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� Parsing: Organize tokens into “sentences”

� Do tokens conform to language syntax ?

� Good news: token types are just numbers

� Bad news: language syntax is fundamentally more complex than 
lexical specification

� Good news: we can still do it in linear time in most cases
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� Parser

� Reads tokens from the scanner

� Checks organization of tokens against a grammar

� Constructs a derivation

� Derivation drives construction of IR



Study of parsing

� Discovering the derivation of a sentence

� “Diagramming a sentence” in grade school

� Formalization:

� Mathematical model of syntax – a grammar G

� Algorithm for testing membership in L(G)
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� Algorithm for testing membership in L(G)

� Roadmap:

� Context-free grammars

� Top-down parsers

Ad hoc, often hand-coded, recursive decent parsers

� Bottom-up parsers

Automatically generated LR parsers



Specifying syntax with a grammar

� Can we use regular expressions?

� For the most part, no

� Limitations of regular expressions

� Need something more powerful
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� Still want formal specification         (for automation)

� Context-free grammar

� Set of rules for generating sentences

� Expressed in Backus-Naur Form (BNF)



Context-free grammar

� Example: # Production rule

1

2

sheepnoise → sheepnoise  baa

|    baa

“produces” or 
“generates”

Alternative 
(shorthand)
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� Formally: context-free grammar  is

� G = (s, N, T, P)

� T : set of terminals                  (provided by scanner)

� N : set of non-terminals            (represent structure)

� s ∈∈∈∈ N : start or goal symbol

� P : set of production rules of the form N → (N ∪∪∪∪ T)*



Language L(G)

� Language L(G)

L(G) is all sentences generated from start symbol

� Generating sentences

� Use productions as rewrite rules

77

� Start with goal (or start) symbol – a non-terminal

� Choose a non-terminal and “expand” it to the right-hand 

side of one of its productions

� Only terminal symbols left � sentence in L(G)

� Intermediate results known as sentential forms



Expressions

� Language of expressions

� Numbers and identifiers

� Allow different binary operators

� Arbitrary nesting of expressions
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# Production rule

1

2

3

4

5

6

7

expr → expr op   expr

|   number

|   identifier

op     → +

|   -

|   *

|   /



Language of expressions

� What’s in this language?

# Production rule

1

2

3

4

expr → expr   op   expr

|   number

|   identifier

op     → +

Rule Sentential form

- expr

1

3

expr  op  expr

<id,x>  op  expr
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We can build the string “x - 2 * y”
This string is in the language

4

5

6

7

op     → +

|   -

|   *

|   /

3

5

1

2

6

3

<id,x>  op  expr

<id,x>  - expr

<id,x>  - expr op expr

<id,x>  - <num,2>  op  expr

<id,x>  - <num,2>  *  expr

<id,x>  - <num,2>  *  <id,y>



Derivations

� Using grammars

� A sequence of rewrites is called a derivation

� Discovering a derivation for a string is parsing

� Different derivations are possible
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� At each step we can choose any non-terminal

� Rightmost derivation: always choose right NT

� Leftmost derivation: always choose left NT

(Other “random” derivations – not of interest)



Left vs right derivations

� Two derivations of “x – 2 * y”

Rule Sentential form

-

1

3

expr

expr op  expr

<id, x>  op expr

Rule Sentential form

-

1

3

expr

expr op expr

expr op <id,y>
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3

5

1

2

6

3

<id, x>  op expr

<id,x>  - expr

<id,x>  - expr op expr

<id,x>  - <num,2>  op expr

<id,x>  - <num,2>  *  expr

<id,x>  - <num,2>  *  <id,y>

3

6

1

2

5

3

expr op <id,y>

expr *  <id,y>

expr  op expr *  <id,y>

expr op <num,2>  *  <id,y>

expr - <num,2>  *  <id,y>

<id,x>  - <num,2>  *  <id,y>

Left-most derivation Right-most derivation



Derivations and parse trees

� Two different derivations

� Both are correct

� Do we care which one we use?

� Represent derivation as a parse tree
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� Represent derivation as a parse tree

� Leaves are terminal symbols

� Inner nodes are non-terminals

� To depict production αααα → β γ δβ γ δβ γ δβ γ δ
show nodes ββββ,γγγγ,δδδδ as children of αααα

Tree is used to build internal representation



Example (I)

expr

expropexpr

Parse tree

Rule Sentential form

-

1

3

6

1

expr

expr  op  expr

expr  op  <id,y>

expr  *  <id,y>

expr  op  expr  *  <id,y>

Right-most derivation
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� Concrete syntax tree
� Shows all details of syntactic structure

� What’s the problem with this tree?

