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ABSTRACT 
In this paper, we present the first automated system-level 
analysis of multicore CPUs based on ARMv8 64-bit architecture 
(8-core, 28nm X-Gene 2 micro-server by AppliedMicro) when 
pushed to operate in scaled voltage conditions. We report detailed 
system-level effects including SDCs, corrected/uncorrected errors 
and application/system crashes. Our study reveals large voltage 
margins (that can be harnessed for energy savings) and also large 
Vmin variation among the 8 cores of the CPU chip, among 3 
different chips (a nominal rated and two sigma chips), and among 
different benchmarks. 

Apart from the Vmin analysis we propose a new composite 
metric (severity) that aggregates the behavior of cores when 
undervolted and can support system operation and design 
protection decisions. Our undervolting characterization findings 
are the first reported analysis for an enterprise class 64-bit 
ARMv8 platform and we highlight key differences with previous 
studies on x86 platforms. We utilize the results of the system 
characterization along with performance counters information to 
measure the accuracy of prediction models for the behavior of 
benchmarks running in particular cores. Finally, we discuss how 
the detailed characterization and the prediction results can be 
effectively used to support design and system software decisions 
to harness voltage margins for energy efficiency while preserving 
operation correctness. Our findings show that, on average, 19.4% 
energy saving can be achieved without compromising the 
performance, while with 25% performance reduction, the energy 
saving raises to 38.8%.1 

CCS CONCEPTS 
• Hardware → Power and energy → Power estimation and 
optimization; • Hardware → Robustness → Hardware 
reliability → Process, voltage and temperature variations 
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1 INTRODUCTION 
During chip fabrication, process variations can affect transistor 
dimensions (length, width, oxide thickness etc. [1]) which have 
direct impact on the threshold voltage of a MOS device [2]. As 
technology scales, the percentage of these variations compared to 
the overall transistor size increases and raises major concerns for 
designers, who aim to improve energy efficiency. This variation 
is classified as static variation and remains constant after 
fabrication. On top of that, transistor aging and dynamic 
variation in supply voltage and temperature, caused by different 
workload interactions, is also of primary importance. Both static 
and dynamic variations lead microprocessor architects to apply 
conservative guardbands (operating voltage and frequency 
settings) to avoid timing failures and guarantee correct operation, 
even in the worst-case conditions excited by unknown workloads 
[3, 4].  

However, these guardbands impede the low power 
consumption and the high performance, which can be derived by 
reducing the supply voltage and increasing the operation 
frequency, respectively. To bridge the gap between energy 
efficiency and performance improvements, several hardware and 
software techniques have been proposed, such as Dynamic 
Voltage and Frequency Scaling (DVFS) [5]. The premise of DVFS 
is that the microprocessor’s workloads as well as the cores’ 
activity vary. Voltage and frequency-scaling during epochs where 
peak performance is not required enables a DVFS-capable system 
to achieve average energy-efficiency gains without affecting 
peak-performance adversely. At a specific frequency of operation, 
energy-efficiency gains are limited by guardbands that guarantee 
correct operation in the presence of dynamic margins. 
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Several techniques have been proposed [6, 7] that eliminate a 
subset of these guardbands for efficiency gains over and above 
what is dictated by design guardbands. However, all of these 
techniques are associated with significant design, test and 
measurement overheads that limit its application in the general 
case. For instance, in the Razor technique [6], support for timing-
error detection and correction has to be explicitly designed into 
the processor micro-architecture which has significant 
verification overheads. Similarly, in adaptive-clocking approaches 
[7], extensive test and measurement effort is required for system 
sign-off. Ensuring the eventual success of these techniques 
requires a deep understanding of dynamic margins and their 
manifestation during normal code execution. 

Revealing and fine-grained harnessing the pessimistic 
design-time voltage margins offers a significant opportunity for 
energy-efficient computing in multicore CPUs. The full energy 
savings potential can be exposed only when accurate core-to-core, 
chip-to-chip, and workload-to-workload voltage scaling variation 
is measured. When all these levels of variation are identified, 
system software can effectively allocate hardware resources to 
software tasks matching the capabilities of the former 
(undervolting potential of the CPU cores) and the requirements of 
the latter (for energy or performance). 

Although characterization studies for CPUs and GPUs have 
been presented recently [4, 8 – 11], they primarily focus on 
coarse-grained identification of the Vmin values, i.e. the voltage 
level at which no type of anomaly is observed in program 
execution of a particular core. Furthermore, these studies focus 
primarily on x86 and Power-series enterprise-class server systems 
whose summary is shown in Table 1; studies on GPU chips have 
been reported as well. 

Table 1: Summary of studies on commercial chips. 

1.1 Contributions of this Work 
In this paper, we present the first detailed system-level voltage 
scaling characterization study for ARMv8-based multicore CPUs 
manufactured in 28nm. The study’s backbone is a fully automated 
system-level framework built around AppliedMicro’s (APM) X-
Gene 2 micro-server. The automated infrastructure aims to 
increase the throughput of massive undervolting campaigns that 
require multiple benchmarks execution at several voltage supply 
levels of all individual cores. The characterization process 
requires minimal human intervention and records all possible 
abnormalities due to undervolting: silent data corruptions (SDC, 
i.e. program output mismatches without any hardware error 
notification), corrected errors, uncorrected (but detected) errors 

(provided by Linux EDAC driver [12]), as well as application and 
system crashes [13]. 

A second contribution of the paper towards the 
formalization of the behavior in undervolting conditions is the 
definition of a simple consolidated function. Severity function 
aggregates the effects of reduced voltage operation in the cores of 
a multicore CPU by assigning values to the different abnormal 
observations. The lower the voltage level, the higher the value of 
the severity function. The severity function assists an 
undervolting classification of the cores of a CPU chip for a given 
benchmark: different core, benchmark and voltage values lead to 
different severity patterns, some with an abrupt increase to the 
severity (i.e. the benchmark keeps executing correctly until a 
voltage level at which the system crashes), while others have a 
“smooth” severity increase while voltage is reduced (the system 
remains responsive throughout a range of voltage values but it 
generates ECC errors or produces SDCs). The fine-grained 
analysis of the behavior of the machine using the severity 
function can assist energy efficiency decisions for task-to-core 
allocation by the system software. Our comprehensive 
characterization for ARMv8-based multicore CPUs confirms that 
a different microarchitecture, circuit design or manufacturing 
technology exhibits different abnormal behavior when operating 
beyond nominal voltage conditions. Unlike previous studies for 
Intel systems with Itanium CPUs [9, 10], in our system silent data 
corruptions (alone or with ECC errors) appear at higher voltage 
levels than corrected errors alone for a significant set of 
benchmarks. In the previous studies [9, 10], the range of voltage 
levels with corrected errors only, offer a significant opportunity 
for energy savings without jeopardizing correctness of operation; 
this is not the case in the APM X-Gene 2 ARMv8-based CPUs of 
our study. Understanding the behavior in non-nominal conditions 
is very important for making software and hardware design 
decisions for improved energy efficiency that preserves 
correctness of operation. 

Furthermore, we feed the characterization results along with 
performance counter measurements to a linear regression based 
statistical analysis model to predict both the Vmin and the severity 
behavior of cores and benchmark combinations. Our study 
reveals that a simple linear regression model is efficient to predict 
the severity behavior of a core running a particular benchmark in 
off-nominal voltage conditions. The same model is also capable of 
accurately predicting the Vmin, but this is also the case for the 
naïve prediction model of averaging the Vmin values of the 
training dataset due to the limited range of dynamic Vmin 
variation. We show that we can potentially achieve on average 
19.4% energy savings without compromising the performance, 
while with 25% performance loss we can achieve 38.8% energy 
savings. Τhe characterization modeling and the prediction results 
of our study can be effectively used to support design and system 
software decisions to harness voltage margins and thus improve 
energy efficiency while preserving operation correctness. 

2 EXPERIMENTAL SETUP 
In this section, we describe the system architecture, voltage and 
frequency domains of the APM X-Gene 2 micro-server. We also 

ISA Processor Technology Ref. 

POWER 7 / 
7+ 

IBM Power 750, 
780 

45 / 32 nm [7, 8] 

x86 – IA64 
extension 

Intel Itanium 
9560 

32 nm [9, 10] 

Nvidia Fermi 
/ Kepler 

GTX 480, 580, 
680, 780 

40 / 28 nm [11] 

ARMv8 APM X-Gene 2 28 nm This work 
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present the automated characterization framework, with which 
we characterize three X-Gene 2 chips, and is the first contribution 
of this work. 

