Triangulations and Resultants

Christos Konaxis Supervisor: Ioannis Z. Emiris

 $\mu \prod \lambda \forall$

July 2006

Christos Konaxis ($\mu \prod \lambda \forall$)

Triangulations and Resultants

July 2006 1 / 51

< D > < P > < P >

- Toric Elimination Theory
 - Geometry
 - Toric resultants
- Triangulations
 - Definitions
 - Computing Triangulations
 - Secondary Polytopes
 - Enumeration Algorithms
 - The Cayley trick
 - The Reverse Search Algorithm
 - Enumeration of Regular Triangulations
- Enumeration of Mixed Cell Configurations
 - Points in General position
 - Points Not in General Position

< 同 > < 三 >

Outline

- Toric Elimination Theory
 - Geometry
 - Toric resultants

Triangulations

- Definitions
- Computing Triangulations
- Secondary Polytopes

Enumeration Algorithms

- The Cayley trick
- The Reverse Search Algorithm
- Enumeration of Regular Triangulations
- 4 Enumeration of Mixed Cell Configurations
 - Points in General position
 - Points Not in General Position

A (1) < (1) < (1) </p>

Outline

- Toric Elimination Theory
 - Geometry
 - Toric resultants
- Triangulations
 - Definitions
 - Computing Triangulations
 - Secondary Polytopes
- Enumeration Algorithms
 - The Cayley trick
 - The Reverse Search Algorithm
 - Enumeration of Regular Triangulations
- Enumeration of Mixed Cell Configurations
 - Points in General position
 - Points Not in General Position

4 - 10 - 10

Outline

- Toric Elimination Theory
 - Geometry
 - Toric resultants
- Triangulations
 - Definitions
 - Computing Triangulations
 - Secondary Polytopes
- Enumeration Algorithms
 - The Cayley trick
 - The Reverse Search Algorithm
 - Enumeration of Regular Triangulations
- Enumeration of Mixed Cell Configurations
 - Points in General position
 - Points Not in General Position

Compute the Newton Polytope of the Resultant Without Computing the Resultant!

• A system of equations, $f_1, f_2 \in \mathbb{C}[x]$

$$f_1 = a + bx^3 = 0$$

 $f_2 = cx^5 + d = 0$

- The Newton polytope $N(\mathcal{R})$ is the segment defined by the points: $v_1 = (5, 0, 3, 0), v_2 = (0, 5, 0, 3).$
- The (Sylvester) resultant of f_1, f_2 is the polynomial

$$\mathcal{R} = b^5 d^3 - a^5 c^3 \in \mathbb{Z}[a, b, c, d]$$

< ロ > < 同 > < 回 > < 回 >

Compute the Newton Polytope of the Resultant Without Computing the Resultant!

• A system of equations, $f_1, f_2 \in \mathbb{C}[x]$

$$f_1 = a + bx^3 = 0$$

 $f_2 = cx^5 + d = 0$

- The Newton polytope $N(\mathcal{R})$ is the segment defined by the points: $v_1 = (5, 0, 3, 0), v_2 = (0, 5, 0, 3).$
- The (Sylvester) resultant of f_1, f_2 is the polynomial

$$\mathcal{R} = b^5 d^3 - a^5 c^3 \in \mathbb{Z}[a, b, c, d]$$

Compute the Newton Polytope of the Resultant Without Computing the Resultant!

• A system of equations, $f_1, f_2 \in \mathbb{C}[x]$

$$f_1 = a + bx^3 = 0$$

 $f_2 = cx^5 + d = 0$

- The Newton polytope $N(\mathcal{R})$ is the segment defined by the points: $v_1 = (5, 0, 3, 0), v_2 = (0, 5, 0, 3).$
- The (Sylvester) resultant of f_1 , f_2 is the polynomial

$$\mathcal{R} = b^5 d^3 - a^5 c^3 \in \mathbb{Z}[a, b, c, d]$$

(D) (A) (A) (A)

- Toric Elimination Theory
 - Geometry
 - Toric resultants
- Triangulations
 - Definitions
 - Computing Triangulations
 - Secondary Polytopes
 - Enumeration Algorithms
 - The Cayley trick
 - The Reverse Search Algorithm
 - Enumeration of Regular Triangulations
- 4 Enumeration of Mixed Cell Configurations
 - Points in General position
 - Points Not in General Position

< 同 > < 三 >

Why Toric (Sparse) Elimination Theory?