expr op expr y*

x - 2

1

2

5

3

expr  op  expr  *  <id,y>

expr  op  <num,2>  *  <id,y>

expr  - <num,2>  *  <id,y>

<id,x>  - <num,2>  *  <id,y>



Abstract syntax tree
� Parse tree contains extra junk

� Eliminate intermediate nodes

� Move operators up to parent nodes

� Result: abstract syntax tree

expr *
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expr

expropexpr

expr op expr y*

x - 2

y

*

x

-

2

� Problem: Evaluates as  (x – 2) * y



Example (II)

Rule Sentential form

-

1

3

5

expr

expr  op  expr

<id, x>  op  expr

<id,x>  - expr

Left-most derivation

expr

expr op expr

Parse tree
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� Solution: evaluates as   x – (2 * y)

5

1

2

6

3

<id,x>  - expr

<id,x>  - expr op expr

<id,x>  - <num,2>  op  expr

<id,x>  - <num,2>  *  expr

<id,x>  - <num,2>  *  <id,y>

expr op exprx -

2 * y



Derivations

*-
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y

x

-

2

Left-most derivation Right-most derivation

y

*x

2



Derivations and semantics

� Problem:

� Two different valid derivations

� One captures “meaning” we want

(What specifically are we trying to capture here?)

� Key idea: shape of tree implies its meaning
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� Key idea: shape of tree implies its meaning

� Can we express precedence in grammar?

� Notice: operations deeper in tree evaluated first

� Solution: add an intermediate production

� New production isolates different levels of precedence

� Force higher precedence “deeper” in the grammar



Adding precedence

� Two levels: # Production rule

1

2

3

4

5

expr → expr  +  term

|   expr   - term

|   term

term    →  term  *  factor

|   term  /  factor

Level 1: lower precedence –
higher in the tree

Level 2: higher precedence –
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� Observations:

� Larger: requires more rewriting to reach terminals

� But, produces same parse tree under both left and right 

derivations

5

6

7

8

|   term  /  factor

|   factor

factor  → number

|   identifier

Level 2: higher precedence –
deeper in the tree



Expression example

Rule Sentential form

-

2

4

8

expr

expr  - term

expr  - term  *  factor  

expr  - term  *  <id,y>

Right-most derivation Parse tree

expr

expr op term
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Now right derivation yields   x – (2 * y)

8

6

7

3

6

8

expr  - term  *  <id,y>

expr  - factor *  <id,y>

expr  - <num,2>  *  <id,y>

term  - <num,2>  *  <id,y>

factor  - <num,2>  *  <id,y>

<id,x> - <num,2>  *  <id,y>

op

x

-

2

* y

term

fact

term fact

fact



With precedence

expr

expropexpr

expr

expr - term

expr

expr - term*

-

2020

expr op expr y*

x - 2

x 2

*

y

term

fact

term fact

fact

x 2

*

y

term

fact

term fact

fact y

x 2



Another issue 

� Original expression grammar:

# Production rule

1

2

3

expr → expr   op   expr

|   number

|   identifier

2828

� Our favorite string: x – 2 * y

3

4

5

6

7

identifier

op     → +

|   -

|   *

|   /



Another issue 

Rule Sentential form

-

1

3

5

1

expr

expr op  expr

<id, x>  op expr

<id,x>  - expr

<id,x>  - expr op  expr

Rule Sentential form

-

1

1

3

5

expr

expr op  expr

expr op  expr  op  expr

<id, x>  op expr  op  expr

<id,x>  - expr op  expr
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� Multiple leftmost derivations

� Such a grammar is called ambiguous
� Is this a problem?

� Very hard to automate parsing

1

2

6

3

<id,x>  - expr op  expr

<id,x>  - <num,2>  op expr

<id,x>  - <num,2>  *  expr

<id,x>  - <num,2>  *  <id,y>

5

2

6

3

<id,x>  - expr op  expr

<id,x>  - <num,2>  op expr

<id,x>  - <num,2>  *  expr

<id,x>  - <num,2>  *  <id,y>



Ambiguous grammars

� A grammar is ambiguous iff:

� There are multiple leftmost or multiple rightmost derivations 

for a single sentential form

� Note: leftmost and rightmost derivations may differ, even in 

an unambiguous grammar
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an unambiguous grammar

� Intuitively:

� We can choose different non-terminals to expand

� But each non-terminal should lead to a unique set of 

terminal symbols

� What’s a classic example?