2.1 System Architecture 
The APM X-Gene 2 micro-server consists of eight 64-bit ARMv8-
compliant cores. The X-Gene 2 architecture offers high-end 
processing performance and capabilities. For example, the X-
Gene 2 subsystem features a Power Management processor 
(PMpro) and a Scalable Lightweight Intelligent Management 
processor (SLIMpro) to enable breakthrough flexibility in power 
management, resiliency and end-to-end security for a wide range 
of applications. The dedicated PMpro processor provides 
advanced power management capabilities, such as multiple power 
planes and clock gating, thermal protection circuits, Advanced 
Configuration Power Interface (ACPI) power management states 
and external power throttling support. The dedicated SLIMpro 
processor monitors system sensors, configures system attributes 
(e.g. regulate supply voltage, change DRAM refresh rate etc.) and 
accesses all error reporting infrastructure, using an integrated I2C 
controller as the instrumentation interface between the X-Gene 2 
cores and this dedicated processor. SLIMpro can be accessed by 
the system’s running Linux Kernel. 

X-Gene 2 has three independently regulated power domains 
(as shown in Figure 1): 

PMD (Processor Module): Each PMD contains two ARMv8 
cores. Each of the two cores has separate instruction and data L1 
caches, while they share a unified L2 cache. The operating 
voltage of all four PMDs together can change with a granularity 
of 5mV beginning from 980mV. While PMDs operate at the same 
voltage, each PMD can operate in a different frequency. The 
frequency can range from 300 MHz up to 2.4 GHz at 300 MHz 
steps. 

 

 

Figure 1: X-Gene 2 block diagram. 

PCP (Processor Complex)/SoC: It contains the L3 cache, 
the DRAM controllers, the central switch and the I/O bridge. The 
PMDs do not belong to the PCP/SoC power domain. The voltage 

of the PCP/SoC domain can be independently scaled downwards 
with a granularity of 5mV beginning from 950mV. 

Standby Power Domain: This includes the SLIMpro and 
PMpro microcontrollers and the interfaces for the I2C buses. 

Table 2 summarizes the most important architectural and 
microarchitectural parameters of the APM X-Gene 2 micro-server 
that is used in the paper. 

Table 2: Basic parameters of APM X-Gene 2. 

2.2 Characterization Framework 
The primary goals of the characterization framework used in this 
study are: (1) to identify the target system’s limits when it 
operates at scaled voltage and frequency conditions, and (2) to 
record/log the effects of a program’s execution under these 
conditions. The framework provides the following features: 

§ compares the outcome of the program with the correct 
output of the program when the system operates in 
nominal conditions to record Silent Data Corruptions 
(SDCs), 

§ monitors the exposed corrected and uncorrected errors 
from the hardware platform’s error reporting 
mechanisms, 

§ recognizes when the system is unresponsive and 
restores it automatically, 

§ monitors system failures (crash reports, kernel hangs, 
etc.), 

§ determines the safe, unsafe and non-operating voltage 
regions for each application for all frequencies, and 

§ performs massive repeated executions of the same 
configuration. 

The characterization framework (outlined in Figure 2) is 
fully automated, easily configurable by the user and can be 
embedded to any Linux-based system, with similar voltage and 
frequency regulation capabilities. To completely automate the 
characterization process, and due to the frequent and unavoidable 
system crashes that occur when the system operates in reduced 
voltage levels, we set up a Raspberry Pi board (see Figure 2) 
connected externally to the X-Gene 2 board as a watchdog 
monitor. The Raspberry Pi is physically connected to both the 
Serial Port, as well as to the Power and Reset buttons of the 
system board to enable physical access and remote control to the 
system. 

L3

PCP/SoC

0 1

L1I

L1D L1D

L2

PMD 0
L1I

2 3

L1I

L1D L1D

L2

PMD 1
L1I

4 5

L1I

L1D L1D

L2

PMD 2
L1I

6 7

L1I

L1D L1D

L2

PMD 3
L1I

PMpro SLIMpro

MCU MCU MCU MCU

DDR3 SDRAM

PMD

Standby 
Power Domain

Parameter Configuration 

ISA ARMv8 (AArch64, AArch32, Thumb) 

Pipeline 64-bit OoO (4-issue) 

CPU 8 cores 

Core clock 2.4 GHz 
L1 Instr. cache 32KB per core (Parity Protected) 

L1 Data cache 32KB per core (Parity Protected) 

L2 cache 256KB per PMD (ECC Protected) 

L3 cache 8MB (ECC Protected) 

Technology 28 nm 

Max TDP 35 W 
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Figure 2: Characterization framework layout. 

As shown in Figure 2, the characterization framework 
consists of three phases: initialization, execution, and parsing. 
During the initialization phase, a user can declare a benchmark 
list with corresponding input datasets to run in any desirable 
characterization setup. The characterization setup includes the 
voltage and frequency (V/F) values on which the experiment will 
take place and the cores where the benchmark will be run. The 
characterization setup depends on the power domains supported 
by the chip, but our framework is easily extensible to support the 
power domain features of different CPU chips. The execution 
phase consists of multiple runs of the same benchmark, each one 
representing the execution of the benchmark in a pre-defined 
characterization setup. The set of all the characterization runs 
running the same benchmark with different characterization 
setups represents a campaign. 

In the parsing phase of our framework, all log files that are 
stored during the execution phase are parsed in order to provide a 
fine-grained classification of the effects observed for each 
characterization run. Note that, each run is correlated to a specific 
benchmark and characterization setup. The categories that are 
used for our classification are summarized in Table 3, but the 
parser can be easily extended according to the user’s needs. For 
instance, the parser can also report the exact location that the 
correctable errors occurred (e.g. the cache level, the memory, etc.) 
using the logging information provided by the execution phase. 
At the end of the parsing step, all the collected results concerning 
the characterization (according to Table 3) and the severity 
function of each run are reported in CSV files. 

2.2.1 Characterization Challenges. In this section, we discuss 
the most important challenges that were taken into consideration 
for the solid development of the characterization framework to 
ensure correct and accurate results. 

Safe Data Collection. Given that a system operating 
beyond nominal conditions often has unexpected behaviors (e.g. 
file system driver failures), there is need to correctly identify and 
store all the essential information in log files (to be subsequently 
parsed and analyzed). The automated framework was developed 
to collect and store safely all the necessary information about the 

experiments. Therefore, after each run of the benchmark beyond 
nominal voltage conditions, the framework restores the 
microprocessor in nominal voltage conditions to store the log 
files and then it continues to the next experiment. 

Table 3: Effects classification. 
Effect Description 

ΝΟ (Normal 
Operation) 

The benchmark was successfully completed 
without any indications of failure. 

SDC (Silent 
Data 

Corruption) 

The benchmark was successfully completed, 
but a mismatch between the program output 

and the correct output was observed. 

CE (Corrected 
Error) 

Errors were detected and corrected by the 
hardware (provided by Linux EDAC driver). 

UE 
(Uncorrected 

Error) 

Errors were detected, but not corrected by 
the hardware (provided by Linux EDAC 

driver [12]). 

AC (Application 
Crash) 

The application process was not terminated 
normally (the exit value of the process was 

different than zero). 

SC (System 
Crash) 

The system was unresponsive; meaning that 
the X-Gene 2 is not responding or the 

timeout limit was reached. 

 
Failure Recognition. Another challenge is to recognize and 

distinguish the system and program crashes or hangs. This is a 
very important feature for the parsing phase to easily identify and 
classify the final results, with the most possible distinct 
information concerning the characterization. 

Reliable Cores Setup. Another major challenge we also 
faced is that the characterization of a system is performed 
primarily by using properly chosen programs in order to provide 
diverse behaviors and expose all the potential deviations from 
nominal conditions. It is thus important to run the selected 
benchmarks in a reliable cores setup. This means that the cores, on 
which the benchmark runs, must be isolated and unaffected from 
the other active processes of the kernel in order to capture only 
the effects of undervolting on the studied benchmark. Further, to 
avoid any abnormal behavior sourcing from other cores of the 
microprocessor (not the one under characterization) and due to 
the fact that all the PMDs are in the same power domain, the 
framework sets the lowest frequency to all cores (300 MHz) but 
keeps the frequency high to the cores under characterization. 

Massive Iterative Execution. The non-deterministic 
behavior of the characterization results due to several 
microarchitectural features makes it necessary to repeat the 
experiments multiple times with the same configuration to 
capture the divergences that may occur during different runs of 
the same configuration. 

3 SYSTEM CHARACTERIZATION 
We study the behavior of 3 different X-Gene 2 chips by using 
representative benchmarks from the SPEC CPU2006 suite to 

Initialization
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Benchmark

Results

Voltage 
Reduction

Configuration

Reset Switch

Power Switch

Watchdog 
monitor
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Result 
Parsing Final CSV
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Raw data

Cloud
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explore the voltage guardbands for each core of the chip, and thus 
to detect the safe Vmin in which the benchmarks can be executed 
correctly. We also study any abnormal behavior that can be 
exposed (SDC, ECC errors, crashes, etc.) below the safe Vmin 

levels, for a comprehensive characterization. We present our 
findings for three different chips: TTT, TFF, and TSS. The TTT 
part is the “normal” part. The TFF is a fast corner part, which has 
high leakage but at the same time can operate at higher 
frequency. The TSS part is also a corner part which has low 
leakage and works at lower frequency. All chips have maximum 
frequency equal to 2.4 GHz, however, the TSS chip may have a 
lower voltage guardband than the TTT and TFF chips due to its 
lower power leakage. 

