Triangulations and Resultants

Christos Konaxis

Supervisor: Ioannis Z. Emiris

$$
\mu \Pi \lambda \forall
$$

July 2006

Outline

(1) Toric Elimination Theory

- Geometry
- Toric resultants

Triangulations

- Definitions
- Computina Triangulations - Secondary Polytopes

Enumeration Algorithms

- The Cayley trick
- The Reverse Search Algorithm
- Enumeration of Regular Triangulations

Outline

(1) Toric Elimination Theory

- Geometry
- Toric resultants
(2) Triangulations
- Definitions
- Computing Triangulations
- Secondary Polytopes

Enumeration Algorithms

- The Cayley trick
- The Reverse Search Algorithm
- Enumeration of Regular Triangulations

Enumeration of Mixed Cell Configurations

- Points in General position
- Points Not in General Position

Outline

(1) Toric Elimination Theory

- Geometry
- Toric resultants

2) Triangulations

- Definitions
- Computing Triangulations
- Secondary Polytopes
(3) Enumeration Algorithms
- The Cayley trick
- The Reverse Search Algorithm
- Enumeration of Regular Triangulations
- Points in General position
- Points Not in General Position

Outline

(1) Toric Elimination Theory

- Geometry
- Toric resultants
(2) Triangulations
- Definitions
- Computing Triangulations
- Secondary Polytopes
(3) Enumeration Algorithms
- The Cayley trick
- The Reverse Search Algorithm
- Enumeration of Regular Triangulations

4 Enumeration of Mixed Cell Configurations

- Points in General position
- Points Not in General Position

Compute the Newton Polytope of the Resultant

Without Computing the Resultant!

- A system of equations, $f_{1}, f_{2} \in \mathbb{C}[x]$

$$
\begin{aligned}
& f_{1}=a+b x^{3}=0 \\
& f_{2}=c x^{5}+d=0
\end{aligned}
$$

- The (Sylvester) resultant of f_{1}, f_{2} is the polynomial

Compute the Newton Polytope of the Resultant

Without Computing the Resultant!

- A system of equations, $f_{1}, f_{2} \in \mathbb{C}[x]$

$$
\begin{aligned}
& f_{1}=a+b x^{3}=0 \\
& f_{2}=c x^{5}+d=0
\end{aligned}
$$

- The Newton polytope $N(\mathcal{R})$ is the segment defined by the points:

$$
v_{1}=(5,0,3,0), v_{2}=(0,5,0,3)
$$

- The (Sylvester) resultant of f_{1}, f_{2} is the polynomial

Compute the Newton Polytope of the Resultant

Without Computing the Resultant!

- A system of equations, $f_{1}, f_{2} \in \mathbb{C}[x]$

$$
\begin{aligned}
& f_{1}=a+b x^{3}=0 \\
& f_{2}=c x^{5}+d=0
\end{aligned}
$$

- The Newton polytope $N(\mathcal{R})$ is the segment defined by the points:

$$
v_{1}=(5,0,3,0), v_{2}=(0,5,0,3)
$$

- The (Sylvester) resultant of f_{1}, f_{2} is the polynomial

$$
\mathcal{R}=b^{5} d^{3}-a^{5} c^{3} \in \mathbb{Z}[a, b, c, d]
$$

Outline

(1) Toric Elimination Theory

- Geometry
- Toric resultants
(2) Triangulations
- Definitions
- Computing Triangulations
- Secondary Polytopes
(3) Enumeration Algorithms
- The Cayley trick
- The Reverse Search Algorithm
- Enumeration of Regular Triangulations

4) Enumeration of Mixed Cell Configurations

- Points in General position
- Points Not in General Position

Why Toric (Sparse) Elimination Theory?