� If-then-else ambiguity 



If-then-else

� Grammar:

# Production rule

1

2

3

stmt →  if expr  then stmt

|   if expr  then stmt  else stmt

|   …other statements…
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� Problem: nested if-then-else statements
� Each one may or may not have else

� How to match each else with if

3 |   …other statements…



If-then-else ambiguity

� Sentential form with two derivations:
if expr1 then if expr2 then stmt1 else stmt2

if ifif

prod. 2 prod. 1

3232

expr1 then else

if

expr2 then

stmt2

stmt1

expr1 then

else

if

expr2 then

stmt2stmt1

expr1 then

else

if

expr2 then

stmt2stmt1

prod. 2

prod. 1

prod. 1

prod. 2



Removing ambiguity

� Restrict the grammar

� Choose a rule: “else” matches innermost “if”

� Codify with new productions

# Production rule

1 stmt       →  if expr  then stmt

3333

� Intuition: when we have an “else”, all preceding nested 

conditions must have an “else”

1

2

3

4

5

stmt       →  if expr  then stmt

|   if expr  then withelse  else stmt

|   …other statements…

withelse  → if expr then withelse else withelse

|   …other statements…



Ambiguity

� Ambiguity can take different forms

� Grammatical ambiguity           (if-then-else problem)

� Contextual ambiguity

� In C:           x * y; could follow typedef int x;

� In Fortran:  x = f(y); f could be function or array
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� In Fortran:  x = f(y); f could be function or array

Cannot be solved directly in grammar

� Issues of type (later in course)

� Deeper question:

How much can the parser do?



Parsing

� What is parsing?
� Discovering the derivation of a string 

If one exists

� Harder than generating strings
Not surprisingly

� Two major approaches
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� Two major approaches
� Top-down parsing

� Bottom-up parsing

� Don’t work on all context-free grammars
� Properties of grammar determine parse-ability

� Our goal: make parsing efficient

� We may be able to transform a grammar



Two approaches

� Top-down parsers     LL(1), recursive descent

� Start at the root of the parse tree and grow toward leaves

� Pick a production and try to match the input

� What happens if the parser chooses the wrong one?

Bottom-up parsers     LR(1), operator precedence
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� Bottom-up parsers     LR(1), operator precedence

� Start at the leaves and grow toward root

� Issue: might have multiple possible ways to do this

� Key idea: encode possible parse trees in an internal state                
(similar to our NFA � DFA conversion)

� Bottom-up parsers handle a large class of grammars



Grammars and parsers

� LL(1) parsers
� Left-to-right input

� Leftmost derivation

� 1 symbol of look-ahead

LR(1) parsers

Grammars that they 
can handle are called 
LL(1) grammars
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� LR(1) parsers
� Left-to-right input

� Rightmost derivation

� 1 symbol of look-ahead

� Also: LL(k), LR(k), SLR, LALR, …

Grammars that they 
can handle are called 
LR(1) grammars



Top-down parsing

� Start with the root of the parse tree

� Root of the tree: node labeled with the start symbol

� Algorithm:

Repeat until the fringe of the parse tree matches input string
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Repeat until the fringe of the parse tree matches input string

� At a node A, select one of A’s productions

Add a child node for each symbol on rhs

� Find the next node to be expanded             (a non-terminal)

� Done when:

� Leaves of parse tree match input string                (success)



Example

� Expression grammar            (with precedence)

# Production rule

1

2

3

expr → expr  +  term

|   expr   - term

|   term

3939

� Input string     x – 2 * y

3

4

5

6

7

8

|   term

term    →  term  *  factor

|   term  /  factor

|   factor

factor  → number

|   identifier



Example

Rule Sentential form Input string

- expr

expr

expr + term

1      expr +  term ↑↑↑↑ x - 2 * y 

3      term +  term ↑↑↑↑ x – 2 * y 

6      factor +  term ↑↑↑↑ x – 2 * y 

↑↑↑↑ x - 2 * y 

Current position in 
the input stream
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� Problem:

� Can’t match next terminal

� We guessed wrong at step 2

� What should we do now?

x

term

fact

6      factor +  term ↑↑↑↑ x – 2 * y 

8      <id> +  term x ↑↑↑↑ – 2 * y 

- <id,x> +  term x ↑↑↑↑ – 2 * y 



Backtracking

Rule Sentential form Input string

- expr

1      expr +  term ↑↑↑↑ x - 2 * y 

3      term +  term ↑↑↑↑ x – 2 * y 

6      factor +  term ↑↑↑↑ x – 2 * y 

8      <id> +  term x ↑↑↑↑ – 2 * y 

↑↑↑↑ x - 2 * y 

Undo all these 
productions
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� If we can’t match next terminal:

� Rollback productions

� Choose a different production for expr

� Continue

8      <id> +  term x ↑↑↑↑ – 2 * y 

?      <id,x> +  term x ↑↑↑↑ – 2 * y 



Retrying

Rule Sentential form Input string

- expr

expr

expr - term
2      expr - term ↑↑↑↑ x - 2 * y 

3      term - term ↑↑↑↑ x – 2 * y 

6      factor - term ↑↑↑↑ x – 2 * y 

8      <id> - term x ↑↑↑↑ – 2 * y 

↑↑↑↑ x - 2 * y 

4242

� Problem:

