
Μιχαήλ Νικολάου

Expanding the current version!

 Only one instance: cgVis, contains global information

 Currently for one vpython window

 Controls are done using the vpython controls module

 So this means that we have do deal with anything good or bad that the module
has

 In the future, we could use something more versatile like tcl/tk?

 Use prefined vpython controls, that include buttons, toggles etc.

 Start the main controls window calling cgVis.mainControls(True)

 Close the main controls window calling cgVis.mainControls(False)

 Runs in a different thread to avoid having the user call interact() all the time

 Through the main controls you can:
 Export the scene into an ascii file

(so that it can be imported later)

 Change the point ratio (smaller or bigger)

 Change the default export file

 Center the visual scene

…

 Used on 3d Input (because right click terminates input on 2d) to terminate input
mode

 Destroys itself when input is done
 Centers a 3d input screen

 Turns input mode off

 use cgVis.exportScene(filename) to export the
scene

 cgVis.importScene(filename) to import the scene

 String representations (repr(…)) of objects are
saved in the ascii file.

 Uses eval() to evaluate the repr

 Useful for reproducing conditions such as
interesting instances, faulty instances

 VSegment_2(CGAL.Point_2(5.94333290425,-5.34941304484),
CGAL.Point_2(10.0302093094,-9.23989525928), color = (1, 1, 1), radius = 0)

 VPoint_3(-10.641452494699999, -16.206391615200001, 11.995322014999999,
color = (1, 1, 1), label = None, radius = 0.5)

 VPoint_3(-5.6810643089299999, -1.4589308304099999, 17.0876748188, color =
(1, 1, 1), label = None, radius = 0.5)

 VSegment_2(CGAL.Point_2(15.3567496976,-16.0482391345),
CGAL.Point_2(11.3709628331,-19.6955662106), color = (1, 1, 1), radius = 0)

 VPoint_3(10.5207495504, 13.530106761300001, -10.9352694549, color = (1, 1, 1),
label = None, radius = 0.5)

 VPoint_2(-8.2543423375887546, 7.4162317212614788, color = (1, 1, 1), label =
None, radius = 0.5)

 VPoint_3(-4.4919450961000003, -0.60788784600500001, 12.342158570600001,
color = (1, 1, 1), label = None, radius = 0.5)

 So, calling eval(VPoint_3(-10.6, -16.2, 11.9, color = (1, 1, 1), label = None, radius =
0.5)) opens up a vpython window and outputs the point with coordinates (-
10.6, -16.2, 11.9)

How is this done?
 cgVis.cgalSceneReg is a dictionary that holds all visual objects created (see

Vbase constructor)

 The key is the id of the object and the value is the reference to it.

 So if v is a VPoint_2, it is stored as cgVis.cgalSceneReg[id(v)] = v

 What happens with garbage collection?

 VPython`s philosophy is to hold a reference to any visual object, so even if no
reference exists from the user the object remains visible. Only by turning the
visual object invisible it is garbage collected

 This is maintained, because whenever we turn an object invisible it is popped
of the dictionary, so can be garbage collected! (see VBase. __setVisible for
more)

 Related usage files:
 usgScene.py

 Loading 3d models into the visual module

 Compatible with cgal-python classes

 obj3dLoader class

 Actually, a parser. Loads wavefront points (vertices)
and faces (triangles) into Point_3 and Triangle_3

 Usage:
 c = obj3dLoader("3dModels/bunny.obj", 200)

 First argument is the 3d model, second argument is the scaling
factor (multiplies each coordinate by that amount)

 Class constructor parses the text file and then centers the 3d object
(calling the centerObj method)

 Can call scale() to rescale

 draw_Triangles() draws the faces and draw_Points() draws the
points (take care of the radius)

 The class can be easily expanded to adding translation functions
etc.

 Public Members:
 .vertices: CGAL.Point_2 points

 .faces: Pointers to vertices (index in list)

 .vfaces: VTriangle_3 (if draw_Triangles was called in the
past)

 .vvertices: VPoint_3 (if draw_Points method was called
in the past)

 c = obj3dLoader("3dModels/bunny.obj", 200)

 c.draw_Triangles()

 c = obj3dLoader("3dModels/cow.obj", 0.06)

 c.draw_Triangles()

 All input (2d & 3d) is now click n drag enabled

 getVisualPoints_2(), getVisualPoints_3()

 getPolygon_2(), getPolygon_3()

 Combining 3d input and a 3d model

 Highly customizable

 Iterates and catches user clicks, drags

 By default, loops while cgVis.inputMode = True

 Arguments are quite self-explanatory, input functions tell the class
what to do when a user drags a point, clicks on a point, creates a point
(if user allows it) or drops a point

 Usage Files:
 voronoiDrag.py

 Draws the voronoi diagram, with draggable sites: The user can drag
the sites and observe the changes that occur to the voronoi diagram

 Usage Files:
 voronoiDrag.py

 cnd = clicknDrag(points,_3d = False, doWhenNewPoint=updateVor,
doWhenDropped=updateVor,doWhileDragged=updateVor,
terminateCondition=None, terminateOnRightClick=True)

 This initializes the clicknDrag method for the voronoiDrag script.
The input seems a bit long, but that is because the names of the
arguments are actually explaining themselves

 Usage Files:
 voronoiDrag.py

 cnd = clicknDrag(points,_3d = False, doWhenNewPoint=updateVor,
doWhenDropped=updateVor,doWhileDragged=updateVor,
terminateCondition=None, terminateOnRightClick=True)

 As input, a list of points is given, the input is 2d (so 3d = False), and
the function updateVor is called when a new point is created – user
clicks, while a point is dragged and when a point is dropped.

 The function loops, until user right clicks! (terminate OnRightClick
= True)

 Usage Files:
 delauneyDrag.py – Does the same thing but presents the delauney

triangulation

 File: alphaShape.py

 Use the visual library to visualize the alpha shape of a 3d
model

 Bunny

 Gorilla

 Line_2 repr() seems to be buggy in the CGAL module

 We do not import CGAL module members (we use import CGAL and
not from CGAL import *), so we are not “inside” the CGAL namespace.
So we need to append CGAL. to visual object representations (string
formatting)

 Added color to repr() of objects such as Triangle_2, Triangle_3 so that
the user can save color on exporting the scene

 Could have more scene parameters as methods, such as default point
radius, rotation on / off etc.

 Little time, many things to add and improve, probably a few bugs;p

