Computing the Newton Polytope of the Resultant

Ioannis Z. Emiris, Christos Konaxis Department of Informatics and Telecommunications, University of Athens

Mixed Subdivisions

The Cayley Trick
An Example
support $A(f)$ of a polynomial f is the set of the exponent vectors of its monomials with nonzero coefficients. The Newton polytope $N(f)$ of f is the convex hull of its support. - Let f_{0}, \ldots, f_{n}, be $n+1$ Laurent polynomials in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ with symbolic coefficients c and Newton polytopes $P_{0} \ldots, P_{n} \subset \mathbb{R}^{n}$. Suppose $P=P_{0}+\ldots+P_{n} \subset \mathbb{R}^{n}$, is a n-dimension convex polytope.
A tight mixed subdivision of P, is a collection of n-dimensional convex polytopes R, called cells, st.:
. They form a polyhedral complex that partitions P and
2. Every cell R is a Minkowski sum of faces of the polytopes P_{i} :

$$
R=F_{0}+\cdots+F_{n}, \quad \operatorname{dim}(R)=\operatorname{dim}\left(F_{0}\right)+\cdots+\operatorname{dim}\left(F_{n}\right)=n
$$

- Definition. A cell R is called i-mixed if it is a Minkowski sum of n edges $E_{j} \subset P_{j}$ and on vertex $v_{i} \in P_{i}$:

$$
R=E_{0}+\cdots+v_{i}+\cdots+E_{n}
$$

A mixed subdivision is called regular if it can be obtained from the projection of the lower hull of the Minkowski sum of lifted polytopes $\hat{P}_{i}:=\left\{\left(p_{i}, \omega_{i}\left(p_{i}\right)\right) \mid p_{i} \in P_{i}\right\}$. If ω_{i} is generic, the nduced mixed subdivision is tigh.
Two mixed subdivisions are equivalent if they have the same mixed cells. We call the equiva lence classes mixed cell configurations.

Mixed and not mixed subdivisions of the Minkowski sum of two triangles.
The Newton Polytope of the Sparse Resultant

- Definition. The toric or sparse resultant \mathcal{R} of polynomials $f_{i}, i=0, \ldots, n$, is the unique (up to sign) irreducible polynomial in $\mathbb{Z}\left[c_{i, j}\right]$ which vanishes iff the f_{i} have a common root in $\left(\mathbb{C}^{*}\right)^{n}$.
- A monomial of the sparse resultant is called extreme if its exponent vector is a vertex of the Newton polytope $N(\mathcal{R})$ of the resultant.
- Theorem. (Sturmfels) For every generic lifting function ω, we obtain an extreme monomia of \mathcal{R}, of the form

$$
\operatorname{init}_{\omega}(\mathcal{R})=c \cdot \prod_{i=0}^{n} \prod_{R} c_{i, v_{i}}^{\mathrm{Vol}(R)}
$$

where the second product is over all i-mixed cells R of the regular tight mixed subdivision of $P=\sum_{i=0}^{n} P_{i}$, induced by ω and $c_{i, v_{i}}$ is the coefficient of the monomial of f_{i} corresponding to the vertex v_{i}. The constant c is +1 or -1 .
Corollary. There exists a $1-1$ and onto correspondence between the extreme monomials and he mixed cell configurations.

- Given supports
A_{n}, the Cayley embedding κ introduces a new point set

$$
C:=\kappa\left(A_{0}, A_{1}, \ldots, A_{n}\right)=\bigcup_{i=0}^{n}\left(A_{i} \times\left\{e_{i}\right\}\right) \subset \mathbb{R}^{2 n+1}
$$

where e_{i} are an affine basis of \mathbb{R}^{n}. The dimension of the convex hull of C is $d:=2 n$.

$k(\{a, b, c\},,\{d, e, f\})$

$$
\text { The image via } \kappa \text { of two triangle }
$$

- Theorem. (The Cayley Trick) There exists a bijection between the tight regular mixed subdi visions of the Minkowski sum P and the regular triangulations of C.

Enumeration of Mixed Cell Configurations

- Regular triangulations of C are in bijection to the vertices of the so called secondary polytop $\Sigma(C)$ of C. Two vertices in $\Sigma(C)$ are connected by an edge if they can be obtained from each other by a local modification called bistellar flip.

One can enumerate all regular triangulations of C by computing a spanning tree of the sec ondary polytope $\Sigma(C)$. The algorithm proposed by Imai et. al.[2003] uses reverse search fo ow memory usage.

- ling to new mixed sponding to a new mixed cell configuration.
-The suitable circuits are characterized by cardinality (odd and even circuits).

Odd circuits (left and right figures) and a non suitable circuit.

- $f_{0}=c_{0,1} x^{a}+c_{0,2} x^{b}, f_{1}=c_{1,1} x^{c}+c_{1,2} x^{d}+c_{1,3} x^{e} \in \mathbb{C}[x]$.
- The supports A_{0}, A_{1}, the point set $C=\kappa\left(A_{0}, A_{1}\right)$ and the enumeration of the regular triangulations of C corresponding to the mixed cell configurations of $P=P_{0}+P_{1}$, are shown below The circuits on which we perform bistellar flips are depicted in red

An Application to Implicitization
hput: Parametric representation of a hypersurface $x_{i}=\frac{P_{i}(t)}{Q(t)}, i=0, \ldots, n, \operatorname{gcd}\left(P_{i}(t), Q(t)\right)=1$ Output: A superset of the support of the implicit equation.

1. Define $f_{i}=x_{i} Q(t)-P_{i}(t)$ as polynomials in $t: f_{i}=\sum c_{i j} t^{a_{i j}} \in \mathbb{C}[t], c_{i, j}$ generic coefficients. 2. Compute the extreme monomials of the resultant of f_{i} using our algorithm. Then compute a superset of the support of the resultant.
2. Transform the set of monomials of the form $\prod c_{i j}^{\epsilon_{i j}}$, to a set of monomials in the x_{i}. This is equivalent to projecting the Newton polytope of the resultant of f_{i} onto a 2 or 3 -dimensional subspace ($n=2$ or 3).

Future Work

Enumerate only the vertices of the secondary polytope $\Sigma(C)$ that correspond to mixed cel configurations lying on the silhouette of $N(\mathcal{R})$ with respect to a canonical projection π
Equivalently: characterize the circuits that lead to a new vertex on the silhouette