� More input to read

� Another cause of backtracking

x

term

fact

8      <id> - term x ↑↑↑↑ – 2 * y 

- <id,x> - term x – ↑↑↑↑ 2 * y 

3     <id,x> - factor x – ↑↑↑↑ 2 * y 

7     <id,x> - <num> x – 2 ↑↑↑↑ * y 

fact

2



Successful parse

Rule Sentential form Input string

- expr

expr

expr - term

2      expr - term ↑↑↑↑ x - 2 * y 

3      term - term ↑↑↑↑ x – 2 * y 

6      factor - term ↑↑↑↑ x – 2 * y 

8      <id> - term x ↑↑↑↑ – 2 * y 

↑↑↑↑ x - 2 * y 

*

4343

x

term

fact

8      <id> - term x – 2 * y 

- <id,x> - term x – ↑↑↑↑ 2 * y 

4     <id,x> - term * fact x – ↑↑↑↑ 2 * y 

6     <id,x> - fact * fact x – ↑↑↑↑ 2 * y 

2

7     <id,x> - <num> * fact x – 2 ↑↑↑↑ * y 
fact

- <id,x> - <num,2> * fact x – 2 * ↑↑↑↑ y 

8     <id,x> - <num,2> * <id> x – 2 * y ↑↑↑↑

term * fact

y



Other possible parses

Rule Sentential form Input string

- expr

2      expr - term ↑↑↑↑ x - 2 * y 

2      expr - term - term ↑↑↑↑ x – 2 * y 

2      expr - term - term - term ↑↑↑↑ x – 2 * y 

2      expr - term - term - term - term ↑↑↑↑ x – 2 * y 

↑↑↑↑ x - 2 * y 
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� Problem: termination

� Wrong choice leads to infinite expansion

(More importantly: without consuming any input!)

� May not be as obvious as this

� Our grammar is left recursive

2      expr - term - term - term - term ↑↑↑↑ x – 2 * y 



Left recursion

� Formally,

A grammar is left recursive if ∃ a non-terminal A such that 
A →* A αααα (for some set of symbols αααα)

What does →* mean?

4545

� Bad news:

Top-down parsers cannot handle left recursion

� Good news:

We can systematically eliminate left recursion

A → B x

B → A y



Notation

� Non-terminals

� Capital letter:   A, B, C

� Terminals

� Lowercase, underline:  x, y, z
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� Some mix of terminals and non-terminals

� Greek letters:   α, β, γα, β, γα, β, γα, β, γ

� Example:

# Production rule

1

1

A → B  + x

A → B  αααα
αααα =   + x



Eliminating left recursion

� Fix this grammar:

# Production rule

1

2

foo → foo αααα
|   ββββ

Language is ββββ followed by 
zero or more αααα
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� Rewrite as

# Production rule

1

2

3

foo → ββββ bar

bar → αααα bar

|   εεεε

New non-terminal

This production gives you 
one ββββ

These two productions 
give you zero or more αααα



Back to expressions

� Two cases of left recursion:

# Production rule

1

2

3

expr → expr  +  term

|   expr   - term

|   term

# Production rule

4

5

6

term    →  term  *  factor

|   term  /  factor

|   factor
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� How do we fix these?

# Production rule

1

2

3

4

expr → term  expr2

expr2 → +  term expr2

|     - term expr2

|    εεεε

# Production rule

4

5

6

term    →  factor term2

term2  →  *  factor  term2

|   /  factor   term2

|   εεεε



Eliminating left recursion

� Resulting grammar

� All right recursive

� Retain original language and

associativity

� Not as intuitive to read

# Production rule

1

2

3

4

5

expr → term  expr2

expr2 → +  term expr2

|     - term expr2

|    εεεε
term    →  factor term2
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� Not as intuitive to read

� Top-down parser

� Will always terminate

� May still backtrack

5

6

7

8

9

10

term    →  factor term2

term2  →  *  factor  term2

|   /  factor   term2

|   εεεε
factor  → number

|   identifier

There’s a lovely algorithm to do this 
automatically, which we will skip



Top-down parsers

� Problem: Left-recursion

� Solution: Technique to remove it

� What about backtracking?
Current algorithm is brute force
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Current algorithm is brute force

� Problem: how to choose the right production?
� Idea: use the next input token               (duh)

� How? Look at our right-recursive grammar…



Right-recursive grammar

# Production rule

1

2

3

4

5

expr → term  expr2

expr2 → +  term expr2

|     - term expr2

|    εεεε
term    →  factor term2

Two productions 
with no choice at all

All other productions are 
uniquely identified by a 
terminal symbol at the 
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� We can choose the right 

production by looking at the next 

input symbol

� This is called lookahead

� BUT, this can be tricky…

5

6

7

8

9

10

term    →  factor term2

term2  →  *  factor  term2

|   /  factor   term2

|   εεεε
factor  → number

|   identifier

terminal symbol at the 
start of RHS



Lookahead

� Goal: avoid backtracking

� Look at future input symbols

� Use extra context to make right choice

� How much lookahead is needed?

