
8-1

CHAPTER 8

Generating Random Variates

8.1 Introduction..2

8.2 General Approaches to Generating Random Variates3

8.2.1 Inverse Transform...3

8.2.2 Composition ...11

8.2.3 Convolution..16

8.2.4 Acceptance-Rejection...18

8.2.5 Special Properties ...26

8.3 Generating Continuous Random Variates..27

8.4 Generating Discrete Random Variates...27

8.4.3 Arbitrary Discrete Distribution...28

8.5 Generating Random Vectors, Correlated Random Variates, and Stochastic
Processes ..34

8.5.1 Using Conditional Distributions ..35

8.5.2 Multivariate Normal and Multivariate Lognormal..36

8.5.3 Correlated Gamma Random Variates ..37

8.5.4 Generating from Multivariate Families ..39

8.5.5 Generating Random Vectors with Arbitrarily Specified Marginal Distributions and Correlations
...40

8.5.6 Generating Stochastic Processes..41

8.6 Generating Arrival Processes ...42

8.6.1 Poisson Process..42

8.6.2 Nonstationary Poisson Process..43

8.6.3 Batch Arrivals ...50

8-2

8.1 Introduction

Algorithms to produce observations (“variates”) from some desired input

distribution (exponential, gamma, etc.)

Formal algorithm—depends on desired distribution

But all algorithms have the same general form:

Note critical importance of a good random-number generator (Chap. 7)

May be several algorithms for a desired input distribution form; want:

Exact: X has exactly (not approximately) the desired distribution
Example of approximate algorithm:

Treat Z = U1 + U2 + ... + U12 – 6 as N(0, 1)

Mean, variance correct; rely on CLT for approximate normality
Range clearly incorrect

Efficient: Low storage

Fast (marginal, setup)
Efficient regardless of parameter values (robust)

Simple: Understand, implement (often tradeoff against efficiency)

Requires only U(0, 1) input

One U → one X
(if possible—for speed, synchronization in variance reduction)

Generate one or more
IID U(0, 1) random

numbers

Transformation
(depends on desired

distribution)

Return X ~ desired
distribution

8-3

8.2 General Approaches to Generating
Random Variates

Five general approaches to generating a univariate RV from a distribution:

Inverse transform
Composition
Convolution
Acceptance-rejection
Special properties

8.2.1 Inverse Transform

Simplest (in principle), “best” method in some ways; known to Gauss

Continuous Case

Suppose X is continuous with cumulative distribution function (CDF)

F(x) = P(X ≤ x) for all real numbers x that is strictly increasing over all x

Step 2 involves solving the equation F(X) = U for X; the solution is written

X = F–1(U), i.e., we must invert the CDF F

Inverting F might be easy (exponential), or difficult (normal) in which case

numerical methods might be necessary (and worthwhile—can be made “exact”
up to machine accuracy)

Algorithm:

1. Generate U ~ U(0, 1)
(random-number generator)

2. Find X such that F(X) = U
and return this value X

8-4

Proof: (Assume F is strictly increasing for all x.) For a fixed value x0,

P(returned X is ≤ x0) = P(F
–1

(U) ≤ x0) (def. of X in algorithm)

 = P(F(F-1(U)) ≤ F(x0)) (F is monotone ↑)
 = P(U ≤ F(x0)) (def. of inverse function)

 = P(0 ≤ U ≤ F(x0)) (U ≥ 0 for sure)

 = F(x0) – 0 (U ~ U(0,1))

 = F(x0) (as desired)

Proof by Picture:

Pick a fixed value x0

X1 ≤ x0 if and only if U1 ≤ F(x0), so

P(X1 ≤ x0) = P(U1 ≤ F(x0))

= F(x0), by definition of CDFs

x0

8-5

Example of Continuous Inverse-Transform Algorithm Derivation

Weibull (α, β) distribution, parameters α > 0 and β > 0

Density function is


 >

=
−−−

otherwise0

0 if
)(

)/(1 xex
xf

x αβαααβ

CDF is


 >−

==
−

∞−
∫ otherwise0

0 if1
)()(

)/(xe
dttfxF

xx αβ

Solve U = F(X) for X:

[]
[] α

α

α

β

β

β

β

β

α

α

/1

/1

)/(

)/(

)1ln(

)1ln(/

)1ln()/(

1

1

UX

UX

UX

Ue

eU
X

X

−−=

−−=

−=−

−=

−=
−

−

Since 1 – U ~ U(0, 1) as well, can replace 1 – U by U to get the final algorithm:

 1. Generate U ~ U(0, 1)

 2. Return () αβ /1
ln UX −=

8-6

Intuition Behind Inverse-Transform Method

 (Weibull (α = 1.5, β = 6) example)

8-7

The algorithm in action:

8-8

Discrete Case

Suppose X is discrete with cumulative distribution function (CDF)

F(x) = P(X ≤ x) for all real numbers x
 and probability mass function

p(xi) = P(X = xi),

 where x1, x2, ... are the possible values X can take on

 Algorithm:
 1. Generate U ~ U(0,1) (random-number generator)

 2. Find the smallest positive integer I such that U ≤ F(xI)

 3. Return X = xI

Step 2 involves a “search” of some kind; several computational options:

Direct left-to-right search—if p(xi)’s fairly constant

If p(xi)’s vary a lot, first sort into decreasing order, look at biggest one first, ...,
smallest one last—more likely to terminate quickly

Exploit special properties of the form of the p(xi)’s, if possible

Unlike the continuous case, the discrete inverse-transform method can always be

used for any discrete distribution (but it may not be the most efficient approach)

Proof: From the above picture, P(X = xi) = p(xi) in every case

8-9

Example of Discrete Inverse-Transform Method

Discrete uniform distribution on 1, 2, ..., 100

xi = i, and p(xi) = p(i) = P(X = i) = 0.01 for i = 1, 2, ..., 100

 F (x)

x

1.00

1 2 3 98 99 100

0.01
0.02
0.03

0

0.99
0.98
0.97

“Literal” inverse transform search:

 1. Generate U ~ U(0,1)
 2. If U ≤ 0.01 return X = 1 and stop; else go on
 3. If U ≤ 0.02 return X = 2 and stop; else go on
 4. If U ≤ 0.03 return X = 3 and stop; else go on
 .
 .
 .
 100. If U ≤ 0.99 return X = 99 and stop; else go on
 101. Return X = 100

Equivalently (on a U-for-U basis):

 1. Generate U ~ U(0,1)

 2. Return X = 100 U + 1

8-10

Generalized Inverse-Transform Method

Valid for any CDF F(x): return X = min{x: F(x) ≥ U}, where U ~ U(0,1)
 Continuous, possibly with flat spots (i.e., not strictly increasing)
 Discrete
 Mixed continuous-discrete

Problems with Inverse-Transform Approach

Must invert CDF, which may be difficult (numerical methods)
May not be the fastest or simplest approach for a given distribution

Advantages of Inverse-Transform Approach

Facilitates variance-reduction techniques; an example:

Study effect of speeding up a bottleneck machine
Compare current machine with faster one
To model speedup: Change service-time distribution for this machine
Run 1 (baseline, current system): Use inverse transform to generate service-time

variates for existing machine
Run 2 (with faster machine): Use inverse transform to generate service-time

variates for proposed machine
Use the very same uniform U(0,1) random numbers for both variates:

Service times will be positively correlated with each other
Inverse-transform makes this correlation as strong as possible, in

comparison with other variate-generation methods
Reduces variability in estimate of effect of faster machine
Main reason why inverse transform is often regarded as “the best” method
Common random numbers
Can have big effect on estimate quality (or computational effort required)

Generating from truncated distributions (pp. 447-448 and Problem 8.4 of SMA)
Generating order statistics without sorting, for reliability models:
 Y1, Y2, ..., Yn IID ~ F; want Y(i) — directly, generate Yi’s, and sort
 Alternatively, return Y(i) = F–1(V) where V ~ beta(i, n – i + 1)

8-11

8.2.2 Composition

Want to generate from CDF F, but inverse transform is difficult or slow

Suppose we can find other CDFs F1, F2, ... (finite or infinite list) and weights p1,

p2, ... (pj ≥ 0 and p1 + p2 + ... = 1) such that for all x,

F(x) = p1F1(x) + p2F2(x) + ...