- Real life examples: equations are often sparse.
- Exploits the structure of polynomials.
- Considers only affine roots.
- Toric resultant matrices are (usually) smaller than projective resultant matrices.
 They can be defined even if the projective resultant matrix vanishes identically.
- Toric resultants eliminate all variables at once.
- Applications: polynomial system solving, variable elimination, implicitization etc.

イロト イポト イヨト イヨト

Newton Polytopes

Definition

- The support A of a (Laurent) polynomial f = ∑ c_αx^α ∈ C[x^{±1}] is the set of the exponents α, of its monomials with nonzero coefficient.
- The Newton polytope N(f) of a polynomial f is the convex hull of its support A.

Newton polytopes model the sparseness of a polynomial.

$$f(x, y) = a_1 x + a_2 y + a_3 xy,$$

$$g(x, y) = b_0 + b_1 x + b_2 y + b_3 x^2 + b_4 xy + b_5 y^2$$

Minkowski Sum

Definition

The Minkowski sum of two convex polytopes P_1 and P_2 is the convex polytope

$$P = P_1 + P_2 := \{p_1 + p_2 \mid p_1 \in P_1, p_2 \in P_2\}$$

Minkowski addition of polytopes N(f) + N(g) corresponds to polynomial multiplication $f \cdot g$.

< 同 > < 三 >

Mixed Volume

Definition

The mixed volume $MV(P_1, \ldots, P_n)$, $P_i \subset \mathbb{R}^n$ is the unique real function st.:

It is multilinear wrt Minkowski addition and scalar multiplication: $MV(P_1,\ldots,\lambda P_k+\mu P'_k,\ldots,P_n)=$ $\lambda MV(P_1,\ldots,P_k,\ldots,P_n) + \mu MV(P_1,\ldots,P_k,\ldots,P_n)$

2
$$MV(P_1,...,P_n) = n! \cdot Vol(P)$$
, if $P_1 = ... = P_n = P$.

Computation of Mixed Volume is done using mixed subdivisions.

<u>Christos Konaxis</u> ($\mu \prod \lambda \forall$)

Triangulations and Resultants

< ロ > < 同 > < 回 > < 回 >

Mixed Subdivisions

Definition

Let $P = P_0 + \ldots + P_n \subset \mathbb{R}^n$, be a *n*-dimensional convex polytope. A tight mixed subdivision of P, is a collection of n-dimensional convex polytopes R, called cells, st.:

- they form a polyhedral complex that partitions P and
- every cell R is a Minkowski sum of faces of the polytopes P_i:

$$R = F_0 + \cdots + F_n$$
, $dim(R) = dim(F_0) + \cdots + dim(F_n) = n$,

Definition

A cell R is called *i* – *mixed* if it is a Minkowski sum of *n* edges $E_i \subset P_i$ and one vertex $v_i \in P_i$,

$$R=E_0+\cdots+v_i+\cdots+E_n.$$

-< ∃ →

• □ > • □ > • □ > ·

Construction of a Regular Tight Mixed Subdivision

For the convex polytopes $P_0, \ldots, P_n \subset \mathbb{R}^n$, we construct a regular tight mixed subdivision of $P = P_0 + \ldots + P_n$:

• We choose affine liftings $\omega_i : P_i \to \mathbb{R}$ and define the lifted polytopes