In general, an arbitrary amount is needed for the full class 
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� In general, an arbitrary amount is needed for the full class 
of context-free grammars

� Use fancy-dancy algorithm              CYK algorithm, O(n3)

� Fortunately,

� Many CFGs can be parsed with limited lookahead

� Covers most programming languages         not C++ or Perl



Top-down parsing

� Goal:
Given productions A → α | β , the parser should be able to 

choose between α and β

� Trying to match A

How can the next input token help us decide?
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How can the next input token help us decide?

� Solution: FIRST sets                  (almost a solution)

� Informally: 

FIRST(α) is the set of tokens that could appear as the first 
symbol in a string derived from α

� Def: x in FIRST(α) iff α →* x γ



Top-down parsing

� Building FIRST sets

We’ll look at this algorithm later

� The LL(1) property

� Given A → α and A → β, we would like:
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� Given A → α and A → β, we would like:

FIRST(α) ∩ FIRST(β) = ∅
� we will also write FIRST(A → α), defined as FIRST(α)

� Parser can make right choice by with one lookahead token

� ..almost..

� What are we not handling?



Top-down parsing

� What about ε productions?
� Complicates the definition of LL(1)

� Consider A → α and A → β and α may be empty

� In this case there is no symbol to identify α

5555

� Example:
� What is FIRST(#4)?

� = { ε }

� What would tells us we are matching production 4?

# Production rule

1

2

3

4

S   →   A   z

A   →   x B

|    y C

|    εεεε



Top-down parsing

� If A was empty

What will the next symbol be?

# Production rule

1

2

3

4

S   →   A   z

A   →   x B

|    y C

|    εεεε
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� What will the next symbol be?

� Must be one of the symbols that immediately follows an A

� Solution
� Build a FOLLOW set for each symbol that could produce ε
� Extra condition for LL:

FIRST(A→β) must be disjoint from FIRST(A→α) and FOLLOW(Α)



FOLLOW sets

� Example:

� FIRST(#2) = { x }

� FIRST(#3) = { y }

� FIRST(#4) = { ε }

# Production rule

1

2

3

4

S   →   A   z

A   →   x B

|    y C

|    εεεε
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� What can follow A?

� Look at the context of all uses of A

� FOLLOW(A) = { z }

� Now we can uniquely identify each production:

If we are trying to match an A and the next token is z, then we 
matched production 4



FIRST and FOLLOW 

more carefully

� Notice:
� FIRST and FOLLOW are sets

� FIRST may contain ε in addition to other symbols

� Question:
� What is FIRST(#2)?

# Production rule
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� What is FIRST(#2)?

� = FIRST(B) = { x, y, ε }?

� and FIRST(C)

� Question:
When would we care
about FOLLOW(A)?

Answer: if FIRST(C) contains ε

1

2

3

4

5

6

7

S   →   A   z

A   →   B   C

|    D

B   →   x

|    y

|    εεεε
C   → . . .



LL(1) property

� Key idea:
� Build parse tree top-down

� Use look-ahead token to pick next production

� Each production must be uniquely identified by the terminal 
symbols that may appear at the start of strings derived 
from it.
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from it.

� Def: FIRST+(A → α) as
� FIRST(α) U FOLLOW(A), if ε ∈ FIRST(α)

� FIRST(α), otherwise

� Def: a grammar is LL(1) iff
A → α and A → β and

FIRST+(A → α) ∩ FIRST+(A → β) = ∅



Parsing LL(1) grammar
� Given an LL(1) grammar

� Code: simple, fast routine to recognize each production

� Given A → β1 | β2 | β3, with 

FIRST+(βi) ∩ FIRST+ (βj) = ∅ for all i != j

/* find rule for A */

6060

/* find rule for A */
if (current token ∈ FIRST+(β1))

select A → β1

else if (current token ∈ FIRST+(β2))

select A → β2

else if (current token ∈ FIRST+(β3))

select A → β3

else 
report an error and return false



Top-down parsing

� Build parse tree top down
# Production rule

1

2

3

4

G → A   αααα B  ζζζζ
A   →  ββββ γ γ γ γ δδδδ
B →  C  D

|   F

A         αααα B         ζζζζ

G

A B

6161

t1 t2 t3 t4 t5 t6 t7 t8 t9
… token stream

5 |   εεεε
ββββ γ γ γ γ δδδδ

A B

?

t5 ∈∈∈∈ FOLLOW(B)

t5 ∈∈∈∈ FIRST(C D)

t5 ∈∈∈∈ FIRST(F)

εεεε

Consider all possible
strings derivable from “CD”

What is the set of tokens
that can appear at start?

Is “CD”?
disjoint?