- Real life examples: equations are often sparse.
- Exploits the structure of polynomials.
- Considers only affine roots.
- Toric resultant matrices are (usually) smaller than projective resultant matrices.
They can be defined even if the projective resultant matrix vanishes identically.
- Toric resultants eliminate all variables at once.
- Applications: polynomial system solving, variable elimination, implicitization etc.

Newton Polytopes

Definition

- The support A of a (Laurent) polynomial $f=\sum c_{\alpha} x^{\alpha} \in \mathbb{C}\left[x^{ \pm 1}\right]$ is the set of the exponents α, of its monomials with nonzero coefficient.
- The Newton polytope $N(f)$ of a polynomial f is the convex hull of its support A.

Newton polytopes model the sparseness of a polynomial.

$$
\begin{aligned}
& f(x, y)=a_{1} x+a_{2} y+a_{3} x y \\
& g(x, y)=b_{0}+b_{1} x+b_{2} y+b_{3} x^{2}+b_{4} x y+b_{5} y^{2}
\end{aligned}
$$

Minkowski Sum

Definition

The Minkowski sum of two convex polytopes P_{1} and P_{2} is the convex polytope

$$
P=P_{1}+P_{2}:=\left\{p_{1}+p_{2} \mid p_{1} \in P_{1}, p_{2} \in P_{2}\right\}
$$

Minkowski addition of polytopes $N(f)+N(g)$ corresponds to polynomial multiplication $f \cdot g$.

Mixed Volume

Definition

The mixed volume $M V\left(P_{1}, \ldots, P_{n}\right), P_{i} \subset \mathbb{R}^{n}$ is the unique real function st.:
(1) It is multilinear wrt Minkowski addition and scalar multiplication:
$M V\left(P_{1}, \ldots, \lambda P_{k}+\mu P_{k}^{\prime}, \ldots, P_{n}\right)=$

$$
\lambda M V\left(P_{1}, \ldots, P_{k}, \ldots, P_{n}\right)+\mu M V\left(P_{1}, \ldots, P_{k}, \ldots, P_{n}\right)
$$

(2) $\operatorname{MV}\left(P_{1}, \ldots, P_{n}\right)=n!\cdot \operatorname{Vol}(P)$, if $P_{1}=\ldots=P_{n}=P$.

Computation of Mixed Volume is done using mixed subdivisions.

Mixed Subdivisions

Definition

Let $P=P_{0}+\ldots+P_{n} \subset \mathbb{R}^{n}$, be a n-dimensional convex polytope. A tight mixed subdivision of P, is a collection of n-dimensional convex polytopes R, called cells, st.:

- they form a polyhedral complex that partitions P and
- every cell R is a Minkowski sum of faces of the polytopes P_{i} :

$$
R=F_{0}+\cdots+F_{n}, \quad \operatorname{dim}(R)=\operatorname{dim}\left(F_{0}\right)+\cdots+\operatorname{dim}\left(F_{n}\right)=n
$$

Definition

A cell R is called i-mixed if it is a Minkowski sum of n edges $E_{j} \subset P_{j}$ and one vertex $v_{i} \in P_{i}$,

$$
R=E_{0}+\cdots+v_{i}+\cdots+E_{n} .
$$

Construction of a Regular Tight Mixed Subdivision

For the convex polytopes $P_{0}, \ldots, P_{n} \subset \mathbb{R}^{n}$, we construct a regular tight mixed subdivision of $P=P_{0}+\ldots+P_{n}$:
(1) We choose affine liftings $\omega_{i}: P_{i} \rightarrow \mathbb{R}$ and define the lifted polytopes

$$
\hat{P}_{i}:=\left\{\left(p_{i}, \omega_{i}\left(p_{i}\right)\right) \mid p_{i} \in P_{i}\right\} .
$$

(2) We form the Minkowski sum $\hat{P}=\sum_{i=0}^{n} \hat{P}_{i}$.
(3) We project the lower-hull of \hat{P} onto P. The lower-hull facets induce a regular mixed subdivision of P. If ω_{i} are generic, the induced regular mixed subdivision is tight.