 $\hat{P}_i := \{ (p_i, \omega_i(p_i)) \mid p_i \in P_i \}.$

- **2** We form the Minkowski sum $\hat{P} = \sum_{i=0}^{n} \hat{P}_{i}$.
- We project the lower-hull of \hat{P} onto P. The lower-hull facets induce a regular mixed subdivision of P. If ω_i are generic, the induced regular mixed subdivision is tight.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Examples of Mixed (and not mixed) Subdivisions

July 2006 11 / 51

Computation of (Partial) Mixed Volumes

Theorem

If $P_0, \ldots, P_n \subset \mathbb{R}^n$, are convex polytopes and S is a mixed subdivision of the Minkowski sum $P = \sum_{i=0}^n P_i$, then

$$MV_{-i}(P_0,\ldots,P_{i-1},P_{i+1},\ldots,P_n)=\sum_R Vol(R),$$

where the sum is over all *i*-mixed cells R of S.

Christos Konaxis ($\mu \prod \lambda \forall$)

Triangulations and Resultants

July 2006 12 / 51

An Application of Mixed Volumes: Bernstein Bound

Theorem (Bézout)

The number of isolated roots in \mathbb{C}^n of the polynomial system $f_1 = \ldots = f_n = 0$, $f_i \in \mathbb{C}[x_1, \ldots, x_n]$, is at most $d_1 \ldots d_n$, where $d_i = \text{degree}(f_i)$. Moreover, if we count roots at infinity with multiplicities, or the f_i are generic, then the bound is exact (in \mathbb{P}^n).

Theorem (Bernstein, Kushnirenko, Khovanskii)

The number of roots in $(\mathbb{C}^*)^n$ of the polynomial system $f_1 = \ldots = f_n = 0$, $f_i \in \mathbb{C}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$, is at most $MV(P_1, \ldots, P_n)$. If the f_i are generic then the bound is exact.

Christos Konaxis ($\mu \prod \lambda \forall$)

ヘロト ヘ回ト ヘヨト ヘヨト

Definition of the Toric Resultant

Definition

Let $f_0, \ldots, f_n \in \mathbb{C}[x_1^{\pm}, \ldots, x_n^{\pm}]$, be n + 1 Laurent polynomials in n variables with symbolic coefficients $c_{i,j}$. The toric or sparse resultant \mathcal{R} of the f_i is the unique (up to sign) irreducible polynomial in $\mathbb{Z}[c_{i,j}]$ which vanishes iff the f_i have a common root in $(\mathbb{C}^*)^n$.

Christos Konaxis ($\mu \prod \lambda \forall$)

Properties of the Toric Resultant

- Suppose that the supports A_0, \ldots, A_n of the Laurent polynomials f_i generate \mathbb{Z}^n .
- The toric resultant \mathcal{R} is a homogenous polynomial in the symbolic coefficients of each f_i , of degree equal to the partial mixed volume

$$MV_{-i} := MV(P_0,\ldots,P_{i-1},P_{i+1},\ldots,P_n).$$

- Reduces to: the projective resultant for dense polynomials, the Sylvester resultant for two univariate polynomials and to the determinant of a system of linear equations.
- Construction of the resultant matrix uses mixed subdivisions. Generalization of Macauley's construction [D' Andrea '01]: There exists a matrix M st. $\mathcal{R} = det(M)/det(M')$, M': submatrix of M.

イロト イポト イヨト イヨト

The Extreme Monomials of the Toric Resultant

Definition

Let ω be a generic lifting function. A monomial $init_{\omega}(\mathcal{R})$ of the toric resultant \mathcal{R} is an extreme monomial corresponding to ω iff its exponent vector is a vertex of the Newton polytope $N(\mathcal{R})$ with normal vector ω .

Christos Konaxis ($\mu \prod \lambda \forall$)

Triangulations and Resultants

July 2006 16 / 51

Computation of the Extreme Monomials

Let $P_i = N(f_i)$, i = 0, ..., n, be *n*-dimensional Newton polytopes.

