
Compilers

Register allocationRegister allocation

Yannis Smaragdakis, U. Athens
(original slides by Sam Guyer@Tufts)

Where are we

Scanner Parser
Semantic

checker
chars tokens AST

Errors

Optimizations

22

IR lowering
Instruction

selection

Register

allocation

Checked

AST tuples

assembly

∞ registers

assembly

k registers
Assembler

Machine

code

Register allocation

� What are registers?

� Memory

� Very close to the processor – very fast to access

� On many architectures, required by ISA

� RISC – all computations use registers

33

� RISC – all computations use registers

� Pentium – many instructions register + memory

� Part of the memory hierarchy

� Top: close to CPU, fast, small

� Bottom: far from CPU, slow, large

Memory hierarchy

CPU

Registers

Level-1 cache

Farther away,

larger,
slower

Pentium

4 3.2 Ghz

Core 2

Duo

Athlon 64

1 cycle 1 cycle 1 cycle

2 cycles 3 cycles 3 cycles

44

Level-1 cache

Level-2 cache

Main memory

Virtual memory

2 cycles

(16 KB*)

3 cycles

(64 KB)

3 cycles

(128 KB)

19 cycles

(2 MB)

14 cycles

(2 MB)

13 cycles

(1 MB)

204 cycles 180 cycles 125 cycles

millions of

cycles

millions of

cycles

millions of

cycles

Memory hierarchy

� What is the compiler’s role in the
memory hierarchy?

� Virtual memory?

� Main memory?
� Heap layout

CPU

Registers

Level-1 cache

55

� Heap layout

� Prefetching

� Level-1 and level-2 cache?
� Many locality optimizations

� Loop transforms, tiling, strip mining

� Registers
� Compiler has direct control

Level-1 cache

Level-2 cache

Main memory

Virtual memory

Registers

� How important is register allocation?

� Widely recognized as one of the most important

“optimizations” performed by the compiler

� An order of magnitude compared to poor or no register

allocation

66

� Most other optimizations: at most ~ 10% to 20%

� Varies somewhat depending on machine

� Number of registers

� Architecture constraints on register use

� Speed of memory hierarchy

Using registers
� Software view

ISA: Assembly code and machine code

� Register names are explicit

� Like variables, names represent data dependences

� Hard to change this view – why?

� Machine view

77

� Machine view
� Actual machine may have more registers

� Why have more physical registers than ISA?

Renaming may occur inside the processor

At ISA level Physical

DEC Alpha 64 int+float 80 int, 72 float

IA-32 8 int 128 int

Register allocation

� What are we trying to do?

� Register allocation

� Decide which values will be kept in registers

� Register assignment

� Select specific registers for each value

88

� Select specific registers for each value

� Constraints

� Primary: limited number of registers

� Different kinds of registers -- integer vs floating point

� Special-purpose registers – SP

� Instruction requirements – x86 mul must use eax, adx

� Some values cannot go in registers

Register allocation

� What values can go in registers?

What does it mean to “allocate a variable in a register”?

� Most cases: variable becomes a register

� All uses and defs replaced with the register

� It has no storage on the stack

99

� It has no storage on the stack

� What is the implication of that decision?

� The compiler must be able to see all accesses

� For example: int x;

int * p = &x;

(*p) = 7;

foo(p);

Might be able to

handle (*p) = 7 case

Register allocation

� Primary problems to be solved:

� Usually more variables than registers

� Can’t use the same register for two variables that are live

at the same time

� Key insight:

1010

� Key insight:

We can cast this as a graph coloring problem (Lavrov, Chaitin)

� Nodes = program variables

� Edges = connect variables that are live at the same time

� “Interference graph” or “conflict graph”

Colors represent registers

Example

b = a + 2

c = b * b

b = c + 1

{a}

{a,b}

{a,c}

a b c

a

b c

1111

� Key idea: if we can color the graph with K colors,
then we can allocate the variables to K registers

Code

b = c + 1

return b*a

Live sets

{a,b}

Live ranges Interference
graph

Example

� Graph is 2-colorable

R2 = R1 + 2

R2 = R2 * R2

a

b c

1212

R2 = R2 + 1

return R2*R1

b c

= Register 1 (R1)

= Register 2 (R2)

Scope

� Simple formulation:

� Within a basic block – called local

� Live ranges are linear – just look at how they overlap

� What to do at basic block boundaries?