C    D



FIRST and FOLLOW sets

FIRST(αααα)

For some α ∈(T ∪ NT)*, define FIRST(α) as the set of 
tokens that appear as the first symbol in some string that 

derives from α

The right-hand side of 
a production

6262

That is, x ∈ FIRST(α) iff α ⇒
* x γ, for some γ

and     ε ∈ FIRST(α) iff α ⇒
* ε

FOLLOW(A)
For some A ∈ NT, define FOLLOW(A) as the set of symbols 
that can occur immediately after A in a valid sentence.

FOLLOW(G) = {EOF}, where G is the start symbol



Computing FIRST sets

� Idea:

Use FIRST sets of the right side of production

� Cases:

F (A→B) = F (B )

A   →   B1 B2 B3 …

6363

� FIRST(A→B) = FIRST(B1)
� What does FIRST(B1) mean?

� Union of FIRST(B1→γγγγ) for all γγγγ

� What if ε in FIRST(B1)?

⇒⇒⇒⇒ FIRST(A→B) ∪= FIRST(B2)            repeat as needed

� What if ε in FIRST(Bi) for all i?

⇒⇒⇒⇒ FIRST(A→B) ∪ = {ε}                       leave {εεεε} for later

Why ∪ = ?



Algorithm

� For one production: p = A → β

if (β β β β is a terminal t)

FIRST(p) = {t}

else if (ββββ == εεεε)

FIRST(p) = {εεεε} Why do we need 
εεεε

6464

FIRST(p) = {εεεε}

else

Given   ββββ = B1 B2 B3 … Bk

εεεεInAll = true
for (i ←←←← 1 to k) 

FIRST(p) += FIRST(Bi)  - {εεεε}
if (εεεε not in FIRST(Bi)) 

εεεεInAll = false
break

if (εεεεInAll) FIRST(p) += {εεεε}

to remove εεεε from 
FIRST(Bi)?



Algorithm

� For one production:

� Given A   →   B1 B2 B3 B4 B5

� Compute FIRST(A→B) using FIRST(B)

� How do we get FIRST(B)?

What kind of algorithm does this suggest?

6565

� What kind of algorithm does this suggest?

� Recursive?

� Like a depth-first search of the productions

� Problem:

� What about recursion in the grammar?

� A → x B y and   B → z A w



Algorithm
� Solution

� Start with FIRST(B) empty

� Compute FIRST(A) using empty FIRST(B)

� Now go back and compute FIRST(B)

� What if it’s no longer empty?

� Then we recompute FIRST(A)

6666

� Then we recompute FIRST(A)

� What if new FIRST(A) is different from old FIRST(A)?

� Then we recompute FIRST(B) again…

� When do we stop?

� When no more changes occur – we reach convergence

� FIRST(A) and FIRST(B) both satisfy equations

� This is another fixpoint algorithm



Algorithm

� Using fixpoints:

forall p    FIRST(p) = {}

while (FIRST sets are changing)

pick a random p

6767

� Can we be smarter?

� Yes, visit in special order

� Reverse post-order depth first search
Visit all children (all right-hand sides) before visiting the left-
hand side, whenever possible

pick a random p

compute FIRST(p)



Example

# Production rule

1

2

3

4

5

6

goal    →   expr

expr → term  expr2

expr2 → +  term expr2

|     - term expr2

|    εεεε
term    →  factor term2

FIRST(3) = { + }
FIRST(4) = { - }

FIRST(5) = { εεεε }

FIRST(7) = { * }
FIRST(8) = { / }

6868

6

7

8

9

10

11

term    →  factor term2

term2  →  *  factor  term2

|   /  factor   term2

|   εεεε
factor  → number

|   identifier

FIRST(8) = { / }

FIRST(9) = { εεεε }

FIRST(1) = ?

FIRST(1) = FIRST(2)
= FIRST(6)
= FIRST(10) ∪∪∪∪ FIRST(11)
= { number, identifier }



Computing FOLLOW sets

� Idea:

Push FOLLOW sets down, use FIRST where needed

� Cases:

A   →   B1 B2 B3 B4 … Bk

6969

� Cases:

� What is FOLLOW(B1)?

� FOLLOW(B1) = FIRST(B2)

� In general:  FOLLOW(Bi) = FIRST(Bi+1)

� What about FOLLOW(Bk)?

� FOLLOW(Bk) = FOLLOW(A)

� What if ε ∈ FIRST(Bk)?

⇒ FOLLOW(Bk-1) ∪= FOLLOW(A)     extends to k-2, etc.



Example

# Production rule

1

2

3

4

5

goal    →   expr

expr → term  expr2

expr2 → +  term expr2

|     - term expr2

|    εεεε

FOLLOW(goal) = { EOF }

FOLLOW(expr) = FOLLOW(goal) = { EOF }

FOLLOW(expr2) = FOLLOW(expr) = { EOF }

FOLLOW(term) = ? 