Theorem (Sturmfels)

For every generic lifting function ω , we obtain an extreme monomial of \mathcal{R} , of the form

$$\mathit{init}_{\omega}(\mathcal{R}) = c \cdot \prod_{i=0}^{n} \prod_{R} c_{i,v_i}^{\operatorname{Vol}(R)},$$

where the second product is over all *i*-mixed cells of the regular tight mixed subdivision of $P = \sum_{i=0}^{n} P_i$, induced by ω and c_{i,v_i} is the coefficient of the monomial of f_i corresponding to the vertex v_i . The constant c is +1 or -1.

<u>Christos Konaxis</u> ($\mu \prod \lambda \forall$)

イロト イポト イヨト イヨト

Mixed Cell Configurations

- Two regular tight mixed subdivisions of *P* are equivalent if the have the same mixed cells. We will call the equivalence classes mixed cell configurations.
- Sturmfels theorem establishes an one to one and onto correspondence between the mixed cell configurations of the Minkowski sum *P* and the extreme monomials of *R*.
- To compute the Newton polytope of the toric resultant, we have to compute all mixed cell configurations of *P*.

< 同 > < 三 >

- Toric Elimination Theory
 Geometry
 - Toric resultants

Triangulations

- Definitions
- Computing Triangulations
- Secondary Polytopes

Enumeration Algorithms

- The Cayley trick
- The Reverse Search Algorithm
- Enumeration of Regular Triangulations
- 4 Enumeration of Mixed Cell Configurations
 - Points in General position
 - Points Not in General Position

A 1

Triangulations of Point Sets

Definition

A triangulation \mathcal{T} of a (finite) point set $A \subset \mathbb{R}^n$ is a collection of *n*-dimensional simplices $T_i \subset P = conv(A)$, called the cells of \mathcal{T} , st.:

- The cells partition *P*.
- Every pair of cells intersect at a common facet (possibly empty).

A point set A, a triangulation of P and a partition that is not a triangulation.

(4) (E.).

• □ > • □ > • □ > ·

Regular Triangulations of Point Sets

Definition

A triangulation \mathcal{T} is called regular if there exists a generic lifting function ω such that \mathcal{T} is obtained by the projection onto P of the lower facets of the set $\hat{A} := \{(a, \omega(a)) \mid a \in A\}$.

The vector *w* with coordinates the values $\omega(a)$, is called the weight vector of the triangulation.

< 🗇 🕨 < 🚍 🕨

Circuits of a Triangulation

- To compute all regular triangulations of a point set *A*, we start with one and we transform it locally.
- For the local transformations we use circuits.
- A circuit *Z* is a minimal affinely dependent subset of *A*.
- Every subset of a circuit Z is a simplex of some dimension.
- Every circuit has exactly two triangulations T_+, T_- .

Examples of Circuits

Circuits of small dimension and the corresponding triangulations.

Christos Konaxis ($\mu \prod \lambda \forall$)

Triangulations and Resultants

৸ ৰ≣ ▶ ≣ •୨৭৫ July 2006 23 / 51

Computing Triangulations Using Circuits

- Not all circuits are suitable for transformation of a triangulation T.
 For a suitable circuit Z, we say that T is supported on Z.
- If T is supported on Z, the transformation consists of changing the current triangulation of Z (say T₊), to the other (T₋).
- This operation is called a (bistellar) flip over Z.
- The new triangulation \mathcal{T}' may not be regular. A flip is followed by a regularity check.

Examples of Bistellar Flips

Christos Konaxis ($\mu \prod \lambda \forall$)

July 2006 25 / 51

< ≣⇒

Examples of Bistellar Flips

Triangulations and Resultants

July 2006 25 / 51

э

< ∃⇒

The Secondary Polytope of a Point Set

• For a triangulation T of a point set A we define the volume vector:

$$\phi_{\mathcal{T}} = (\varphi_1, \dots, \varphi_{|\mathcal{A}|}), \quad \varphi_i = \sum_{\sigma \in \mathcal{T}, \ \mathbf{a}_i \in \sigma} \operatorname{Vol}(\sigma),$$

where φ_i is the sum of the volumes of all cells σ having point a_i as its vertex.