� Load all live vars into registers on entry

1313

� Load all live vars into registers on entry

� Store all live vars to memory on exit

� More sophisticated:

� Across the control-flow graph – called global

� Consider live ranges as “webs” of dependences

� Key: use the same graph coloring algorithm

Example

def y

def x

use y

def x

def y

1414

use ydef y

use x

def x

use x

use x

use y

Example

def y

def x

use y

def x

def y

1515

use ydef y

use x

def x

use x

use x

use y

Example

def y

def x

use y

def x

def y

1616

use ydef y

use x

def x

use x

use x

use y

Example

def y

def x

use y

def x

def y

1717

use ydef y

use x

def x

use x

use x

use y

Example

def y

def x

use y

def x

def y

1818

use ydef y

use x

def x

use x

use x

use y

Example

def y

def x

use y

def x

def y

1919

use ydef y

use x

def x

use x

use x

use y

Example

def y

def x

use y

def x

def y

2020

use ydef y

use x

def x

use x

use x

use y

Example

def y

def x

use y

def x

def y

s1

s2

2121

use ydef y

use x

def x

use x

use x

use y

s3

s4

Example

def y

def x

use y

def x

def y

s1

s2

Webs s1 and s2 interfere
Webs s2 and s3 interfere

2222

use ydef y

use x

def x

use x

use x

use y

s3

s4

Graph coloring

The big questions:

� Can we efficiently find a K-coloring of the graph?

� Can we efficiently find the optimal coloring of the graph

2323

(i.e., using the least number of colors)?

� What do we do when there aren’t enough colors (registers)

to color the graph?

Graph coloring

� The bad news:

Graph coloring is NP-complete

� Do we need the optimal algorithm?

� Works on any graph

2424

� Tells us for certain if a graph is K-colorable

� Observations

� We’ll never see the worst-case graph

� We don’t necessarily need the perfect coloring

� Compute an approximation with heuristics

Spilling

� What if the graph is not K-colorable?
� There aren’t enough registers to hold all variables

� Sadly: this happens a lot

� Pick a variable, spill it back to the stack
� Value lives on the stack

2525

� Value lives on the stack

� Must generate extra code to load and store it

� Need registers to hold value temporarily
� Simple approach: keep a few registers just for this purpose

� Better approach:

� Rewrite the code introducing a new temporary

� Use the temporary to “load” and “store” the spilled variable

� Rerun the liveness analysis and register allocation

Rewriting the code

� Example:

� Suppose v2 is selected for spilling and assigned to stack

location [SP-12]

� Add a new variable t23 just for this instruction:

add v1, v2

2626

� Rerun the whole algorithm

� Idea:

t23 has a short live range and (hopefully) doesn’t interfere

with other variables as much as v2

mov [SP-12], t23

add v1, t23

Graph coloring

� Assume you have K registers

Looking for K-coloring of interference graph

� Observation:

Any node with less than K neighbors (degree < K) must be

2727

colorable

� Why?

� Pick the color not used by any neighbor

� There must be one!