3.1 Regions of Operation 
Using the automated framework presented in subsection 2.2, we 
extensively characterize the three X-Gene 2 chips. The 
characterization process can reveal for each core of the CPU three 
different regions of operation when the microprocessor operates 
beyond nominal voltage conditions. These are the safe and unsafe 
operating regions and the region in which the system cannot 
operate (crash region).  

To isolate the impact of temperature that can affect our 
results, apart from the isolation of system processes (see 
subsection 2.2.1), we also control the temperature by adjusting 
the CPU’s fan speed accordingly. We stabilize the temperature at 
43°C, and thus, all benchmarks complete their execution at the 
same temperature. In Figure 4 we present the results for 10 SPEC 
CPU2006 benchmarks [14]. All programs ran on a single core in 
each PMD at 2.4 GHz, while the remaining six cores (the other 3 
PMDs) reliably operated at 300 MHz (see explanation in 
subsection 2.2.1). In order to consider the non-deterministic 
behavior of such experiments and maintain their statistical 
importance, we ran every undervolting campaign 10 times. Figure 
4 presents in detail for all benchmarks the highest Vmin values and 
the highest crash voltage values of the ten campaigns for the 
three different chips and all the cores of each chip. In all 
benchmarks, we can notice the three regions of operation 
according to the collected results. The regions are: 

§ Safe region (blue): The characterization runs that 
correspond to this region had a normal operation (NO) 
without any SDCs, errors or crashes.  

§ Unsafe region (grey): The characterization runs that 
correspond to this region generate an abnormal 
behavior (SDC, CE, UE, AC) but not a system crash. 

§ Crash region (black): This region includes voltage 
values in which at least one characterization run led to 
a system crash. 

3.2 Vmin Experimental Results 
We experimentally obtain the Vmin values of the 10 SPEC 
CPU2006 benchmark on the three X-Gene 2 chips (TTT, TFF, 
TSS), running the entire time-consuming undervolting 
experiment ten times for each benchmark. These experiments 
were performed during 6 months on a single X-Gene 2 machine. 
This part of our study focuses on a quantitative analysis of the 

safe Vmin for diverse chips of the same architecture in order to 
expose the potential guardbands of each chip, as well as to 
quantify how the program behavior affects the guardband and to 
measure the core-to-core and chip-to-chip variation. 

The voltage guardband for each program is the smallest 
(safe) margin between the nominal voltage of the microprocessor 
and its Vmin. Our experiments were performed in two different 
frequencies: the highest available frequency of the X-Gene 2, 
which is 2.4 GHz, and 1.2 GHz. It is essential to highlight that the 
X-Gene 2 supports clock skipping and clock division, which, in 
combination, set the effective frequency of the PMD relative to its 
clock source. Clock ratios greater or less than 1/2 are 
implemented via clock skipping on the input clock. Clock ratio 
equal to 1/2 is implemented via clock division on the input clock. 
This means that, clock frequencies greater than 1.2 GHz have 
similar behavior as in 2.4 GHz, and frequencies less than 1.2 GHz 
have similar behavior as in 1.2 GHz. For this reason, we haven’t 
characterized the chips in the intermediate frequencies. 

 

Figure 3: Vmin results at 2.4 GHz for 10 SPEC CPU2006 
programs on 3 different X-Gene 2 chips (TTT, TFF, TSS). 

In the “normal” TTT part running at 1.2 GHz we observed 
that all programs have safe Vmin at 760mV for all cores. 
Furthermore, no program in any core exposes any abnormal 
behavior (SDC, CE, crash, etc.) after the Vmin and before the 
system crash. We observe only system crashes below the safe 
Vmin. On the other hand, in the maximum frequency (and this is 
also the expectation for all intermediate frequencies between 2.4 
GHz and 1.2 GHz as we described before) we observed 
divergences of the Vmin values as shown in Figure 3 (blue line). 
For a significant number of benchmarks, we can see variations 
between different programs and different chips. Figure 3 
represents the most robust core for each chip, and for these 
programs the Vmin varies from 885mV to 860mV for TTT, from 
885mV to 870mV for TFF and from 900mV to 870mV for TSS. 
Considering that the nominal voltage for the X-Gene 2 is 980mV, 
there is a significant reduction of voltage without affecting the 
correct execution of programs, which is equal to at least 18.4% for 
the TTT and TFF chip, and 15.7% for the TSS chip. We also notice 
in Figure 3 that the workload-to-workload variation remains the 
same across the 3 chips of the same architecture; however, there 
is a relatively large variation among the chips. This means that 
there is a program dependency of Vmin behavior in all chips. 
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Figure 4: X-Gene 2 characterization results for 10 SPEC CPU2006 benchmarks (10 runs each) on three different chips (TTT, 
TFF, TSS). Blue represents the Safe region, grey represents the Unsafe region and black represents the Crash region. 
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3.3 Process Variation 
Figure 4 presents the detailed information about the safe Vmin for 
all benchmarks and cores of the three chips, as well as the range 
of the unsafe region. In this section, we discuss the core-to-core 
and chip-to-chip variation. 

Core-to-Core Variation: There are significant divergences 
among cores for the same benchmark due to process variation. 
Process variations can affect transistor dimensions (length, width, 
oxide thickness etc.) which have direct impact on the threshold 
voltage of a MOS device, and thus, on the guardband of each core. 
This variation among cores of the same chip can result in high 
energy savings by using the appropriate task scheduling in 
combination with a comprehensive prediction. We present and 
discuss this method in the following sections (Section 4 and 5). 

Chip-to-Chip Variation: As Figure 4 shows, PMD 2 (cores 
4 and 5) is the most robust PMD for all three chips (up to 3.6% 
more voltage reduction compared to the most sensitive cores). 
Green line in Figure 4 presents the average Vmin, and the Red line 
represents the average Crash voltage point for each chip. Thus, 
we can notice that the TFF chip has lower Vmin points than the 
TTT chip, in contrast to TSS (the chip with lower leakage), which 
has significantly higher Vmin points than the other two chips, and 
thus, lower power savings. For the unsafe region, on the other 
hand, we notice only small divergences among the chips. 

3.4 Abnormal Behaviors below Vmin 
Previous studies on Intel Itanium CPUs [9, 10] have shown a large 
region of voltage values that contains only ECC corrected errors 
during undervolting. By reducing the voltage on those chips, the 
number of corrected errors increases gradually for quite many 
voltage steps until it exposes other types of abnormal behavior 
(SDCs, uncorrected errors, crashes). In such systems, ECC 
corrected errors can serve as proxies for the effects of 
undervolting. In contrast to these studies, a major finding of our 
characterization for ARMv8-compliant multicore CPUs is that 
silent data corruptions appear at higher voltage levels than 
corrected errors alone for any benchmark. In [9, 10], the reported 
range of voltage levels with corrected errors alone offers a 
significant opportunity for energy savings without jeopardizing 
correctness of operation. High correctable error rate is helpful to 
an ECC guided voltage speculation but this is not the case in the 
APM X-Gene 2 in our case.  

To justify the differences between X-Gene 2 and previous 
studies on Itanium [9, 10], we developed and ran self-tests that 
separately stress each cache level independently as well as the 
ALU and FPU. Cache tests completely fill the cache arrays and 
flip all the bits of each cache block to check for cell bit errors 
during undervolting. ALU and FPU tests perform multiple 
different concurrent operations in each unit with random values 
to stress different paths and conditions. Through this component-
focused stress process we observed the following: (1) SDCs occur 
when the pipeline gets stressed (ALU and FPU tests), and (2) the 
cache bit-cells safely operate at higher voltages (the cache tests 
crash in much lower voltages than the ALU and FPU tests). This 
observation leads us to conclude that the X-Gene 2 is more 
susceptible to timing-path failures than to SRAM array failures. 

In contrast, ECC corrections appear at a higher voltage on the 
Itanium compared to SDCs and system crashes. We attribute the 
increased robustness to timing-failures on the Itanium to circuit-
level dynamic-margin mitigation techniques such as the 
capability to perform continuous clock-path de-skewing during 
dynamic operation [15]. The X-Gene 2 does not deploy such 
circuit-level techniques, and thereby, generates SDCs due to 
timing-path failures.  Having the occurrence of SDCs first, it is not 
possible to easily guide the voltage speculation for prediction 
based on the manifested errors. For that reason, we propose the 
severity function both for quantifying the severity and for 
illustrating the scaling of abnormal behaviors due to voltage 
reduction, which is the second contribution of this paper. The 
new metric’s contribution is twofold: (1) to aggregate the results 
produced by multiple runs, and (2) to quantify a microprocessor’s 
ability to operate beyond nominal conditions and especially 
beyond the safe Vmin. 