Examples of Mixed (and not mixed) Subdivisions

Computation of (Partial) Mixed Volumes

Theorem

If $P_{0}, \ldots, P_{n} \subset \mathbb{R}^{n}$, are convex polytopes and S is a mixed subdivision of the Minkowski sum $P=\sum_{i=0}^{n} P_{i}$, then

$$
M V_{-i}\left(P_{0}, \ldots, P_{i-1}, P_{i+1}, \ldots, P_{n}\right)=\sum_{R} \operatorname{Vol}(R)
$$

where the sum is over all i-mixed cells R of S.

An Application of Mixed Volumes: Bernstein Bound

Theorem (Bézout)

The number of isolated roots in \mathbb{C}^{n} of the polynomial system
$f_{1}=\ldots=f_{n}=0, f_{i} \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, is at most $d_{1} \ldots d_{n}$, where $d_{i}=$ degree $\left(f_{i}\right)$. Moreover, if we count roots at infinity with multiplicities, or the f_{i} are generic, then the bound is exact (in \mathbb{P}^{n}).

Theorem (Bernstein,Kushnirenko, Khovanskii)

The number of roots in $\left(\mathbb{C}^{*}\right)^{n}$ of the polynomial system $f_{1}=\ldots=f_{n}=0, f_{i} \in \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$, is at most $\operatorname{MV}\left(P_{1}, \ldots, P_{n}\right)$. If the f_{i} are generic then the bound is exact.

Definition of the Toric Resultant

Definition

Let $f_{0}, \ldots, f_{n} \in \mathbb{C}\left[x_{1}^{ \pm}, \ldots, x_{n}^{ \pm}\right]$, be $n+1$ Laurent polynomials in n variables with symbolic coefficients $c_{i, j}$.
The toric or sparse resultant \mathcal{R} of the f_{i} is the unique (up to sign) irreducible polynomial in $\mathbb{Z}\left[c_{i, j}\right]$ which vanishes iff the f_{i} have a common root in $\left(\mathbb{C}^{*}\right)^{n}$.

Properties of the Toric Resultant

- Suppose that the supports A_{0}, \ldots, A_{n} of the Laurent polynomials f_{i} generate \mathbb{Z}^{n}.
- The toric resultant \mathcal{R} is a homogenous polynomial in the symbolic coefficients of each f_{i}, of degree equal to the partial mixed volume

$$
M V_{-i}:=M V\left(P_{0}, \ldots, P_{i-1}, P_{i+1}, \ldots, P_{n}\right)
$$

- Reduces to: the projective resultant for dense polynomials, the Sylvester resultant for two univariate polynomials and to the determinant of a system of linear equations.
- Construction of the resultant matrix uses mixed subdivisions. Generalization of Macauley's construction [D' Andrea '01]: There exists a matrix M st. $\mathcal{R}=\operatorname{det}(M) / \operatorname{det}\left(M^{\prime}\right), \quad M^{\prime}$: submatrix of M.

The Extreme Monomials of the Toric Resultant

Definition

Let ω be a generic lifting function. A monomial init $_{\omega}(\mathcal{R})$ of the toric resultant \mathcal{R} is an extreme monomial corresponding to ω iff its exponent vector is a vertex of the Newton polytope $N(\mathcal{R})$ with normal vector ω.

Computation of the Extreme Monomials

Let $P_{i}=N\left(f_{i}\right), i=0, \ldots, n, \quad$ be n-dimensional Newton polytopes.

Theorem (Sturmfels)

For every generic lifting function ω, we obtain an extreme monomial of \mathcal{R}, of the form

$$
\operatorname{init}_{\omega}(\mathcal{R})=c \cdot \prod_{i=0}^{n} \prod_{R} c_{i, v_{i}}^{\operatorname{Vol}(R)}
$$

where the second product is over all i-mixed cells of the regular tight mixed subdivision of $P=\sum_{i=0}^{n} P_{i}$, induced by ω and $c_{i, v_{i}}$ is the coefficient of the monomial of f_{i} corresponding to the vertex v_{i}. The constant c is +1 or -1 .

