Top Down Parsing

e Start at the root of the parse tree and
grow toward leaves.

* Pick a production and try to match the
iINput.

* Repeat until the fringe of the parse tree
matches the input string.

Grammars and Parsers

LL(1) parsers

- Left-to-right input
- Leftmost derivation
-1 symbol of look-ahead

L L(1) Grammars

e Def: a grammar is LL(1) iff

A—aand A = (3and
FIRST+(A = a) n FIRST+(A = @) = @

LL(1) grammars are:

* not ambiguous and
* Not left-recursive

Example

|Production rule

1 [Tern ->'0".."9" 7" Tern ;" Tern
| '0..9

e Problem?

 How do we predict which production to use?

|_eft factoring

|Production rule

1 [Tern -> '0..'9" TernTail

2 |TernTail -> 7" Tern ;" Tern
3 | €

FIRST and FOLLOW sets

Production rule
Tern -> '0..'9" TernTail

TernTail -> 7' Tern ;' Tern

w N — |

_RST
ST
RST

FOLLOW(Tern) ={ "', EOF }
FOLLOW(TernTail) = FOLLOW(Tern) ={ "', EOF }

N
e

L=

e

ETETNN

FIRST+ sets

|Production rule
1 |Tern -> '0'..'9" TernTail

N

TernTail -> 7' Tern ;' Tern
| €

w

FIRST+(#1) = {'0' ..'9')
FIRST+(#2) = { ‘7')
FIRST+(#3) =

FIRST(#3) U FOLLOW(TernTail) =
le, "' EOF]}

Table-driven approach

Tern '0..9 TernTail error error error

TernTail error £ ?" Tern ;' Tern £

Recursive descent

e Define a function for each nonterminal.

e Have these functions call each other based
on the lookahead token.

e The term descent reters to the direction in which
the parse tree Is built.