FOLLOW(term) += FIRST(expr2) 

7070

5

6

7

8

9

10

11

|    εεεε
term    →  factor term2

term2  →  *  factor  term2

|   /  factor   term2

|   εεεε
factor  → number

|   identifier

FOLLOW(term) += FIRST(expr2) 

+= { +, -, εεεε }

+= { +, -, FOLLOW(expr)}

+= { +, -, EOF }



Example

# Production rule

1

2

3

4

5

goal    →   expr

expr → term  expr2

expr2 → +  term expr2

|     - term expr2

|    εεεε

FOLLOW(term2) += FOLLOW(term)

FOLLOW(factor)  = ?

FOLLOW(factor) += FIRST(term2)

+= { *, / , εεεε }
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5

6

7

8

9

10

11

|    εεεε
term    →  factor term2

term2  →  *  factor  term2

|   /  factor   term2

|   εεεε
factor  → number

|   identifier

+= { *, / , εεεε }

+= { *, / , FOLLOW(term)}

+= { *, / , +,  -, EOF }



Computing FOLLOW Sets

FOLLOW(G) ←←←← {EOF }

for each A ∈ NT, FOLLOW(A) ←←←← Ø

while (FOLLOW sets are still changing)

for each p ∈ P, of the form A→→→→ … B1B2…Bk

FOLLOW(Bk) ←←←← FOLLOW(Bk) ∪∪∪∪ FOLLOW(A)

TRAILER ←←←← FOLLOW(A)

7272

TRAILER ←←←← FOLLOW(A)

for i ←←←← k down to 2

if εεεε ∈ FIRST(Bi ) then

TRAILER ←←←← TRAILER ∪∪∪∪ ( FIRST(Bi ) – { ε } )

else

TRAILER ←←←← FIRST(Bi) 

FOLLOW(Bi-1 ) ←←←← FOLLOW(Bi-1) ∪∪∪∪ TRAILER 



LL(1) property

� Def: a grammar is LL(1) iff

A → α and A → β and
FIRST+(A → α) ∩ FIRST+(A → β) = ∅

� Problem

� What if my grammar is not LL(1)?

7373

What if my grammar is not LL(1)?

� May be able to fix it, with transformations

� Example:

# Production rule

1

2

3

A → αααα ββββ1111

|    αααα ββββ2222

|    αααα ββββ3333

# Production rule

1

2

3

4

A → αααα Z

Z → ββββ1111

| ββββ2222

|   ββββ3333



Left factoring

� Graphically

# Production rule

1

2

3

A → α   βα   βα   βα   β1111

|    α   βα   βα   βα   β2222

|    α   βα   βα   βα   β

A

αβ1

αβ2

7474

3 |    α   βα   βα   βα   β3333

# Production rule

1

2

3

A → α α α α Z

Z → ββββ1111

| ββββ2222

|   ββββ3333

αβ3

αZ

β1

β3

β2
A



Expression example

After left factoring:

# Production rule

1

2

3

factor → identifier

|  identifier [ expr ]

|  identifier ( expr )

First+(1) = {identifier}

First+(2) = {identifier}

First+(3) = {identifier}

7575

After left factoring:

In this form, it has LL(1) property

# Production rule

1

2

3

4

factor → identifier post

post →  [ expr ]

|   ( expr )

|   εεεε

First+(1) = {identifier}

First+(2) = { [ }

First+(3) = { ( }

First+(4) = ?

= Follow(post)
= {operators}



Left factoring

� Graphically

factor

identifier

[

(

]

)

identifier

identifier

expr

expr

7676

( )identifier expr

No basis for choice

factor [

(

]

)

identifier expr

expr

εεεε

Next word determines choice



Left factoring

� Question
Using left factoring and left recursion elimination, can we turn an 

arbitrary CFG to a form where it meets the LL(1) condition?

� Answer

Given a CFG that does not meet LL(1) condition, it is undecidable

7777

Given a CFG that does not meet LL(1) condition, it is undecidable
whether or not an LL(1) grammar exists

� Example

{an 0 bn | n ≥ 1}  ∪ {an 1 b2n | n ≥ 1}   has no LL(1) grammar

aaa0bbb

aaa1bbbbbb



Limits of LL(1)

� No LL(1) grammar for this language:

{an 0 bn | n ≥ 1}  ∪ {an 1 b2n | n ≥ 1}   has no LL(1) grammar

# Production rule

7878

# Production rule

1

2

3

4

5

6

G  →   a A  b

|    a B  bb

A  →   a A  b

|    0

B  →   a B  bb

|    1

Problem: need an unbounded 
number of a characters before you 
can determine whether you are in 
the A group or the B group



Predictive parsing

� Predictive parsing

� The parser can “predict” the correct expansion

� Using lookahead and FIRST and FOLLOW sets

7979

� Two kinds of predictive parsers

� Recursive descent

Often hand-written

� Table-driven

Generate tables from First and Follow sets



Recursive descent

� This produces a parser with six 
mutually recursive routines:

� Goal

� Expr

� Expr2

� Term

# Production rule

1

2

3

4

5

goal    →   expr

expr → term  expr2

expr2 → +  term expr2

|     - term expr2

|    εεεε

8080

� Term

� Term2

� Factor

� Each recognizes one NT or T

� The term descent refers to the 
direction in which the parse tree is 
built.