Mixed Cell Configurations

- Two regular tight mixed subdivisions of P are equivalent if the have the same mixed cells. We will call the equivalence classes mixed cell configurations.
- Sturmfels theorem establishes an one to one and onto correspondence between the mixed cell configurations of the Minkowski sum P and the extreme monomials of \mathcal{R}.
- To compute the Newton polytope of the toric resultant, we have to compute all mixed cell configurations of P.

Outline

(1) Toric Elimination Theory

- Geometry
- Toric resultants

2) Triangulations

- Definitions
- Computing Triangulations
- Secondary Polytopes
(3) Enumeration Algorithms
- The Cayley trick
- The Reverse Search Algorithm
- Enumeration of Regular Triangulations

4. Enumeration of Mixed Cell Configurations

- Points in General position
- Points Not in General Position

Triangulations of Point Sets

Definition

A triangulation \mathcal{T} of a (finite) point set $A \subset \mathbb{R}^{n}$ is a collection of n-dimensional simplices $T_{i} \subset P=\operatorname{conv}(A)$, called the cells of \mathcal{T}, st.:

- The cells partition P.
- Every pair of cells intersect at a common facet (possibly empty).

A point set A, a triangulation of P and a partition that is not a triangulation.

Regular Triangulations of Point Sets

Definition

A triangulation \mathcal{T} is called regular if there exists a generic lifting function ω such that \mathcal{T} is obtained by the projection onto P of the lower facets of the set $\hat{A}:=\{(a, \omega(a)) \mid a \in A\}$.
The vector w with coordinates the values $\omega(a)$, is called the weight vector of the triangulation.

Circuits of a Triangulation

- To compute all regular triangulations of a point set A, we start with one and we transform it locally.
- For the local transformations we use circuits.
- A circuit Z is a minimal affinely dependent subset of A.
- Every subset of a circuit Z is a simplex of some dimension.
- Every circuit has exactly two triangulations $\mathcal{T}_{+}, \mathcal{T}_{-}$.

Examples of Circuits

Circuits of small dimension and the corresponding triangulations.

Computing Triangulations Using Circuits

- Not all circuits are suitable for transformation of a triangulation \mathcal{T}. For a suitable circuit Z, we say that \mathcal{T} is supported on Z.
- If \mathcal{T} is supported on Z, the transformation consists of changing the current triangulation of Z (say \mathcal{T}_{+}), to the other $\left(\mathcal{T}_{-}\right)$.
- This operation is called a (bistellar) flip over Z.
- The new triangulation \mathcal{T}^{\prime} may not be regular. A flip is followed by a regularity check.

Examples of Bistellar Flips

Examples of Bistellar Flips

The Secondary Polytope of a Point Set

- For a triangulation \mathcal{T} of a point set A we define the volume vector:

$$
\phi_{\mathcal{T}}=\left(\varphi_{1}, \ldots, \varphi_{|A|}\right), \quad \varphi_{i}=\sum_{\sigma \in \mathcal{T}, a_{i} \in \sigma} \operatorname{Vol}(\sigma)
$$

where φ_{i} is the sum of the volumes of all cells σ having point a_{i} as its vertex.

- The secondary polytope $\Sigma(A)$ is the convex hull of the volume vectors of all triangulations of A.
- The dimension of the secondary polytope is $|A|-n-1$.
- The vertices of the secondary polytope are in bijection with the regular triangulations of A. Edges correspond to bistellar flips.

Examples of Secondary Polytopes

Secondary polytopes of a pentagon and a quadrilateral.