3.4.1 Severity Function. Note that each characterization run 
can manifest multiple effects. For instance, in a run both SDC and 
CE can be observed; thus, both of them are reported for this run. 
Due to the non-determinism of the characterization in real 
hardware, all the information collected during multiple 
campaigns of the same benchmark (iterative execution) is also 
reported by our severity function. To quantify the criticality of the 
effects of different experimental runs of different campaigns with 
the same setup, we define the “severity function” Sv, where v is 
the voltage, as follows: 

 

Sv= WSDC∙
SDC

N
+WCE∙

CE

N
+WUE∙

UE

N
+WAC∙

AC

N
+WSC∙

SC

N
 

 
In this function, the parameters SDC, CE, UE, AC and SC can 

take values from 0 to N (N is the number of runs at voltage level 
v), and represent the times that the effect appears to these runs 
(for example, if k of the N runs lead to UE, then parameter UE is 
set to k; the actual number of uncorrected errors during each run 
is not taken into consideration). Parameters WSDC, WCE, WUE, WAC 
and WSC represent “weights” that can be arbitrarily set to 
characterize the severity of each effect of Table 3. The higher the 
weight, the more critical the effect is considered by our function, 
and the main role of these weights is to “translate” the behaviors 
(SDCs, etc.) to numbers in order to fit to the equation. We use the 
values presented in Table 4 as the values for our severity function 
(but different weight values can be also used according to the 
importance of each observed abnormal behavior in a particular 
system study). 

Table 4: Weights used in our experiments. 

Weight Value 
WSC 16 

WAC 8 

WSDC 4 

WUE 2 

WCE 1 

WNO 0 
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As an example, Figure 5 shows the severity of bwaves 
benchmark on TTT chip, which has a significantly large unsafe 
region, and it also provides a smooth gradual increase of severity 
while the voltage is reduced. These results are derived from 10 
executions of the same campaign. According to the severity value 
for each voltage level, one can decide if and when it is possible to 
reduce the voltage further (lower than the safe Vmin where 
severity is 0) for more aggressive energy efficiency. The severity 
function is essential primarily for speculation (see details in 
section 4), because (1) it collects all needed information in one 
metric, (2) it incorporates the small divergences across multiple 
executions (10 executions in our case), (3) it measures the mean 
severity for each voltage step in each core, and (4) it assigns 
numbers to behaviors (SDC, CE, etc.), and thus, it is easy to use 
by any software daemon such as an online predictor. 

 

 

Figure 5: bwaves benchmark severity on TTT chip cores. 

4 PREDICTION 
Predicting safe voltage regions of the microprocessor using as 
input the performance counters provided by the system has 
recently gained the interest of the computer architecture 
community [9, 10, 17]. In this section, we study the feasibility of 
predicting the safe Vmin (for a conservative prediction by taking 
into account only the guardbands – the Vmin – for each core and 
workload), as well as a more aggressive prediction by using the 
severity values (described in section 3.4.1) using the 
microarchitectural events measured for the entire benchmarks 
execution provided by the X-Gene 2 hardware. 

Specifically, we implemented linear regression analysis in all 
the cores of the three chips (TTT, TFF, and TSS) using all 
benchmarks from the SPEC CPU2006 suite with all their input 
datasets (40 programs). Due to space limitations, we illustrate 
only the most representative cases of our analysis targeting both 
the Vmin and the severity values of the most robust core (Core 4) 
and the most sensitive core (Core 0) of the TTT chip. Our analysis 
shows that prediction using severity values is more efficient than 
targeting only the Vmin point for any core and chip.  

In our study, we used linear regression models, which are 
able to provide high prediction accuracy with a relatively small 
population of microarchitectural counters.  

Linear regression functions of a small number of 
performance counters can be easily calculated on hardware, while 
non-linear models are more complex and more time consuming. 
Therefore, linear models are more suitable for online prediction 
purposes [18]. 

In general, regression techniques give the ability to calculate 
a function to predict a value of the dependent variable from a set 
of independent variables. Assuming a set of x1, x2, x3, …, xN 
independent variables and y the dependent variable, the classical 
linear regression model for y that we use in this analysis, is based 
on the Ordinary Least Squares (OLS) model. Specifically, it yields 
a set of weights β, one for each predictor variable x, and an error 
term e: 

 

𝑦" = 𝛽% + 𝛽'𝑥'"	+	𝛽*𝑥*"	 + ⋯ 	+	𝛽,𝑥,"	 + 	𝑒" 
 
In this formula yi is the ith response value (in our case the 

Vmin or the severity value), xji is the jth microarchitectural counter 
(e.g. the L1 Cache Accesses) evaluated at the ith observation, and 
ei is the ith statistical error. The goal of the regression analysis is 
to find the optimal values of the coefficients β1, β2, β3, …, βk so as 
to minimize the sum of the squares of the differences between the 
observed responses (values of the predicted variable) in the given 
dataset and those predicted by a linear function of a set of 
explanatory variables.  

This analysis also provides a “coefficient of determination” 
(R2) that indicates the proportion of the variance in the dependent 
variable that is predictable from the independent variables. The 
larger the values of R2, the better fit the model provides, while the 
best fit exists when R2 is equal to 1. The R2 can be 0 when the 
model predicts the expected value disregarding the input features 
or even negative (because the model can be arbitrary worse). R2 is 
an important indicator for linear regression analysis in order to 
quantify the accuracy of each model. However, to evaluate the 
accuracy of our prediction model for different test cases, we also 
use the Root Mean Square Error (RMSE) that represents the 
deviation between the predicted values and the observed values. 
The smaller the RMSE the more efficient the prediction model is.  

Our analysis is based on four steps: (i) offline 
characterization (which was presented in Section 3), (ii) collection 
of all the performance counters provided by the X-Gene 2 system 
during nominal conditions, (iii) feature selection of the most 
important counters that mostly affect the prediction according to 
the test case (targeting either the Vmin or the severity), and (iv) 
training and evaluation of the different test cases on which we 
implemented linear regression analysis. For feature selection and 
the linear regression model of our analysis we used the python 
libraries provided by [19]. As Figure 6 presents, in phase 1 we 
perform an extensive characterization, which exposes the regions 
of operation (Safe, Unsafe, Crash) and the severity values. In 
phase 2 we perform application profiling for all available 
performance counters. In phase 3, we train the predictor using 
the outputs from step 1 and 2, and in phase 4, we make the actual 
prediction evaluating the estimations using the test dataset. We 
further analyze the three steps (except for characterization, which 
is described previously) illustrating also the results of our 
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statistical analysis for the different test cases (targeting both the 
Vmin and the severity).  

4.1 Collection of all the Performance Counters  
The X-Gene 2 provides 101 performance counters in total which 
report microarchitectural events of the entire system for 
individual cores, for the memory hierarchy (accesses and misses 
of all cache, TLB and page walks levels, unaligned accesses, 
prefetches, etc.), the pipeline (flushes, mispredictions, etc.), and 
the system (bus accesses, etc.). In our analysis, we used 26 SPEC 
CPU2006 benchmarks collecting the performance counters of the 
entire benchmarks using perf [20].  

4.2 Selecting Counters for each Test Case 
To reduce the population of performance counters used by our 
prediction model we implemented a feature selection technique 
called Recursive Feature Elimination (RFE) [19] for our statistical 
analysis concerning both the Vmin and the severity values. Given 
an external estimator that assigns weights to features (e.g., a 
linear regression model) the goal of RFE is to select features by 
recursively considering smaller and smaller sets of features. First, 
the estimator is trained on the initial set of features, and weights 
are assigned to each one of them. Then, features whose absolute 
weights are the smallest are pruned from the current set of 
features. This procedure is recursively repeated on the pruned set 
until the desired number of features to select is eventually 
reached. In our test cases, we eventually selected the 5 most 
efficient and representative events to predict the Vmin and the 
severity values. The 5 most important features that were selected 
by RFE in our test cases are: (i) dispatched stalled cycles, (ii) 
exceptions taken, (iii) read data memory accesses, (iv) branch-
target-buffer (BTB) mispredictions, and (v) conditional and 
indirect branches. Our model reports the impact of any 
architectural event that contributes to prediction, classified by its 
importance. We experimentally observe that the 5 
aforementioned events provide the same accuracy as when we 
used more than 5 events, therefore no more are necessary. 