- The secondary polytope $\Sigma(A)$ is the convex hull of the volume vectors of all triangulations of *A*.
- The dimension of the secondary polytope is |A| n 1.
- The vertices of the secondary polytope are in bijection with the regular triangulations of *A*. Edges correspond to bistellar flips.

Examples of Secondary Polytopes

Secondary polytopes of a pentagon and a quadrilateral.

Christos Konaxis ($\mu \prod \lambda \forall$)

Triangulations and Resultants

July 2006 27 / 51

- Toric Elimination Theory
 - Geometry
 - Toric resultants
- Triangulations
 - Definitions
 - Computing Triangulations
 - Secondary Polytopes
 - Enumeration Algorithms
 - The Cayley trick
 - The Reverse Search Algorithm
 - Enumeration of Regular Triangulations
- Enumeration of Mixed Cell Configurations
 - Points in General position
 - Points Not in General Position

< 同 > < 三 >

The Cayley Embedding

Definition

Given polytopes P_0, \ldots, P_n , the Cayley embedding κ introduces a new polytope

$$C := \kappa (P_0, P_1, \dots, P_n) = conv \left(\bigcup_{i=0}^n (P_i \times \{e_i\}) \right) \subset \mathbb{R}^{2n+1},$$

where e_i are an affine basis of \mathbb{R}^n . The dimension of the polytope *C* is d := 2n.

Christos Konaxis ($\mu \prod \lambda \forall$)

Intuition

Christos Konaxis ($\mu \prod \lambda \forall$)

Triangulations and Resultants

▶ ৰ ≣ ► ≣ ৩৭০ July 2006 30 / 51

<ロ> <同> <同> <目> <目>

The Cayley Trick

Theorem (The Cayley Trick)

There is a bijection between the tight regular mixed subdivisions of the Minkowski sum $P = P_0 + \cdots + P_n$ and the regular triangulations of the polytope $C = \kappa(P_0, P_1, \dots, P_n)$.

Christos Konaxis ($\mu \prod \lambda \forall$)

< D > < P > < P >

An Example of the Cayley Trick

July 2006 32 / 51

<ロ> < 回 > < 回 > < 回 >

Enumeration Using Reverse Search

- Reverse search is a technique introduced by Avis and Fukuda which allows the enumeration of large discrete objects with low memory usage.
- Runs in time proportional to the size of the objects to be enumerated.
- In addition to the usual adjacency relation between the objects, parent - children relation is required to save memory.
- Defines a tree structure underlying the graph of adjacency relation.

< ロ > < 同 > < 回 > < 回 >

Reverse search

An Example of Enumeration Using Reverse Search

The adjacency relation (i), parent-children relation (ii) and the reverse search tree (iii).

Christos Konaxis ($\mu \prod \lambda \forall$)

Triangulations and Resultants

July 2006 34 / 51

The Algorithm [Imai, Masada, Takeuchi, Imai]

- Enumerates all regular triangulations of a point set.
- Variation of reverse search: parent-children relation defined by a total order.
- Total order by lexicographic ordering of volume vectors.
- Two triangulations are adjacent iff one can be transformed from the other via a bistellar flip.

The Algorithm (cont'd)

- Time complexity: O(d²s²LP(n − d − 1, s)|R|), d = dimension, s = O(m^{⌊d+1}₂) = #of any dimensional simplices in a triangulation, |R| = #of regular triangulations, m = |A|.
- Time complexity dominated by LP(n d 1, s).
- Space complexity: O(ds).
- If the points are in general position both space and time complexities can be improved.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Toric Elimination Theory
 - Geometry
 - Toric resultants
- Triangulations
 - Definitions
 - Computing Triangulations
 - Secondary Polytopes
 - Enumeration Algorithms
 - The Cayley trick
 - The Reverse Search Algorithm
 - Enumeration of Regular Triangulations
 - Enumeration of Mixed Cell Configurations
 - Points in General position
 - Points Not in General Position

< 67 >

Modification of the Algorithm

- Enumerate only the mixed cell configurations.
- Equivalently: enumerate only some of the vertices of the secondary polytope.
- Let $M_1 \neq M_2$, mixed cell configurations.

$$M_1 \ni \mathcal{T}_1 \xrightarrow{flip_Z} \mathcal{T}_2 \in M_2.$$

Which are the circuits Z that make the above scheme work?