� This is the basis for Chaitin’s algorithm
(Chaitin, 1981)

Chaitin’s algorithm

Idea:

� Pick any vertex n with fewer than k neighbors
This is a k-colorable vertex

� Remove that vertex from the graph
Also: remove incident edges

2828

� Also: remove incident edges

� Key: this may result in some other nodes now having fewer
than k neighbors

� Now choose one of those vertices, continue…

� What if we get stuck?
Spill the variable whose node has more that k neighbors,
and continue

Chaitin’s Algorithm

1. While ∃ vertices with < k neighbors in GI

> Pick any vertex n such that n°< k and put it on the stack

> Remove that vertex and all edges incident to it from GI

• This will lower the degree of n’s neighbors

2. If GI is non-empty (all vertices have k or more neighbors) then:

2929

I

> Pick a vertex n (using some heuristic) and spill the live range
associated with n

> Remove vertex n from GI , along with all edges incident to it

> If this causes some vertex in GI to have fewer than k neighbors,
then go to step 1; otherwise, repeat step 2

3. Successively pop vertices off the stack and color them in the
lowest color not used by some neighbor

Chaitin’s Algorithm in Practice

2

3 Registers

3030

3

1 4 5

Stack

Chaitin’s Algorithm in Practice

2

3 Registers

3131

3

4 5

Stack

1

Chaitin’s Algorithm in Practice
3 Registers

3232

3

4 5

Stack

1

2

Chaitin’s Algorithm in Practice
3 Registers

3333

3

5

Stack

1

2

4

Chaitin’s Algorithm in Practice
3 Registers

Colors:

1:

3434

Stack

1

2

4

3

5

1:

2:

3:

Chaitin’s Algorithm in Practice
3 Registers

Colors:

1:

3535

5

Stack

1

2

4

3

1:

2:

3:

Chaitin’s Algorithm in Practice
3 Registers

Colors:

1:

3636

3

5

Stack

1

2

4

1:

2:

3:

Chaitin’s Algorithm in Practice
3 Registers

Colors:

1:

3737

3

4 5

Stack

1

2

1:

2:

3:

Chaitin’s Algorithm in Practice

2

3 Registers

Colors:

1:

3838

3

4 5

Stack

1

1:

2:

3:

Chaitin’s Algorithm in Practice

2

3 Registers

Colors:

1:

3939

3

1 4 5

Stack

1:

2:

3:

Improvements

Optimistic Coloring

(Briggs, Cooper, Kennedy, and Torczon)

� Observation:

� Some graphs may be k-colorable, even though all vertices

have k neighbors

4040

have k neighbors

� Example:

2 Registers:

2-colorable

Improvements

Optimistic Coloring

(Briggs, Cooper, Kennedy, and Torczon)

� Idea:

4141

� Don’t spill when we get stuck

� Remove k-neighbor vertices, as usual

� Push on stack in some priority order

� If popping and coloring fails, then spill and start over

Chaitin-Briggs Algorithm

1. While ∃ vertices with < k neighbors in GI

> Pick any vertex n such that n°< k and put it on the stack

> Remove that vertex and all edges incident to it from GI

2. If GI is non-empty (all vertices have k or more neighbors) then:

> Pick a vertex n (using some heuristic condition), push n on the

4242

> Pick a vertex n (using some heuristic condition), push n on the
stack and remove n from GI , along with all edges incident to it

> If this causes some vertex in GI to have fewer than k neighbors,
then go to step 1; otherwise, repeat step 2

3. Successively pop vertices off the stack and color them in the

lowest color not used by some neighbor

> If some vertex cannot be colored, then pick an uncolored
vertex to spill, spill it, and restart at step 1

Picking a spill candidate

� How important is choosing a spill candidate?

� Goal: minimize the performance impact

� Spilled variable is stored at each def, loaded at each use

� Higher degree nodes interfere with more variables

� Chaitin: minimize spill cost ÷÷÷÷ current degree

4646

� Chaitin: minimize spill cost ÷÷÷÷ current degree

� Many subtle variations

� Live range splitting

� More sophisticated spill cost estimation

� Impact on rest of the coloring problem

� Interaction with other optimizations – scheduling, copy

propagation

More spilling

� Problem:
� This approach turns a single large live range into many

small live ranges with many loads and stores

� Can we do better?