4.3 Training and Evaluating the Test Cases 
We analyze the results of our analysis for the three cases 
targeting both the Vmin and the severity values for the most 

robust (Core 4) and the most sensitive core (Core 0) of the TTT 
chip. We present the three representative test cases of our study 
on the TTT chip, which are: 

§ 1st case: Predict Vmin of the most sensitive core  
§ 2nd case: Predict severity of the most sensitive core  
§ 3rd case: Predict severity of the most robust core  

In our analysis, we call samples all the information vectors that 
were used in our analysis and consist of the values of the 
dependent and independent variables used in our regression 
model. For all our experiments, we used the 80% of the population 
of the samples as the training set and the rest 20% as the test set 
for our prediction model. Finally, to evaluate the efficiency of our 
prediction model (apart from the R2 and the RMSE) we used as 
baseline model the naïve prediction, which is the average of the 
target values (Vmin or severity) of the samples of the training set. 

4.3.1 1st case: Predict Vmin of the most sensitive core: In our 
first case study, we evaluate the correlation of the performance 
counters with the Vmin of the individual cores of the three chips. 
We discuss the results of our analysis in Core 0 that is the most 
sensitive core of the TTT chip. For our analysis, we used 40 
samples for each core, which come from the full execution of 26 
benchmarks from the SPEC CPU2006 suite with all of their input 
datasets (3 of them could not run correctly). Each sample consists 
of all the performance counters of each benchmark, while the 
target value of the model is the Vmin. In general, the prediction 
model of the Vmin for the individual cores gives us a good RMSE 
result (error equals 5mV or 0.51% of the nominal voltage), but the 
R2 for that case is close to 0 which indicates that a small 
proportion of the variance in the dependent variable is 
predictable from the independent variables. Moreover, we 
observed that due to the narrow unsafe area observed (in Core 0 
it is between 910mV and 885mV), the naïve prediction (using the 
average values of the training test) is equally efficient to predict 
the Vmin. 

4.3.2 2nd case: Predict severity of the most sensitive core: In the 
next two cases, we evaluate the efficiency of a linear regression 
model targeting the severity of an individual core as was defined 
in subsection 3.4.1. Firstly, we illustrate the results of our analysis 
for the most sensitive core of the TTT chip (Core 0). For our 
analysis, we used 100 samples from the unsafe region that were 
observed during the characterization phase. Each sample 

Severity

Framework
Vmin

1 Characterization Vdd
Guardband

Vmin

Benchmarks

Perf counters

3 Model training

Model

Predicted 
results

Counters Core

Offline Training Online

4 Prediction

Test set

Training set
Vmin

2 Profiling

Figure 6: Overview of the prediction flow. 



MICRO-50, October 14-18, 2017, Cambridge, MA, USA G. Papadimitriou et al. 
 

 

 

corresponds to each reduction step of 5mV that was used during 
the characterization phase and consists of the microarchitectural 
counters running the benchmark in the nominal conditions and 
the voltage value of the characterization step. The target of our 
prediction model is the severity of Core 0 for a particular voltage 
value. Figure 7 presents the results of the prediction (blue line) 
and the test samples (black dots in the graph). The RMSE of the 
linear regression after the selection of the 5 most effective 
features with the RFE is 2.8 Severity units, while the RMSE of the 
naïve approach of using the average of the test dataset is 6.4 
severity units indicating that our model is more efficient than 
both the baseline naïve approach for severity values and for the 
1st case concerning the Vmin point. Moreover, the R2 for this case 
is very high 0.92 (very close to 1) that indicates that the linear 
model with the selected features is able to predict a large 
proportion of the variance in the dependent variable. 

 
 

  

Figure 7: Severity prediction for most sensitive core (core 
0). 

 

 

Figure 8: Severity prediction for most robust core (core 4). 

4.3.3 3rd case: Predict severity of the most robust core: Finally, 
we present the results of our analysis for the most robust core of 
the TTT chip (Core 4). For our analysis, we used 90 samples as 

were presented in subsection 4.3.2, but now the target of our 
prediction model is the severity of Core 4 for a particular voltage 
value. Figure 8 presents the results of the prediction (blue line) 
and the test samples (black dots in the graph). The RMSE of the 
linear regression after the selection of the 5 most effective 
features with the RFE is 2.65 severity units, while the RMSE of the 
naïve approach of using the average of the test dataset is 6.9 
severity units indicating that our model is more efficient than the 
baseline naïve approach. Moreover, the R2 for this case is again 
very high 0.91 (very close to 1, which means the best fit) that 
indicates the efficiency of the linear model. 

4.4 Undervolting Effects Mitigation 
By combining our findings from the three test cases, it is clear 
that the prediction model using the severity values instead of a 
static Vmin point is more efficient in predicting the safe Vmin for 
each workload, as well as giving a flexibility to the predictor to be 
more aggressive due to the knowledge of the unsafe region. A 
static Vmin point does not contain any information about the 
severity of operating at voltages below the safe Vmin, but severity 
does so. Therefore, having knowledge about the severity below 
the safe Vmin for each workload, the predictor can decide if it is 
possible to be more aggressive to set the voltage below the safe 
Vmin, and thus, to save more power. We can also notice that the 
prediction based on the severity, not only is more efficient than 
the Vmin point alone, but it also shows that it can fit effectively for 
each core, taking into account the process variation. The two 
different cases 2 and 3 (one for a sensitive core and one for a 
robust core) demonstrate that the linear regression model for 
severity values can be effective regardless the core-to-core 
variation (and consequently the chip-to-chip variation). 

Depending on the actual characterization findings (Vmin and 
severity) or the corresponding predicted values for a CPU core 
during undervolting, certain hardware-based or software-based 
mitigation approaches can be employed to maximize the energy 
savings while preserving the correctness of program execution. 1 
The primary aspect that determines the most suitable approach is 
the first observed (or predicted) effect as undervolting goes down 
the voltage levels. We select the following behaviors using the 
severity function described in subsection 3.4.1 and used as the 
target function in the prediction. For each case we describe the 
behavior, discuss the severity function values and corresponding 
mitigation approaches. 

Nothing abnormal (severity=0). The voltage range is 
predicted to be safe (above the Vmin of a core); no mitigation 
action is required. System operation in this range is the most 
conservative option and no mitigation provision is needed. 
Energy-savings are the minimum. 

                                                                    
1 Note that our severity metric and prediction mechanism can be used 
above existing circuit-based techniques such as adaptive clocking. For 
instance, in the mechanism proposed in [38] adaptive-clocking can reduce 
the voltage at which SDCs occur. The frequency with which adaptation is 
deployed can be an input to our framework, thereby limiting the potential 
for performance degradation due to excessive deployment of adaptive-
clocking induced frequency slowdown.   
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Corrected errors first (severity=1). This is a voltage range 
with predicted behavior as the one observed in [9, 10] for Intel’s 
Itanium (not in our X-Gene 2 machine). In such a case, ECC 
hardware serves as a proxy for abnormal behavior due to 
undervolting but program operation is still correct. Significant 
energy savings can be obtained without any mitigation other 
than the ECC correction but going further down the voltage is 
risky. 

SDCs alone (severity=4) or with corrected and uncorrected 
errors (severity=5-7). Voltage ranges with these predicted 
behaviors generate incorrect program outputs and require extra 
mitigation approaches. The characterization of our X-Gene 2 
system shows that the first abnormal behavior generated by 
undervolting belongs here for the majority of benchmarks and 
corrected errors as observed in [9, 10] do not appear first alone in 
our system. In particular, the cases where SDCs appear alone 
(severity=4) are the worst ones since there is no indication about 
the malfunction of the system; these areas should be avoided. 
When an eventual SDC (output mismatch) is accompanied by 
corrected or uncorrected error notifications, recovery actions can 
be employed such as rollback to a previously stored check-point 
or program re-execution in safe voltage and frequency 
combinations. There are also many applications that can tolerate 
SDCs and benefit from the severity function. These applications 
are (1) approximate computing algorithms, (2) video streaming 
and other image and video processing, (3) security oriented 
applications such as jammer attacks detectors, etc. These 
applications are tolerant to faults, as they have minor impact on 
the returned output. For such applications, severity <=4 can be 
used for improving energy efficiency.   

Application and system crashes with or without corrected and 
uncorrected errors (severity 8-19). Voltage levels with this 
predicted behavior (the result of massive hardware malfunction) 
are well beyond the limits of cores operation in undervolted 
conditions. Application or system unresponsiveness is systematic 
in these ranges and unless serious hardware re-design is 
employed these ranges are unusable. 