Christos Konaxis ($\mu \prod \lambda \forall$)

The Points are in General Position

- General position assumption: every d + 1 points have a convex hull of dimension d. Not three points collinear, four points coplanar etc.
- Every circuit is *d*-dimensional.
 Consists of *d* + 2 points forming at most *d* simplices.
- Lemma: Every cell of T is the image (via κ) of a cell of S.

• Corollary: A cell $T = (T_0, ..., T_n)$ is full dimensional iff $\forall i \ T_i \neq \emptyset$.

イロト イポト イヨト イヨト

• A circuit $Z \subset T$ involves a mixed cell $R \equiv \kappa(R)$ if

 $R \not\in flip_Z(\mathcal{T})$

- A flip on a circuit Z involving a mixed cell leads to a new mixed cell configuration. (Provided that T is supported on Z).
- Which circuits involve mixed cells?
- Those that have at least one simplex of the form κ(R), R a mixed cell of S.
- A suitable circuit contains a simplex of the form

イロト イポト イヨト イヨト

• A circuit $Z \subset T$ involves a mixed cell $R \equiv \kappa(R)$ if

 $R \not\in \mathit{flip}_Z(\mathcal{T})$

- A flip on a circuit Z involving a mixed cell leads to a new mixed cell configuration. (Provided that T is supported on Z).
- Which circuits involve mixed cells?
- Those that have at least one simplex of the form κ(R), R a mixed cell of S.
- A suitable circuit contains a simplex of the form

 $I = \kappa(E_0, \ldots, v_i, \ldots, E_n)$

Christos Konaxis ($\mu \prod \lambda \forall$)

Triangulations and Resultants

• A circuit $Z \subset T$ involves a mixed cell $R \equiv \kappa(R)$ if

 $R \not\in \mathit{flip}_Z(\mathcal{T})$

- A flip on a circuit Z involving a mixed cell leads to a new mixed cell configuration. (Provided that T is supported on Z).
- Which circuits involve mixed cells?
- Those that have at least one simplex of the form κ(R), R a mixed cell of S.
- A suitable circuit contains a simplex of the form

 $I = \kappa(E_0, \ldots, v_i, \ldots, E_n)$

Christos Konaxis ($\mu \prod \lambda \forall$)

Triangulations and Resultants

くロ とく得 とくき とくきとう

What if Points are Not in General Position?

We have circuits of arbitrary dimension.

< D > < P > < P >

The Form of a *k*-dimensional Circuit

Every cell X of a triangulation T_{\pm} of a k-dimensional circuit Z is a k-face of a cell $U \subset T$.

Z can be written as: $Z = (\emptyset, \{p, q\} \cup \{r\})$ or $Z = (\emptyset, \{q, r\} \cup \{p\})$.

The Form of a *k*-dimensional Circuit (cont'd)

Lemma

If \mathcal{T} is supported on Z and X is a cell of the triangulation of Z induced by \mathcal{T} , then there exists a cell $U = (U_0, \ldots, U_n) \subset \mathcal{T}$, such that X is a k-face of U and

$$Z = (Z_0, \ldots, Z_r \cup \{c\}, \ldots, Z_n), \qquad Z_i \subseteq U_i, \ c \in P_r \setminus vert(U_r)$$

Christos Konaxis ($\mu \prod \lambda \forall$)

