
Μιχαήλ Νικολάου

Expanding the current version!

 Only one instance: cgVis, contains global information

 Currently for one vpython window

 Controls are done using the vpython controls module

 So this means that we have do deal with anything good or bad that the module
has

 In the future, we could use something more versatile like tcl/tk?

 Use prefined vpython controls, that include buttons, toggles etc.

 Start the main controls window calling cgVis.mainControls(True)

 Close the main controls window calling cgVis.mainControls(False)

 Runs in a different thread to avoid having the user call interact() all the time

 Through the main controls you can:
 Export the scene into an ascii file

(so that it can be imported later)

 Change the point ratio (smaller or bigger)

 Change the default export file

 Center the visual scene

…

 Used on 3d Input (because right click terminates input on 2d) to terminate input
mode

 Destroys itself when input is done
 Centers a 3d input screen

 Turns input mode off

 use cgVis.exportScene(filename) to export the
scene

 cgVis.importScene(filename) to import the scene

 String representations (repr(…)) of objects are
saved in the ascii file.

 Uses eval() to evaluate the repr

 Useful for reproducing conditions such as
interesting instances, faulty instances

 VSegment_2(CGAL.Point_2(5.94333290425,-5.34941304484),
CGAL.Point_2(10.0302093094,-9.23989525928), color = (1, 1, 1), radius = 0)

 VPoint_3(-10.641452494699999, -16.206391615200001, 11.995322014999999,
color = (1, 1, 1), label = None, radius = 0.5)

 VPoint_3(-5.6810643089299999, -1.4589308304099999, 17.0876748188, color =
(1, 1, 1), label = None, radius = 0.5)

 VSegment_2(CGAL.Point_2(15.3567496976,-16.0482391345),
CGAL.Point_2(11.3709628331,-19.6955662106), color = (1, 1, 1), radius = 0)

 VPoint_3(10.5207495504, 13.530106761300001, -10.9352694549, color = (1, 1, 1),
label = None, radius = 0.5)

 VPoint_2(-8.2543423375887546, 7.4162317212614788, color = (1, 1, 1), label =
None, radius = 0.5)

 VPoint_3(-4.4919450961000003, -0.60788784600500001, 12.342158570600001,
color = (1, 1, 1), label = None, radius = 0.5)

 So, calling eval(VPoint_3(-10.6, -16.2, 11.9, color = (1, 1, 1), label = None, radius =
0.5)) opens up a vpython window and outputs the point with coordinates (-
10.6, -16.2, 11.9)

How is this done?
 cgVis.cgalSceneReg is a dictionary that holds all visual objects created (see

Vbase constructor)

 The key is the id of the object and the value is the reference to it.

 So if v is a VPoint_2, it is stored as cgVis.cgalSceneReg[id(v)] = v

 What happens with garbage collection?

 VPython`s philosophy is to hold a reference to any visual object, so even if no
reference exists from the user the object remains visible. Only by turning the
visual object invisible it is garbage collected

 This is maintained, because whenever we turn an object invisible it is popped
of the dictionary, so can be garbage collected! (see VBase. __setVisible for
more)

 Related usage files:
 usgScene.py

 Loading 3d models into the visual module

 Compatible with cgal-python classes

 obj3dLoader class

 Actually, a parser. Loads wavefront points (vertices)
and faces (triangles) into Point_3 and Triangle_3

 Usage:
 c = obj3dLoader("3dModels/bunny.obj", 200)

 First argument is the 3d model, second argument is the scaling
factor (multiplies each coordinate by that amount)

 Class constructor parses the text file and then centers the 3d object
(calling the centerObj method)

 Can call scale() to rescale

 draw_Triangles() draws the faces and draw_Points() draws the
points (take care of the radius)

 The class can be easily expanded to adding translation functions
etc.

 Public Members:
 .vertices: CGAL.Point_2 points

 .faces: Pointers to vertices (index in list)

 .vfaces: VTriangle_3 (if draw_Triangles was called in the
past)

 .vvertices: VPoint_3 (if draw_Points method was called
in the past)

 c = obj3dLoader("3dModels/bunny.obj", 200)

 c.draw_Triangles()

 c = obj3dLoader("3dModels/cow.obj", 0.06)

 c.draw_Triangles()

 All input (2d & 3d) is now click n drag enabled

 getVisualPoints_2(), getVisualPoints_3()

 getPolygon_2(), getPolygon_3()

 Combining 3d input and a 3d model

 Highly customizable

 Iterates and catches user clicks, drags

 By default, loops while cgVis.inputMode = True

 Arguments are quite self-explanatory, input functions tell the class
what to do when a user drags a point, clicks on a point, creates a point
(if user allows it) or drops a point

 Usage Files:
 voronoiDrag.py

 Draws the voronoi diagram, with draggable sites: The user can drag
the sites and observe the changes that occur to the voronoi diagram

 Usage Files:
 voronoiDrag.py

 cnd = clicknDrag(points,_3d = False, doWhenNewPoint=updateVor,
doWhenDropped=updateVor,doWhileDragged=updateVor,
terminateCondition=None, terminateOnRightClick=True)

 This initializes the clicknDrag method for the voronoiDrag script.
The input seems a bit long, but that is because the names of the
arguments are actually explaining themselves

 Usage Files:
 voronoiDrag.py

 cnd = clicknDrag(points,_3d = False, doWhenNewPoint=updateVor,
doWhenDropped=updateVor,doWhileDragged=updateVor,
terminateCondition=None, terminateOnRightClick=True)

 As input, a list of points is given, the input is 2d (so 3d = False), and
the function updateVor is called when a new point is created – user
clicks, while a point is dragged and when a point is dropped.

 The function loops, until user right clicks! (terminate OnRightClick
= True)

 Usage Files:
 delauneyDrag.py – Does the same thing but presents the delauney

triangulation

 File: alphaShape.py

 Use the visual library to visualize the alpha shape of a 3d
model

 Bunny

 Gorilla

 Line_2 repr() seems to be buggy in the CGAL module

 We do not import CGAL module members (we use import CGAL and
not from CGAL import *), so we are not “inside” the CGAL namespace.
So we need to append CGAL. to visual object representations (string
formatting)

 Added color to repr() of objects such as Triangle_2, Triangle_3 so that
the user can save color on exporting the scene

 Could have more scene parameters as methods, such as default point
radius, rotation on / off etc.

 Little time, many things to add and improve, probably a few bugs;p