5 ENERGY-PERFORMANCE TRADEOFFS 
Since the linear regression analysis using the severity values 
seems very promising, comprehensively training the predictor 
with lots of data is necessary to guarantee the accurate prediction 
of any different program and dataset during the normal 
microprocessor operation. Further, one major challenge for the 
predictor is to be able to fit effectively on different cores and 
chips (due to process variation). As our analysis in the previous 
section shows, the linear prediction model is very efficient and 
accurate, by taking into account the process variation. However, 
process variation may lead to conservative energy savings while 
the microprocessor operates with real workloads. For that case, 
the predictor takes into account the different behaviors of each 
core in the microprocessor chip derived by the characterization. 
For instance, assume the TTT chip whose PMD 2 (cores 4 and 5) 
is the most robust and the PMD 0 (cores 0 and 1) is the most 
sensitive, for the majority of benchmarks. Consequently, the 
predictor not only sets the voltage according to the current 

workload (by monitoring the 5 representative performance 
counters), but it can also guide task scheduling so that tasks are 
assigned first to more robust cores to obtain higher power 
savings. 

Note that the X-Gene 2 chip has one common power domain 
for all PMDs in the microprocessor, while the frequency 
granularity is per PMD (pair of cores). This means that, in a 
multicore execution, when for instance 4 workloads run on the 
system (two processes in PMD 0 and two in PMD 2), the predictor 
sets the voltage according to workload run on the most sensitive 
PMD (cores 0 and 1). Consider for example the leslie3d 
benchmark, as shown in Figure 4: the most robust PMD has safe 
Vmin at 880mV, while the most sensitive PMD at 915mV in 2.4 
GHz. By setting the voltage of the microprocessor chip at 915mV 
(for correct execution of all workloads), the measured energy 
savings will be 12.8%, while the most robust core could have 
19.4%. On the other hand, considering again the TTT chip, by 
setting the frequency at 1.2 GHz, both robust and sensitive cores 
have safe Vmin at 760mV, which means 69.9% energy savings, but 
with 50% performance loss. 

The performance/energy trade-off though, can result in 
several energy saving steps. The predictor can monitor the 
architectural events separately for each core. According to the 
worst-case behavior of the core-benchmark pair, the predictor 
can decide what is the safe voltage for all the cores, which is 
practically the maximum among them. Therefore, depending on 
what program runs in any core, the predictor can recognize the 
core, in which the program can safely operate at the highest 
voltage. According to the predictor’s decision the voltage can be 
set to the safest (highest) Vmin. 

 

 

Figure 9: Tradeoffs for a workload of 8 benchmarks. 

Figure 9 shows the potential savings for the case that 8 
different benchmarks run simultaneously: bwaves, cactusADM, 
dealll, gromacs, leslie3D, mcf, milc, namd. By exploiting the 
predictor's results, 12.8% power savings can be obtained by 
adjusting the voltage to the TTT Vmin without performance loss. 
Alternatively, the frequencies of the 2 weakest PMDs (0 and 1) 
can be reduced to 1.2 GHz (resulting in 25% performance loss) 
which will allow further reduction of the supply voltage to 
885mV and energy savings up to 38.8%. Therefore, the predictor, 
apart from predicting the safe Vmin, it can also assist task 
scheduling in conjunction to frequency scaling according to the 
current workload on the system to further improve energy 
efficiency. 
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6 DESIGN ENHANCEMENTS 
Undervolting characterization studies such as the one we report 
in this paper can be used to provide hardware design 
recommendations for enhancements if the system (or its future 
revisions) is to be used in scaled voltage conditions for energy 
efficiency. There are some key hardware design guidelines that 
our analysis delivers for a system with similar behavior as the X-
Gene 2 machine: 

Stronger error protection. SECDEC ECC protection at the 
lower levels of the memory hierarchy does not provide enough 
protection at lower voltages. If (a) stronger ECC codes are 
employed [21, 22] and (b) more blocks are protected, SDC 
behavior with or without errors will have significant probability 
to be transformed to corrected errors behavior similarly to [9, 10]. 
Employing stronger ECC protection has been also reported in 
[23] for scaled voltage operation. 

Hardware detectors. If stronger ECC protection is too costly 
other types of hardware support can be employed for voltage 
emergencies detection such as the skitter circuit [24 – 26] also 
cited in [17] or the monitoring circuits used in Power7+ designs 
[7].  

Finer-grained voltage domains. Our characterization study 
shows that the coarse-grained voltage domains design of X-Gene 
2 (a single voltage domain for all 8 cores) reduces the potential of 
energy savings since the voltage value of the domain is 
determined by its weakest core (the one with the higher Vmin). If 
each PMD was designed to operate on a separate voltage domain 
(similarly to the independent frequency domains per PMD) more 
aggressive voltage scaling (and energy savings) would be have 
been possible. 

Of course, all the above hardware design modifications have 
their own design complexity, area and performance implications 
which must be jointly considered with the potential of energy 
savings through undervolting. 

7 RELATED WORK 
Recently, the goal for improving microprocessors’ energy 
efficiency, by reducing their supply voltage is a main concern of 
many scientific studies. For example, Ketkar et al. in [27] and Kim 
et al. in [28, 29] propose methods to maximize voltage droops in 
single core and multicore chips in order to investigate their 
worst-case behavior due to the generated voltage noise effects. 
Studies of Gupta et al. in [30] and Reddi et al. in [17] focus on the 
prediction of critical parts of benchmarks, in which large voltage 
noise glitches are likely to occur, leading to system malfunctions. 
In the same context, several studies either in the hardware or in 
the software level were presented to mitigate the effects of 
voltage noise [4, 24, 31 – 33] or to recover from them after their 
occurrence [34]. Gopireddy et al. in [35] presented a core that 
was designed for voltage scalability that can work in high-
performance mode at nominal Vdd and in a very energy-efficient 
mode at low Vdd. 

Apart from these studies that are mainly concentrated on the 
core and the voltage droops, Bacha et al. [9, 10] focus on the 
observation of the errors manifested on caches of a commercial 

Intel Itanium processor during the execution of benchmarks off-
nominal voltage values. Papadimitriou et al. in [36] presented an 
experimental study that aims to identify the voltage margins in 
two different commercial x86-64 microprocessors; an ultra-low 
power and a high-end microprocessor. The authors in this work 
present the guardbands of these microprocessors, and compare 
them to the power and temperature savings, when they operate 
beyond nominal voltage conditions. Moreover, Wilkerson et al. 
[21], Chishti et al. [22] and Duwe et al. [23] propose several 
microarchitectural approaches to ensure the correct operation of 
caches in ultra-low voltage conditions. The characterization 
studies of commercial chips in off-nominal voltage conditions are 
limited [8 – 11, 37, 38] strengthening the purpose of the existence 
of our proposed framework that targets the APM X-Gene 2 
micro-server. Similar characterization effort for emerging ARM-
based enterprise server systems is sparse. Authors in [39 – 42] 
from ARM Research developed an electrical simulation 
framework for power-delivery analysis and used an on-chip 
voltage monitoring circuit to characterize supply voltage droops 
in a dual-core ARM Cortex-A57 cluster operating at 1.2 GHz. 
Regression analysis has been used in many performance and 
power studies [43 – 45], as well as in reliability estimation 
concerning soft errors [16, 18]. 

8 CONCLUSIONS 
We presented a comprehensive characterization study of the X-
Gene 2, a commercial 8-core 64-bit ARMv8 chip fabricated on 
28nm provided by AppliedMicro (APM) when it operates in off-
nominal voltage and frequency conditions. Our characterization 
revealed large voltage margins that can be translated into 
significant power savings and also large Vmin variation among the 
8 cores of the chip, among 3 different chips (a nominal rated and 
two sigma chips), and among different benchmarks. Moreover, 
the combination of our characterization results with a simple 
prediction scheme using a linear regression model that can guide 
task scheduling can lead to 19.4% energy savings without loss of 
performance, while with 25% performance loss we can achieve 
38.8% energy savings in total. 

ACKNOWLEDGMENT 
This work is funded by the H2020 Framework Program of the 
European Union through the UniServer Project (Grant Agreement 
688540) – http://www.uniserver2020.eu. 

REFERENCES 
[1] F. Salehuddin, I. Ahmad, F.A. Hamid, A. Zaharim, A. Maheran, A. 