Triangulations and Resultants

July 2006 43 / 51

Theorem

Let $Z = (Z_0, ..., Z_n)$ a circuit of T involving a mixed cell $R = (E_0, ..., v_s, ..., E_n)$. Then there exist $0 \le r \le n$ and $c \in P_r$ st.:

$$Z_i = E_i \quad \text{or} \quad Z_i = \emptyset, \quad \text{if } i \neq r$$

and
$$Z_r = E_r \cup \{c\} \quad \text{or} \quad Z_r = \{v_r\} \cup \{c\}, v_r \in E_r, \quad \text{if } i = r$$

Christos Konaxis ($\mu \prod \lambda \forall$)

Triangulations and Resultants

July 2006 44 / 51

< D > < P > < P >

Characterization of Circuits (cont'd)

Suitable circuits are of the form $Z = (Z_0, ..., Z_n)$, where $|Z_i| \in \{0, 2\} \forall i$ (even circuits), or $|Z_i| \in \{0, 2\} \forall i \neq r$ and $|Z_r| = 3$ (odd circuits).

First and third circuits are odd. Second circuit does not involve a mixed cell (a subset Z_i of Z has cardinality 4).

Christos Konaxis ($\mu \mid \mid \lambda \forall$)	Christos	Konaxis	(μ Π)	∖∀)
--	----------	---------	--------	------------

Points Not in General Position

An Example

An Application to Implicitization [IPSOS]

Input: $x_i = \frac{P_i(t)}{Q(t)}$, i = 0, ..., n, $gcd(P_i(t), Q(t)) = 1$. Output: A superset of support of the implicit equation.

- Define the polynomials $f_i = x_i Q(t) P_i(t)$ and look at them as polynomials in t: $f_i = \sum c_{ij} t^{a_{ij}} \in \mathbb{C}[t]$, $c_{i,j}$ generic coefficients.
- Compute the extreme monomials of the resultant of *f_i* using modified algorithm of Imai et. al. Then compute a superset of the support of the resultant.
- Transform the support from a set of monomials of the form $\prod c_{ij}^{e_{ij}}$, to a set of monomials in the variables x_i .

イロト (局) (日) (日) (日) (日) (の)

Future work

Let $M_1 \neq M_2$, mixed cell configurations corresponding to vertices on the silhouette of $N(\mathcal{R})$.

July 2006 48 / 51

< D > < P > < P >

Summary

- Computing N(R) of polynomials f_i with Newton polytopes P_i
 ⇔ Computing all mixed cell configurations of P = P₀ + · · · + P_n.
- For every family of polytopes P₀,..., P_n there is polytope C st.: computing all tight regular mixed subdivisions of P = ∑ P_i
 ⇔ computing all regular triangulations of C.
- We can enumerate all mixed cell configurations efficiently using reverse search and flips over suitable circuits.
- Application to implicitization.

< ロ > < 同 > < 回 > < 回 >

THANK YOU!

Christos Konaxis ($\mu \prod \lambda \forall$)

Triangulations and Resultants

July 2006 50 / 51

(D) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

References

I.M. Gel'fand, M.M. Kapranov, A.V. Zelevinsky Discriminants, Resultants and Multidimensional Determinants.

Birkhauser, 1994.

H. Imai, T. Masada, F. Takeuchi, K. Imai. Enumerating Triangulations in General Dimensions. *IJCGA*, 12(6):455–480, 2002.

I.Z. Emiris, I.S. Kotsireas

Implicitization with Polynomial Support Optimized for Sparseness. Proc. Intern. Conf. Comput. Science & Appl., LNCS 2669, 397–406, 2003.

Bernd Sturmfels.

On the Newton Polytope of the Resultant.

J. Algebraic Comb., 3 (2): 207-236, 1994.

T. Michiels, J. Verschelde.

Enumerating Regular Mixed-Cell Configurations.

Discrete Comput. Geom., 21 (4): 569–579, 1999.

July 2006 51 / 51

< ロ > < 同 > < 回 > < 回 >