Outline

(1) Toric Elimination Theory

- Geometry
- Toric resultants
(2) Triangulations
- Definitions
- Computing Triangulations
- Secondary Polytopes
(3) Enumeration Algorithms
- The Cayley trick
- The Reverse Search Algorithm
- Enumeration of Regular Triangulations
(4) Enumeration of Mixed Cell Configurations
- Points in General position
- Points Not in General Position

The Cayley Embedding

Definition

Given polytopes P_{0}, \ldots, P_{n}, the Cayley embedding κ introduces a new polytope

$$
C:=\kappa\left(P_{0}, P_{1}, \ldots, P_{n}\right)=\operatorname{conv}\left(\bigcup_{i=0}^{n}\left(P_{i} \times\left\{e_{i}\right\}\right)\right) \subset \mathbb{R}^{2 n+1}
$$

where e_{i} are an affine basis of \mathbb{R}^{n}.
The dimension of the polytope C is $d:=2 n$.

Intuition

The Cayley Trick

Theorem (The Cayley Trick)

There is a bijection between the tight regular mixed subdivisions of the Minkowski sum $P=P_{0}+\cdots+P_{n}$ and the regular triangulations of the polytope $C=\kappa\left(P_{0}, P_{1}, \ldots, P_{n}\right)$.

An Example of the Cayley Trick

Enumeration Using Reverse Search

- Reverse search is a technique introduced by Avis and Fukuda which allows the enumeration of large discrete objects with low memory usage.
- Runs in time proportional to the size of the objects to be enumerated.
- In addition to the usual adjacency relation between the objects, parent - children relation is required to save memory.
- Defines a tree structure underlying the graph of adjacency relation.

An Example of Enumeration Using Reverse Search

(i)

(ii)

(iii)

The adjacency relation (i), parent-children relation (ii) and the reverse search tree (iii).

The Algorithm [Imai, Masada, Takeuchi, Imai]

- Enumerates all regular triangulations of a point set.
- Variation of reverse search: parent-children relation defined by a total order.
- Total order by lexicographic ordering of volume vectors.
- Two triangulations are adjacent iff one can be transformed from the other via a bistellar flip.

The Algorithm (cont'd)

- Time complexity: $O\left(d^{2} s^{2} L P(n-d-1, s)|R|\right)$, $d=$ dimension, $s=O\left(m^{\left\lfloor\frac{d+1}{2}\right\rfloor}\right)=$ \#of any dimensional simplices in a triangulation, $|R|=\#$ of regular triangulations, $m=|A|$.
- Time complexity dominated by $L P(n-d-1, s)$.
- Space complexity: $O(d s)$.
- If the points are in general position both space and time complexities can be improved.

Outline

(1) Toric Elimination Theory

- Geometry
- Toric resultants
(2)

Triangulations

- Definitions
- Computing Triangulations
- Secondary Polytopes
(3) Enumeration Algorithms
- The Cayley trick
- The Reverse Search Algorithm
- Enumeration of Regular Triangulations

4. Enumeration of Mixed Cell Configurations

- Points in General position
- Points Not in General Position

Modification of the Algorithm

- Enumerate only the mixed cell configurations.
- Equivalently: enumerate only some of the vertices of the secondary polytope.
- Let $M_{1} \neq M_{2}$, mixed cell configurations.

$$
M_{1} \ni \mathcal{T}_{1} \xrightarrow{\text { flip }} \mathcal{T}_{2} \in M_{2}
$$

Which are the circuits Z that make the above scheme work?

The Points are in General Position

- General position assumption: every $d+1$ points have a convex hull of dimension d. Not three points collinear, four points coplanar etc.
- Every circuit is d-dimensional.

Consists of $d+2$ points forming at most d simplices.

- Lemma: Every cell of \mathcal{T} is the image (via κ) of a cell of S.
- Corollary: A cell $T=\left(T_{0}, \ldots, T_{n}\right)$ is full dimensional iff $\forall i T_{i} \neq \emptyset$.

