

Controls

Controls are done using the vpython controls module

So this means that we have do deal with anything good or bad that the module
has

In the future, we could use something more versatile like tcl/tk?

Use prefined vpython controls, that include buttons, toggles etc.

-
v

= P -

Main Controls

Center Vieuy

Clo=e Menu

g T

L

v

¥

.-‘ 7"

i Qh L Jadi

N & e

N P ‘}-’&W - b
AL »:.X',)\ 7y . /%7&»@;:2
ol) 4

-

el o

compilers

downloads voronoiDr

Export Options

Export Default

Export Custom

Close Menu

Input.

Center View

Handling Scenes

use cgVis.exportScene(filename) to export the
scene

cgVis.importScene(filename) to import the scene

String representations (repr(...)) of objects are
saved in the ascii file.

Uses eval() to evaluate the repr

Useful for reproducing conditions such as
interesting instances, faulty instances

Handling Scenes
- how does the output file look like?

VSegment_2(CGAL.Point_2(5.94333290425,-5.34941304484),
CGAL.Point_2(10.0302093094,-9.23989525928), color = (1, 1, 1), radius = 0)

VPoint_3(-10.641452494699999, -16.206391615200001, 11.095322014999990,
color = (3, 1, 1), label = None, radius = 0.5)

VPoint_3(-5.6810643089299999, -1.4589308304099999, 17.0876748188, color =
(1, 1, 1), label = None, radius = 0.5)
VSegment_2(CGAL.Point_2(15.3567496976,-16.0482391345),
CGAL.Point_2(11.3709628331,-19.6955662106), color = (3, 1, 1), radius = 0)
VPoint_3(10.5207495504, 13.530106761300001, -10.9352694549, color = (1, 1, 1),
label = None, radius = 0.5)

VPoint_2(-8.2543423375887546, 7.4162317212614788, color = (1, 1, 1), label =
None, radius = 0.5)

VPoint_3(-4.4919450961000003, -0.60788784600500001, 12.342158570600001,
color = (3, 1, 1), label = None, radius = 0.5)

Handling Scenes
- how does the output file look like?

So, calling eval(VPoint_3(-10.6, -16.2, 11.9, color = (1, 1, 1), label = None, radius =
0.5)) opens up a vpython window and outputs the point with coordinates (-
10.6, -16.2, 11.9)

Handling Scenes

How is this done?

cgVis.cgalSceneReg is a dictionary that holds all visual objects created (see
Vbase constructor)

The key is the id of the object and the value is the reference to it.
So if vis a VPoint_2, it is stored as cgVis.cgalSceneReg[id(v)] = v
What happens with garbage collection?

VPython's philosophy is to hold a reference to any visual object, so even if no
reference exists from the user the object remains visible. Only by turning the
visual object invisible it is garbage collected

This is maintained, because whenever we turn an object invisible it is popped
of the dictionary, so can be garbage collected! (see VBase. __setVisible for
more)

3d Models (Wavefront .obj)

Loading 3d models into the visual module
Compatible with cgal-python classes
obj3zdLoader class

Actually, a parser. Loads wavefront points (vertices)
and faces (triangles) into Point_3 and Triangle_3

3d Models (Waveftront, .obj)

Usage:
¢ = obj3zdLoader("3dModels/bunny.obj", 200)

First argument is the 3d model, second argument is the scaling
factor (multiplies each coordinate by that amount)

Class constructor parses the text file and then centers the 3d object
(calling the centerObj method)

Can call scale() to rescale

draw_Triangles() draws the faces and draw_Points() draws the
points (take care of the radius)

The class can be easily expanded to adding translation functions
etc.

3d Models

Public Members:

.vertices: CGAL.Point_2 points
faces: Pointers to vertices (index in list)
.vfaces: VTriangle_3 (if draw_Triangles was called in the

past)
.vvertices: VPoint_3 (if draw_Points method was called
in the past)

>
£
-
v
!
§
o
5
:
£
.
:
PSS
- i LS >
S .

-

- - "'¢\"fl_'
e :

>
£
-
v
!
§
o
5
:
£
.
:
PSS
- i LS >
S .

[Input

All input (2d & 3d) is now click n drag enabled
getVisualPoints_2(), getVisualPoints_3()
getPolygon_2(), getPolygon_3()

Input M

Center View

Irput Mo

/.f-v o e

B N o WA -7.'»,' —

-~ —

LeRoyl”

——

e ~’..

Input Mode OFF

Input Mode On

Settings Help

exitfuncs:
call last):
honZ .5/atexi
gs
h64/python2 . 5

.allclosed():

The clicknDrag class

Highly customizable
[terates and catches user clicks, drags
By default, loops while cgVis.inputMode = True

Arguments are quite self-explanatory, input functions tell the class
what to do when a user drags a point, clicks on a point, creates a point
(if user allows it) or drops a point

~—g—

. vy

T -

The clicknDrag class

Usage Files:
voronoiDrag.py

cnd = clicknDrag(points,_3d = False, doWhenNewPoint=updateVor,
doWhenDropped=updateVor,doWhileDragged=updateVor,
terminateCondition=None, terminateOnRightClick=True)

This initializes the clicknDrag method for the voronoiDrag script.
The input seems a bit long, but that is because the names of the
arguments are actually explaining themselves

The clicknDrag class

Usage Files:
voronoiDrag.py

cnd = clicknDrag(points,_3d = False, doWhenNewPoint=updateVor,
doWhenDropped=updateVor,doWhileDragged=updateVor,
terminateCondition=None, terminateOnRightClick=True)

As input, a list of points is given, the input is 2d (so 3d = False), and
the function updateVor is called when a new point is created — user
clicks, while a point is dragged and when a point is dropped.

The function loops, until user right clicks! (terminate OnRightClick
= True)

dtsegs appendtvsegment 2 (CGAL Segnent 2(f vertex(2/ pointl T vertex(0/ poih

>
£
-
v
!
§
o
5
:
£
.
:
PSS
- i LS >
S .

-

- - "'¢\"fl_'
e :

25

s b
. -
]

S E..r.zﬂ.m.t s g
\

£

B

L

wid Ay
pX

LU

Misc

Line_2 repr() seems to be buggy in the CGAL module

We do not import CGAL module members (we use import CGAL and
not from CGAL import *), so we are not “inside” the CGAL namespace.
So we need to append CGAL. to visual object representations (string
formatting)

Added color to repr() of objects such as Triangle_2, Triangle_3 so that
the user can save color on exporting the scene

Could have more scene parameters as methods, such as default point
radius, rotation on / off etc.

Little time, many things to add and improve, probably a few bugs;p