� Live range splitting
Choose a point in the live range -- insert a

4747

� Choose a point in the live range -- insert a
store followed by a load

� Divides the live range into two (or more pieces)

� Key: choose carefully to reduce the degree of nodes

x x0 x1

Another improvement
� Register coalescing

� We may be able to reduce the degree of vertices by

merging live ranges that are connected only by a copy

� Idea:

� Find a register copy “tb = ta”

� If ta and tb do not interfere, combine their live ranges

4848

� If ta and tb do not interfere, combine their live ranges

add t1, t2, a

. . .

mov a, b

mov a, c

. . .

add b, t3, t4

add c, t5, t6

a b c ab c

Allocation constraints

� How do we deal with architectural constraints?

� Register types (floating point versus integer)

� Reserved registers – the stack pointer

� Instruction-level constraints

� Instruction requirements – x86 mul must use eax, adx

4949

� We can encode constraints in the graph

� Precolored nodes (for required registers)

� Additional nodes and edges for constraints

� Example: explicit nodes for physical registers

a

b

c r1

Bin Packing

Different approach

� What is the bin packing problem?

� Some number of objects of different “weights” or “volumes”

� Series of bins of fixed size

� Pack objects using the fewest number of bins

5050

� Pack objects using the fewest number of bins

� How hard is this problem?

� Mapping to register allocation?

� “Objects” are live ranges

� “Bins” are registers

� Can use existing bin packing approximations

Another approach

� What if graph coloring and bin packing are still too
expensive?

� How big can interference graph get?
� Worst-case quadratic size (edges)

Example: in a just-in-time compiler

5151

Example: in a just-in-time compiler

� Compilation time is critical

� Compiler needs to be simple and fast

� Alternative: Linear scan register allocation
(Poletto, 1999)

� Make one pass over the list of variables

� Spill variables with longest lifetimes – those that would tie up a
register for the longest time

Linear scan

� First: Compute live intervals

� Linearize the IR – usually just a list of tuples/instructions

� A live interval for a variable is a range [i,j]

� The variable is not live before instruction i

� The variable is not live after instruction j

5252

� Idea: overlapping live intervals imply interference

� Given R registers and N overlapping intervals

� R intervals allocated to registers

� N-R intervals spilled to the stack

� What does this mean about the linearization?

� Key: choosing the right intervals to spill

Example

a

b

c

d

e

Variables

5353

� How many registers do we need?

� What would the interference graph look like?

� What if we only have two registers?

e

Linearization (live ranges)

Algorithm

� Sort live intervals

� In order of increasing start points

� Quickly find the next live interval in order

� Maintain a sorted list of active intervals

5454

� In order of increasing end points

� Quickly find expired intervals

� At each step, update active as follows

� Add the next interval from the sorted list

� Remove any expired intervals (those whose end points are

earlier that the start point of the new interval)

Algorithm

� Extra restriction:

Never allow active to have more than R elements

� Spill scenario:

active has R elements, new interval doesn’t cause any

5555

active has R elements, new interval doesn’t cause any

existing intervals to expire

� Heuristic:

Spill the interval that ends last (furthest from current

position)

� Has optimal behavior for straight-line code

� Appears to work well even in linearized code

Example (2 registers)

a

b

c

d

e

Variables

5656

� Step 1: active = {a}

� Step 2: active = {a,b}

� Step 3: active = {a,b,c} � spill c � active = {a,b}

� Step 4: a and b expire, active = {d}

� Step 5: active = {d,e}

1 2 3 4 5

Allows this code to

use 2 registers,

with one spill

Linear scan

� Register allocation
� Each new interval added to active gets the next register

� Registers freed as intervals are removed

� Resulting code:
within 10% of graph coloring

5757

within 10% of graph coloring

� Compilation time:
2 – 3 times faster than graph coloring

� Architectural considerations
� How sensitive is architecture to register allocation?

� Many registers (Alpha, PowerPC): use linear scan

� Few registers (x86): use graph coloring