5

6

7

8

9

10

11

12

|    εεεε
term    →  factor term2

term2  →  *  factor  term2

|   /  factor   term2

|   εεεε
factor  → number

|   identifier

|   (  expr )



Example code

� Goal symbol:

main()

/* Match goal −−−−−−−−>>>> expr */

tok = nextToken();

if (expr() && tok == EOF)

then proceed to next step;
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� Top-level expression

then proceed to next step;

else return false;

expr()

/* Match expr −−−−−−−−>>>> term expr2 */

if (term() && expr2());
return true;

else return false;



Example code

� Match expr2

expr2()

/* Match expr2 −−−−−−−−>>>> + term expr2 */

/* Match expr2 −−−−−−−−>>>> - term expr2 */

if (tok == ‘+’ or tok == ‘-’)

Check FIRST and 
FOLLOW sets to 

distinguish
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if (tok == ‘+’ or tok == ‘-’)

tok = nextToken();

if (term())

then if (expr2())
return true;

else return false;

/* Match expr2 --> empty */

return true;

distinguish



Example code
factor()

/* Match factor --> ( expr ) */

if (tok == ‘(‘)

tok = nextToken();

if (expr() && tok == ‘)’)

return true;

else

8383

else

syntax error: expecting )

return false

/* Match factor --> num */

if (tok is a num)

return true

/* Match factor --> id */

if (tok is an id)

return true;



Top-down parsing

� So far:

� Gives us a yes or no answer

� Is that all we want?

� We want to build the parse tree

� How?

8484

� How?

� Add actions to matching routines

� Create a node for each production

� How do we assemble the tree?



Building a parse tree

� Notice:

� Recursive calls match the shape of the tree

main

expr

term

8585

� Idea: use a stack

� Each routine:
� Pops off the children it needs

� Creates its own node

� Pushes that node back on the stack

term

factor

expr2

term



Building a parse tree

� With stack operations

expr()

/* Match expr −−−−−−−−>>>> term expr2 */

if (term() && expr2())

expr2_node = pop();
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expr2_node = pop();

term_node = pop();

expr_node = new exprNode(term_node,
expr2_node)

push(expr_node);
return true;

else return false;



Generating (automatically) 
a top-down parser

� Two pieces:

� Select the right RHS

� Satisfy each part

First piece:

# Production rule

1

2

3

4

5

goal    →   expr

expr → term  expr2

expr2 → +  term expr2

|     - term expr2

|    εεεε

8787

� First piece:

� FIRST+() for each rule

� Mapping:

NT × Σ → rule#

Look familiar? Automata?

5

6

7

8

9

10

11

|    εεεε
term    →  factor term2

term2  →  *  factor  term2

|   /  factor   term2

|   εεεε
factor  → number

|   identifier



Generating (automatically)
a top-down parser

� Second piece

� Keep track of progress

� Like a depth-first search

� Use a stack

� Idea:

# Production rule

1

2

3

4

5

goal    →   expr

expr → term  expr2

expr2 → +  term expr2

|     - term expr2

|    εεεε

8888

� Idea:

� Push Goal on stack

� Pop stack:

� Match terminal symbol, or

� Apply NT mapping, push RHS 

on stack

5

6

7

8

9

10

11

|    εεεε
term    →  factor term2

term2  →  *  factor  term2

|   /  factor   term2

|   εεεε
factor  → number

|   identifier

This will be clearer once we see the algorithm



Table-driven approach

� Encode mapping in a table

� Row for each non-terminal

� Column for each terminal symbol

Table[NT, symbol] = rule#

if symbol ∈ FIRST+(NT -> rhs(#))
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+,- *, / id, num

expr2 term expr2 error error

term2 εεεε factor term2 error

factor error error (do nothing)



Code

push the start symbol, G, onto Stack
top ← top of Stack
loop forever

if top = EOF and token = EOF then break & report success
if top is a terminal then

if top matches token then
pop Stack // recognized top
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Missing else’s for error conditions

pop Stack // recognized top
token ← next_token()

else   // top is a non-terminal
if TABLE[top,token] is A→ B1B2…Bk then

pop Stack // get rid of A
push Bk, Bk-1, …, B1  // in that order

top ← top of Stack