Hamid, P. S. Menon, H. A. Elgomati, and B. Y. Majlis. 2012. 
Optimization of process parameter variation in 45nm p-channel 
MOSFET using L18 Orthogonal Array. In Proceedings of IEEE 
International Conference on Semiconductor Electronic (ICSE ’12). 
Kuala Lumpur, Malaysia, 219-223. DOI: 10.1109/SMElec.2012.6417127 

[2] W. Schemmert, and G. Zimmer. 1974. Threshold-voltage sensitivity of 
ion- implanted MOS transistors due to process variations. Electronics 
Letters, vol. 10, no. 9, pp. 151–152, May. DOI: 10.1049/el:19740115 

[3] Norman James, Phillip Restle, Joshua Friedrich, Bill Huott, and Bradley 
McCredie. 2007. Comparison of split-versus connected-core supplies in 
the POWER6 microprocessor. In Proceedings of the 2007 IEEE 



Harnessing Voltage Margins for Energy Efficiency in Multicore CPUs MICRO-50, October 14-18, 2017, Cambridge, MA, USA 
 

 

International Solid-State Circuits Conference (ISSCC ‘07). San 
Francisco, CA, USA, 298–604. DOI: 10.1109/ISSCC.2007.373412 

[4] Vijay Janapa Reddi, Svilen Kanev, Wonyoung Kim, Simone 
Campanoni, Michael D. Smith, Gu-Yeon Wei, and David Brooks. 2010. 
Voltage Smoothing: Characterizing and Mitigating Voltage Noise in 
Production Processors via Software-Guided Thread Scheduling. In 
Proceedings of the 2010 43rd Annual IEEE/ACM International 
Symposium on Microarchitecture (MICRO-43). IEEE Computer Society, 
Washington, DC, USA, 77-88. 
DOI=http://dx.doi.org/10.1109/MICRO.2010.35 

[5] Etienne Le Sueur and Gernot Heiser. 2010. Dynamic voltage and 
frequency scaling: the laws of diminishing returns. In Proceedings of 
the 2010 international conference on Power aware computing and 
systems (HotPower'10). USENIX Association, Berkeley, CA, USA, 1-8. 

[6] Dan Ernst, Nam Sung Kim, Shidhartha Das, Sanjay Pant, Rajeev Rao, 
Toan Pham, Conrad Ziesler, David Blaauw, Todd Austin, Krisztian 
Flautner, and Trevor Mudge. 2003. Razor: A Low-Power Pipeline Based 
on Circuit-Level Timing Speculation. In Proceedings of the 36th annual 
IEEE/ACM International Symposium on Microarchitecture (MICRO-
36). IEEE Computer Society, Washington, DC, USA, 7-18. 

[7] Yazhou Zu, Charles R. Lefurgy, Jingwen Leng, Matthew Halpern, 
Michael S. Floyd, and Vijay Janapa Reddi. 2015. Adaptive guardband 
scheduling to improve system-level efficiency of the POWER7+. In 
Proceedings of the 48th International Symposium on Microarchitecture 
(MICRO-48). ACM, New York, NY, USA, 308-321. DOI: 
https://doi.org/10.1145/2830772.2830824 

[8] Charles R. Lefurgy, Alan J. Drake, Michael S. Floyd, Malcolm S. Allen-
Ware, Bishop Brock, Jose A. Tierno, and John B. Carter. 2011. Active 
management of timing guardband to save energy in POWER7. In 
Proceedings of the 44th Annual IEEE/ACM International Symposium 
on Microarchitecture (MICRO-44). ACM, New York, NY, USA, 1-11. 
DOI=http://dx.doi.org/10.1145/2155620.2155622 

[9] Anys Bacha and Radu Teodorescu. 2013. Dynamic reduction of voltage 
margins by leveraging on-chip ECC in Itanium II processors. In 
Proceedings of the 40th Annual International Symposium on Computer 
Architecture (ISCA '13). ACM, New York, NY, USA, 297-307. DOI: 
http://dx.doi.org/10.1145/2485922.2485948 

[10] Anys Bacha and Radu Teodorescu. 2014. Using ECC Feedback to Guide 
Voltage Speculation in Low-Voltage Processors. In Proceedings of the 
47th Annual IEEE/ACM International Symposium on 
Microarchitecture (MICRO-47). IEEE Computer Society, Washington, 
DC, USA, 306-318. DOI: http://dx.doi.org/10.1109/MICRO.2014.54 

[11] Jingwen Leng, Alper Buyuktosunoglu, Ramon Bertran, Pradip Bose, 
and Vijay Janapa Reddi. 2015. Safe limits on voltage reduction 
efficiency in GPUs: a direct measurement approach. In Proceedings of 
the 48th International Symposium on Microarchitecture (MICRO-48). 
ACM, New York, NY, USA, 294-307. DOI: 
https://doi.org/10.1145/2830772.2830811 

[12] The Linux Kernel Documentation (Parent Directory), Retrieved 2017 
from https://www.kernel.org/doc/Documentation. 

[13] George Papadimitriou, Manolis Kaliorakis, Athanasios Chatzidimitriou, 
Dimitris Gizopoulos, Greg Favor, Kumar Sankaran and Shidhartha Das. 
2017. A System-Level Voltage/Frequency Scaling Characterization 
Framework for Multicore CPUs. In 13th IEEE Workshop on Silicon 
Errors in Logic - System Effects (SELSE ‘17). Boston, MA, USA. 

[14] John L. Henning. 2006. SPEC CPU2006 benchmark descriptions. 
SIGARCH Comput. Archit. News 34, 4 (September 2006), 1-17. 
DOI=http://dx.doi.org/10.1145/1186736.1186737 

[15] Reid J. Riedlinger, Rohit Bhatia, Larry Biro, Bill Bowhill, Eric Fetzer, 
Paul Gronowski, and Tom Grutkowski. 2011. A 32nm 3.1 Billion 
Transistor 12-Wide-Issue Itanium® Processor for Mission-Critical 

Servers”, In Proceedings of the 2011 IEEE International Solid-State 
Circuits Conference (ISSCC ‘11). San Francisco, CA, USA, 84-86. DOI: 
10.1109/ISSCC.2011.5746230 

[16] Arijit Biswas, Niranjan Soundararajan, Shubhendu S. Mukherjee, and 
Sudhanva Gurumurthi. 2009. Quantized AVF: A means of capturing 
vulnerability variations over small windows of time. In IEEE Workshop 
on Silicon Errors in Logic - System Effects (SELSE ‘09). Stanford 
University, CA, USA. 

[17] Vijay Janapa Reddi, Meeta S. Gupta, Glenn Holloway, Gu-Yeon Wei, 
Michael D. Smith, and David Brooks. 2009. Voltage emergency 
prediction: Using signatures to reduce operating margins. In 
Proceedings of the 15th International Conference on High-Performance 
Computer Architecture (HPCA ‘09), Raleigh, NC, USA 18–29. DOI: 
10.1109/HPCA.2009.4798233 

[18] Kristen R. Walcott, Greg Humphreys, and Sudhanva Gurumurthi. 2007. 
Dynamic prediction of architectural vulnerability from 
microarchitectural state. In Proceedings of the 34th annual 
international symposium on Computer architecture (ISCA '07). ACM, 
New York, NY, USA, 516-527. DOI: 
https://doi.org/10.1145/1250662.1250726 

[19] Fabian Pedregosa, Gael Varoquaux, Alexandre Gramfort, Vincent 
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter 
Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, 
Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu 
Perrot, Edouard Duchesnay. 2011. Scikit-learn: Machine learning in 
Python. Machine Learning Research, vol. 12, pp. 2825-2830, October. 

[20] Perf: Linux Profiling with Performance Counters. Retrieved 2017 from 
https://perf.wiki.kernel.org/index.php/Main_Page. 

[21] Chris Wilkerson, Hongliang Gao, Alaa R. Alameldeen, Zeshan Chishti, 
Muhammad Khellah, and Shih-Lien Lu. 2008. Trading off Cache 
Capacity for Reliability to Enable Low Voltage Operation. In 
Proceedings of the 35th Annual International Symposium on Computer 
Architecture (ISCA '08). IEEE Computer Society, Washington, DC, 
USA, 203-214. DOI=http://dx.doi.org/10.1109/ISCA.2008.22 

[22] Zeshan Chishti, Alaa R. Alameldeen, Chris Wilkerson, Wei Wu, and 
Shih-Lien Lu. 2009. Improving cache lifetime reliability at ultra-low 
voltages. In Proceedings of the 42nd Annual IEEE/ACM International 
Symposium on Microarchitecture (MICRO-42). ACM, New York, NY, 
USA, 89-99. DOI=http://dx.doi.org/10.1145/1669112.1669126 

[23] Henry Duwe, Xun Jian, Daniel Petrisko, and Rakesh Kumar. 2016. 
Rescuing uncorrectable fault patterns in on-chip memories through 
error pattern transformation. In Proceedings of the 43rd International 
Symposium on Computer Architecture (ISCA '16). IEEE Press, 
Piscataway, NJ, USA, 634-644. DOI: 
https://doi.org/10.1109/ISCA.2016.61 

[24] Meeta S. Gupta, Krishna K. Rangan, Michael D. Smith, Gu-Yeon Wei, 
and David Brooks. 2007. Towards a software approach to mitigate 
voltage emergencies. In Proceedings of the 2007 ACM/IEEE 
International Symposium on Low Power Electronics and Design 
(ISPLED ‘07), Portland, OR, USA, 123-128. DOI: 
10.1145/1283780.1283808 

[25] R. Franch, P. Restle, N. James, W. Huott, J. Friedrich, R. Dixon, S. 
Weitzel, K. Van Goor, and G. Salem. 2008. On-chip timing uncertainty 
measurements on IBM microprocessors. In Proceedings of the IEEE 
International Test Conference (ITC ‘08), Santa Clara, CA, USA, 1–7. 
DOI: 10.1109/TEST.2008.4700707 

[26] Phillip J. Restle, Robert L. Franch, Norman K. James, William V. Huott, 
Timothy M. Skergan, Steven C. Wilson, Nicole S. Schwartz, Joachim G. 
Clabes. 2004. Timing uncertainty measurements on the power5 
microprocessor. In Proceedings of the 2004 IEEE International Solid-
State Circuits Conference (ISSCC ’04), San Francisco, CA, USA, 354–
355. DOI: 10.1109/ISSCC.2004.1332740 



MICRO-50, October 14-18, 2017, Cambridge, MA, USA G. Papadimitriou et al. 
 