Characterization of Circuits

- A circuit $Z \subset \mathcal{T}$ involves a mixed cell $R \equiv \kappa(R)$ if

$$
R \notin \operatorname{flip}_{Z}(\mathcal{T})
$$

- A flip on a circuit Z involving a mixed cell leads to a new mixed cell configuration. (Provided that \mathcal{T} is supported on Z).
- Which circuits involve mixed cells?

Those that have at least one simplex of the form $\kappa(R)$
R a mixed cell of S.

- A suitable circuit contains a simplex of the form

Characterization of Circuits

- A circuit $Z \subset \mathcal{T}$ involves a mixed cell $R \equiv \kappa(R)$ if

$$
R \notin \operatorname{flip}_{Z}(\mathcal{T})
$$

- A flip on a circuit Z involving a mixed cell leads to a new mixed cell configuration. (Provided that \mathcal{T} is supported on Z).
- Which circuits involve mixed cells?
- Those that have at least one simplex of the form $\kappa(R)$, R a mixed cell of S.
- A suitable circuit contains a simplex of the form

Characterization of Circuits

- A circuit $Z \subset \mathcal{T}$ involves a mixed cell $R \equiv \kappa(R)$ if

$$
R \notin \operatorname{flip}_{Z}(\mathcal{T})
$$

- A flip on a circuit Z involving a mixed cell leads to a new mixed cell configuration. (Provided that \mathcal{T} is supported on Z).
- Which circuits involve mixed cells?
- Those that have at least one simplex of the form $\kappa(R)$, R a mixed cell of S.
- A suitable circuit contains a simplex of the form

$$
I=\kappa\left(E_{0}, \ldots, v_{i}, \ldots, E_{n}\right)
$$

What if Points are Not in General Position?

We have circuits of arbitrary dimension.

$\operatorname{dim}(Z)=1$

$\operatorname{dim}(Z)=2$

$\operatorname{dim}(Z)=1$

The Form of a k-dimensional Circuit

Every cell X of a triangulation $\mathcal{T}_{ \pm}$of a k-dimensional circuit Z is a k-face of a cell $U \subset \mathcal{T}$.

Z can be written as: $Z=(\emptyset,\{p, q\} \cup\{r\})$ or $Z=(\emptyset,\{q, r\} \cup\{p\})$.

The Form of a k-dimensional Circuit (cont'd)

Lemma

If \mathcal{T} is supported on Z and X is a cell of the triangulation of Z induced by \mathcal{T}, then there exists a cell $U=\left(U_{0}, \ldots, U_{n}\right) \subset \mathcal{T}$, such that X is a k-face of U and

$$
Z=\left(Z_{0}, \ldots, Z_{r} \cup\{c\}, \ldots, Z_{n}\right), \quad Z_{i} \subseteq U_{i}, c \in P_{r} \backslash \operatorname{vert}\left(U_{r}\right)
$$

Characterization of Circuits

Theorem

Let $Z=\left(Z_{0}, \ldots, Z_{n}\right)$ a circuit of \mathcal{T} involving a mixed cell $R=\left(E_{0}, \ldots, v_{s}, \ldots, E_{n}\right)$. Then there exist $0 \leq r \leq n$ and $c \in P_{r}$ st.:

$$
\begin{aligned}
Z_{i}=E_{i} & \text { or } \quad Z_{i}=\emptyset, \quad \text { if } i \neq r \\
& \text { and } \\
Z_{r}=E_{r} \cup\{c\} & \text { or } \quad Z_{r}=\left\{v_{r}\right\} \cup\{c\}, v_{r} \in E_{r}, \quad \text { if } i=r .
\end{aligned}
$$

Characterization of Circuits (cont'd)

Suitable circuits are of the form $Z=\left(Z_{0}, \ldots, Z_{n}\right)$, where
$\left|Z_{i}\right| \in\{0,2\} \forall i$ (even circuits), or
$\left|Z_{i}\right| \in\{0,2\} \forall i \neq r$ and $\left|Z_{r}\right|=3$ (odd circuits).

