the form Z = (Z0, . . . , Zn), where
|Zi | ∈ {0, 2} ∀i (even circuits), or
|Zi | ∈ {0, 2} ∀i 6= r and |Zr | = 3 (odd circuits).

First and third circuits are odd. Second circuit does not involve a mixed
cell (a subset Zi of Z has cardinality 4).
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Enumeration of Mixed Cell Configurations Points Not in General Position

An Example
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Applications

An Application to Implicitization [IPSOS]

Input: xi = Pi (t)
Q(t) , i = 0, . . . , n, gcd(Pi(t), Q(t)) = 1.

Output: A superset of support of the implicit equation.

1 Define the polynomials fi = xiQ(t)− Pi(t) and look at them as
polynomials in t : fi =

∑
cij taij ∈ C[t ], ci,j generic coefficients.

2 Compute the extreme monomials of the resultant of fi using
modified algorithm of Imai et. al. Then compute a superset of the
support of the resultant.

3 Transform the support from a set of monomials of the form
∏

c
eij

ij ,
to a set of monomials in the variables xi .
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Summary

Future work

Let M1 6= M2, mixed cell configurations corresponding to vertices on
the silhouette of N(R).

M1 3 T1
flipZ−→ T2 ∈ M2.
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Summary

Summary

Computing N(R) of polynomials fi with Newton polytopes Pi

⇔ Computing all mixed cell configurations of P = P0 + · · ·+ Pn.

For every family of polytopes P0, . . . , Pn there is polytope C st.:
computing all tight regular mixed subdivisions of P =

∑
Pi

⇔ computing all regular triangulations of C.

We can enumerate all mixed cell configurations efficiently using
reverse search and flips over suitable circuits.

Application to implicitization.
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Summary

THANK YOU!
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