 

 

[27] Mahesh Ketkar and Eli Chiprout. 2009. A microarchitecture-based 
framework for pre- and post-silicon power delivery analysis. In 
Proceedings of the 42nd Annual IEEE/ACM International Symposium 
on Microarchitecture (MICRO-42). ACM, New York, NY, USA, 179-
188. DOI=http://dx.doi.org/10.1145/1669112.1669136 

[28] Youngtaek Kim and Lizy Kurian John. 2011. Automated di/dt 
stressmark generation for microprocessor power delivery networks. In 
Proceedings of the 17th IEEE/ACM international symposium on Low-
power electronics and design (ISLPED '11). IEEE Press, Piscataway, NJ, 
USA, 253-258. 

[29] Youngtaek Kim, Lizy Kurian John, Sanjay Pant, Srilatha Manne, 
Michael Schulte, W. Lloyd Bircher, and Madhu S. Sibi Govindan. 2012. 
AUDIT: Stress Testing the Automatic Way. In Proceedings of the 2012 
45th Annual IEEE/ACM International Symposium on 
Microarchitecture (MICRO-45). IEEE Computer Society, Washington, 
DC, USA, 212-223. DOI=http://dx.doi.org/10.1109/MICRO.2012.28 

[30] Meeta S. Gupta, Vijay Janapa Reddi, Glenn Holloway, Gu-Yeon Wei, 
and David M. Brooks. 2009. An event-guided approach to reducing 
voltage noise in processors. In Proceedings of the Conference on 
Design, Automation and Test in Europe (DATE '09). European Design 
and Automation Association, 3001 Leuven, Belgium, Belgium, 160-165. 

[31] Russ Joseph, David Brooks, and Margaret Martonosi. 2003. Control 
techniques to eliminate voltage emergencies in high performance 
processors. In Proceedings of the 2003 IEEE International Conference 
on High-Performance Computer Architecture (HPCA ‘03), Anaheim, 
CA, USA, 79–90. DOI: 10.1109/HPCA.2003.1183526 

[32] Timothy N. Miller, Renji Thomas, Xiang Pan, and Radu Teodorescu. 
2012. VRSync: characterizing and eliminating synchronization-induced 
voltage emergencies in many-core processors. In Proceedings of the 
39th Annual International Symposium on Computer Architecture 
(ISCA '12). IEEE Computer Society, Washington, DC, USA, 249-260. 

[33] Michael D. Powell and T. N. Vijaykumar. 2003. Pipeline muffling and a 
priori current ramping: architectural techniques to reduce high-
frequency inductive noise. In Proceedings of the 2003 international 
symposium on Low power electronics and design (ISLPED '03). ACM, 
New York, NY, USA, 223-228. 
DOI=http://dx.doi.org/10.1145/871506.871562 

[34] Meeta S. Gupta, Krishna K. Rangan, Michael D. Smith, Gu-Yeon Wei, 
and David Brooks. 2008. DeCoR: A Delayed Commit and Rollback 
mechanism for handling inductive noise in processors. In Proceedings 
of the 2008 IEEE International Conference on High-Performance 
Computer Architecture (HPCA ‘08), Salt Lake City, UT, USA. DOI: 
10.1109/HPCA.2008.4658654 

[35] Bhargava Gopireddy, Choungki Song, Josep Torrellas, Nam Sung Kim, 
Aditya Agrawal, and Asit Mishra. 2016. ScalCore: Designing a core for 
voltage scalability. In Proceedings of the 2016 IEEE International 
Conference on High-Performance Computer Architecture (HPCA ‘16), 
Barcelona, Spain, 681–693. DOI: 10.1109/HPCA.2016.7446104 

[36] George Papadimitriou, Manolis Kaliorakis, Athanasios Chatzidimitriou, 
Charalampos Magdalinos, Dimitris Gizopoulos. 2017. Voltage Margins 
Identification on Commercial x86-64 Multicore Microprocessors. In 
Proceedings of the 2017 IEEE 23rd International Symposium on On-

Line Testing and Robust System Design (IOLTS ‘17). Thessaloniki, 
Greece, 51-56.  

[37] Anys Bacha and Radu Teodorescu. 2015. Authenticache: harnessing 
cache ECC for system authentication. In Proceedings of the 48th 
International Symposium on Microarchitecture (MICRO-48). ACM, 
New York, NY, USA, 128-140. DOI: 
https://doi.org/10.1145/2830772.2830814 

[38] Sriram Sundaram, Sriram Samabmurthy, Michael Austin, Aaron 
Grenat, Michael Golden, Stephen Kosonocky, and Samuel Naffziger. 
2016. Adaptive Voltage Frequency Scaling using Critical Path 
Accumulator implemented in 28nm CPU. In Proceedings of the 2016 
29th International Conference on VLSI Design and 2016 15th 
International Conference on Embedded Systems (VLSID ‘16), Kolkata, 
India, 565-566. DOI: 10.1109/VLSID.2016.106 

[39] Paul N. Whatmough, Shidhartha Das, Zacharias Hadjilambrou, and 
David M. Bull. 2015. An all-digital power-delivery monitor for analysis 
of a 28nm dual-core ARM Cortex-A57 cluster. In Proceedings of the 
IEEE International Solid-State Circuits Conference (ISSCC ‘15), San 
Francisco, CA, USA, 262-264. DOI: 10.1109/ISSCC.2015.7063026 

[40] Paul N. Whatmough, Shidhartha Das, and David M. Bull. 2015. 
Analysis of adaptive clocking technique for resonant supply voltage 
noise mitigation. In Proceedings of the 2015 IEEE/ACM International 
Symposium on Low Power Electronics and Design (ISLPED ‘15), Rome, 
Italy, 128-133. DOI: 10.1109/ISLPED.2015.7273502 

[41] Shidhartha Das, Paul Whatmough and David M. Bull. 2015. Modelling 
and characterization of the System-Level Power-Delivery Network for a 
Dual-Core ARM A57 Cluster in 28nm CMOS. In Proceedings of the 
2015 IEEE/ACM International Symposium on Low Power Electronics 
and Design (ISLPED ‘15), Rome, Italy, 146-151. DOI: 
10.1109/ISLPED.2015.7273505 

[42] Paul Whatmough, Shidhartha Das and David M. Bull. 2017. Power 
Integrity Analysis of a 28 nm Dual-Core ARM Cortex-A57 Cluster 
Using an All-Digital Power Delivery Monitor. In Journal of Solid-State 
Circuits (JSSC ’17). vol. 52, no. 6, pp. 1643 – 1654, March. DOI: 
10.1109/JSSC.2017.2669025 

[43] Wenhao Jia, Kelly A. Shaw, and Margaret Martonosi. 2012. Stargazer: 
Automated regression-based GPU design space exploration. In 
Proceedings of the 2012 IEEE International Symposium on 
Performance Analysis of Systems & Software (ISPASS '12). IEEE 
Computer Society, Washington, DC, USA, 2-13. 
DOI=10.1109/ISPASS.2012.6189201 
http://dx.doi.org/10.1109/ISPASS.2012.6189201 

[44] P. J. Joseph, Kapil Vaswani, Matthew J. Thazhuthaveetil. 2006. 
Construction and use of linear regression models for processor 
performance analysis. In Proceedings of the 12th International 
Conference on High-Performance Computer Architecture (HPCA ’06). 
Austin, TX, USA, 99–108. DOI: 10.1109/HPCA.2006.1598116 

[45] Benjamin C. Lee and David M. Brooks. 2006. Accurate and efficient 
regression modeling for microarchitectural performance and power 
prediction. In Proceedings of the 12th international conference on 
Architectural support for programming languages and operating 
systems (ASPLOS XII). ACM, New York, NY, USA, 185-194. DOI: 
https://doi.org/10.1145/1168857.1168881

 

 