$\operatorname{dim}(Z)=1$

$\operatorname{dim}(Z)=2$

$\operatorname{dim}(Z)=1$

First and third circuits are odd. Second circuit does not involve a mixed cell (a subset Z_{i} of Z has cardinality 4).

An Example

T

S_{1}

T_{2}

$(\{(\mathrm{a}, 0),(\mathrm{b}, 0)\},\{(\mathrm{d}, 1),(\mathrm{e}, 1)\})$

T_{3}

$\mathrm{S}_{3} \quad \underset{a+c}{\mathrm{R}_{1}} \xrightarrow[a+d]{\mathrm{R}_{2}} \xrightarrow[b+d]{b+c}$

$(\{(\mathrm{a}, 0),(\mathrm{b}, 0)\},\{(\mathrm{c}, 1),(\mathrm{d}, 1)\})$ $\xrightarrow{\longrightarrow}$

$(\{\{\emptyset\},\{(\mathrm{c}, 1),(\mathrm{d}, 1),(\mathrm{e}, 1)\})$
\qquad
S_{4}

S,

An Application to Implicitization [IPSOS]

Input: $x_{i}=\frac{P_{i}(t)}{Q(t)}, i=0, \ldots, n, \quad \operatorname{gcd}\left(P_{i}(t), Q(t)\right)=1$.
Output: A superset of support of the implicit equation.
(1) Define the polynomials $f_{i}=x_{i} Q(t)-P_{i}(t)$ and look at them as polynomials in $t: f_{i}=\sum c_{i j} t^{a_{i j}} \in \mathbb{C}[t], \quad c_{i, j}$ generic coefficients.
(2) Compute the extreme monomials of the resultant of f_{i} using modified algorithm of Imai et. al. Then compute a superset of the support of the resultant.
(3) Transform the support from a set of monomials of the form $\prod c_{i j}^{e_{i j}}$, to a set of monomials in the variables x_{i}.

Future work

Let $M_{1} \neq M_{2}$, mixed cell configurations corresponding to vertices on the silhouette of $N(\mathcal{R})$.

$$
M_{1} \ni \mathcal{T}_{1} \xrightarrow{\text { flip }} \mathcal{T}_{2} \in M_{2}
$$

Summary

- Computing $N(\mathcal{R})$ of polynomials f_{i} with Newton polytopes P_{i} \Leftrightarrow Computing all mixed cell configurations of $P=P_{0}+\cdots+P_{n}$.
- For every family of polytopes P_{0}, \ldots, P_{n} there is polytope C st.: computing all tight regular mixed subdivisions of $P=\sum P_{i}$ \Leftrightarrow computing all regular triangulations of C.
- We can enumerate all mixed cell configurations efficiently using reverse search and flips over suitable circuits.
- Application to implicitization.

THANK YOU!

References

I.M. Gel'fand, M.M. Kapranov, A.V. Zelevinsky

Discriminants, Resultants and Multidimensional Determinants.
Birkhauser, 1994.
R H. Imai, T. Masada, F. Takeuchi, K. Imai.
Enumerating Triangulations in General Dimensions.
IJCGA, 12(6):455-480, 2002.
埥 I.Z. Emiris, I.S. Kotsireas
Implicitization with Polynomial Support Optimized for Sparseness.
Proc. Intern. Conf. Comput. Science \& Appl., LNCS 2669, 397-406, 2003.
嗇 Bernd Sturmfels.
On the Newton Polytope of the Resultant.
J. Algebraic Comb., 3 (2): 207-236, 1994.
T. Michiels, J. Verschelde.

Enumerating Regular Mixed-Cell Configurations.
Discrete Comput. Geom., 21 (4): 569-579, 1999.

