Computing the Newton Polytope of the Resultant

Ioannis Z. Emiris, Christos Konaxis Department of Informatics and Telecommunications, University of Athens

Mixed Subdivisions

- The support A(f) of a polynomial f is the set of the exponent vectors of its monomials with nonzero coefficients. The *Newton polytope* N(f) of f is the convex hull of its support.
- Let f_0, \ldots, f_n , be n + 1 Laurent polynomials in $\mathbb{C}[x_1, \ldots, x_n]$ with symbolic coefficients $c_{i,j}$ and Newton polytopes $P_0, \ldots, P_n \subset \mathbb{R}^n$. Suppose $P = P_0 + \ldots + P_n \subset \mathbb{R}^n$, is a *n*-dimensional convex polytope.
- A *tight mixed subdivision* of *P*, is a collection of *n*-dimensional convex polytopes *R*, called *cells*, st.:
- 1. They form a polyhedral complex that partitions P and
- 2. Every cell R is a Minkowski sum of faces of the polytopes P_i :

$$R = F_0 + \dots + F_n, \quad \dim(R) = \dim(F_0) + \dots + \dim(F_n) =$$

• Definition. A cell R is called *i-mixed* if it is a Minkowski sum of n edges $E_j \subset P_j$ and one vertex $v_i \in P_i$:

$$R = E_0 + \dots + v_i + \dots + E_n.$$

- A mixed subdivision is called regular if it can be obtained from the projection of the lower hull of the Minkowski sum of lifted polytopes $P_i := \{(p_i, \omega_i(p_i)) \mid p_i \in P_i\}$. If ω_i is generic, the induced mixed subdivision is tight.
- Two mixed subdivisions are equivalent if they have the same mixed cells. We call the equivalence classes *mixed cell configurations*.

Mixed and not mixed subdivisions of the Minkowski sum of two triangles.

The Newton Polytope of the Sparse Resultant

- Definition. The toric or sparse resultant \mathcal{R} of polynomials f_i , i = 0, ..., n, is the unique (up to sign) irreducible polynomial in $\mathbb{Z}[c_{i,j}]$ which vanishes iff the f_i have a common root in $(\mathbb{C}^*)^n.$
- A monomial of the sparse resultant is called *extreme* if its exponent vector is a vertex of the Newton polytope $N(\mathcal{R})$ of the resultant.
- Theorem. (Sturmfels) For every generic lifting function ω , we obtain an extreme monomial of \mathcal{R} , of the form

$$init_{\omega}(\mathcal{R}) = c \cdot \prod_{i=0}^{n} \prod_{R} c_{i,v_i}^{\operatorname{Vol}(R)},$$

where the second product is over all i-mixed cells R of the regular tight mixed subdivision of $P = \sum_{i=0}^{n} P_i$, induced by ω and c_{i,v_i} is the coefficient of the monomial of f_i corresponding to the vertex v_i . The constant c is +1 or -1.

• Corollary. There exists a 1-1 and onto correspondence between the extreme monomials and the mixed cell configurations.

= *n*,

• Given supports A_0, \ldots, A_n , the Cayley embedding κ introduces a new point set

$$C := \kappa \left(A_0, A_1, \dots, A_n \right) = \bigcup_{i=0}^n \left(A_i \times \{e_i\} \right) \subset \mathbb{R}^{2n+1},$$

where e_i are an affine basis of \mathbb{R}^n . The dimension of the convex hull of C is d := 2n.

The image via κ of two triangles.

• Theorem. (The Cayley Trick) There exists a bijection between the tight regular mixed subdivisions of the Minkowski sum P and the regular triangulations of C.

Enumeration of Mixed Cell Configurations

• Regular triangulations of C are in bijection to the vertices of the so called *secondary polytope* $\Sigma(C)$ of C. Two vertices in $\Sigma(C)$ are connected by an edge if they can be obtained from each other by a local modification called *bistellar flip*.

Secondary polytope of a quadrilateral.

- One can enumerate all regular triangulations of C by computing a spanning tree of the secondary polytope $\Sigma(C)$. The algorithm proposed by Imai et. al.[2003] uses reverse search for low memory usage.
- We allow bistellar flips only on suitable circuits, thus obtaining a regular triangulation corresponding to a new mixed cell configuration.
- The suitable circuits are characterized by cardinality (odd and even circuits).

Odd circuits (left and right figures) and a non suitable circuit.

The Cayley Trick

 $\dim(Z)=1$

- $f_0 = c_{0,1}x^a + c_{0,2}x^b$, $f_1 = c_{1,1}x^c + c_{1,2}x^d + c_{1,3}x^e \in \mathbb{C}[x]$.
- The circuits on which we perform bistellar flips are depicted in red.

An Application to Implicitization

Input: Parametric representation of a hypersurface $x_i = \frac{P_i(t)}{Q(t)}$, i = 0, ..., n, $gcd(P_i(t), Q(t)) = 1$. Output: A superset of the support of the implicit equation.

- superset of the support of the resultant.
- subspace (n = 2 or 3).
- Equivalently: characterize the circuits that lead to a new vertex on the silhouette.

The projection of step 3 of the implicitization algorithm.

An Example

• The supports A_0, A_1 , the point set $C = \kappa(A_0, A_1)$ and the enumeration of the regular triangulations of C corresponding to the mixed cell configurations of $P = P_0 + P_1$, are shown below.

1. Define $f_i = x_i Q(t) - P_i(t)$ as polynomials in t: $f_i = \sum c_{ij} t^{a_{ij}} \in \mathbb{C}[t]$, $c_{i,j}$ generic coefficients. 2. Compute the extreme monomials of the resultant of f_i using our algorithm. Then compute a

3. Transform the set of monomials of the form $\prod c_{ij}^{e_{ij}}$, to a set of monomials in the x_i . This is equivalent to projecting the Newton polytope of the resultant of f_i onto a 2 or 3-dimensional

Future Work

• Enumerate only the vertices of the secondary polytope $\Sigma(C)$ that correspond to mixed cell configurations lying on the *silhouette* of $N(\mathcal{R})$ with respect to a canonical projection π .