(Equivalently, can decompose density f(x) or mass function p(x) into convex

combination of other density or mass functions)

Algorithm:
 1. Generate a positive random integer J such that P(J = j) = pj

 2. Return X with CDF FJ (given J = j, X is generated independent of J)

Proof: For fixed x,

P(returned X ≤ x) = ∑ ==≤
j

jJPjJxXP)()|((condition on J = j)

 = ∑ =≤
j

jpjJxXP)|((distribution of J)

 = ∑
j

jj pxF)((given J = j, X ~ Fj)

 = F(x) (decomposition of F)

The trick is to find Fj’s from which generation is easy and fast

Sometimes can use geometry of distribution to suggest a decomposition

8-12

Example 1 of Composition Method (divide area under density vertically)

Symmetric triangular distribution on [–1, +1]:

 Density:







+≤≤
≤≤−

+−
+

=
otherwise

10 if

01 if

0

1

1

)(x

x

x

x

xf

0–1 +1

1

x

area=1/2area=1/2

 CDF:











+>

+≤<

≤≤−
−<

++−

++
=

1 if

10 if

01 if

1 if

1

2/12/

2/12/

0

)(2

2

x

x

x

x

xx

xx
xF

0–1 +1

1

x

1/2

Inverse-transform:









≥++−
<++

==
2/1 if 2/12/

2/1 if 2/12/
)(

2

2

UXX

UXX
XFU ; solve for









≥−−
<−

=
2/1 if)1(21

2/1 if 12

UU

UU
X

8-13

Composition: Define indicator function for the set A as




∉

∈
=

Ax

Ax
xI A if0

 if1
)(

{{ } {{ }
444 3444 2144 344 21

)(

]1,0[

)(

]0,1[

]1,0[]0,1[

2
2

1
1

)()125.0)()1(25.0

)()1()()1()(

xf
p

xf
p

xIxxIx

xIxxIxxf

+−

+−

+−++=
+−++=

0–1 +1

2

x
 0–1 +1

2

x

1)(

12)(
1

1

2
1

−=

++=
− UUF

xxxF

UUF

xxxF

−−=

+−=
− 11)(

2)(
1

2

2
2

 Composition algorithm:
1. Generate U1, U2 ~ U(0,1) independently

2. If U1 < 1/2, return X = 12 −U

 Otherwise, return X = 211 U−−

(Can eliminate ’s)

Comparison of algorithms (expectations):
Method U’s Compares Adds Multiplies ’s

Inv. trnsfrm. 1 1 1.5 1 1
Composition 2 1 1.5 0 1

So composition needs one more U, one fewer multiply—faster if RNG is fast

8-14

Example 2 of Composition Method (divide area under density horizontally)

Trapezoidal distribution on [0, 1] with parameter a (0 < a < 1):

 Density:


 ≤≤−−−

=
otherwise 0

10 if)1(22
)(

xxaa
xf

 CDF:








>
≤≤−−−

<
=

1 if 1

10 if)1()2(

0 if 0

)(2

x

xxaxa

x

xF

0 1 x

1

Inverse-transform:

2)1()2()(XaXaXFU −−−== ; solve for
a

U

a

a

a

a
X

−
−

−
−

−
−
−

=
1)1(4

)2(

)1(2

2
2

2

x
0 1

a

2–a area = a

area = 1–a

8-15

Composition:

{{ } { }
44 344 2132143421

)(

]1,0[

)(

]1,0[

221
1

)()1(2)1()()(
xfpxf

p

xIxaxIaxf −−+=

Just U(0,1)

0 1 x

1

 0 1 x

2

UUF

xxF

=

=
−)(

)(
1

1

1
UUF

xxxF

−−=

+−=
− 11)(

2)(
1

2

2
2

 Composition algorithm:

1. Generate U1, U2 ~ U(0,1) independently

2. If U1 < a, return X = U2

 Otherwise, return X = 211 U−−

(Can eliminate)

Comparison of algorithms (expectations):
Method U’s Compares Adds Multiplies ’s

Inv. trnsfrm. 1 0 2 1 1
Composition 2 1 2(1 – a) 0 1 – a

Composition better for large a, where F is nearly U(0,1) and it avoids the

8-16

8.2.3 Convolution

Suppose desired RV X has same distribution as Y1 + Y2 + ... + Ym, where the Yj’s
are IID and m is fixed and finite

Write: X ~ Y1 + Y2 + ... + Ym, called m-fold convolution of the distribution of Yj

Contrast with composition:
Composition: Expressed the distribution function (or density or mass) as a

(weighted) sum of other distribution functions (or densities or masses)
Convolution: Express the random variable itself as the sum of other random

variables
Algorithm (obvious):

 1. Generate Y1, Y2, ..., Ym independently from their distribution

 2. Return X = Y1 + Y2 + ... + Ym

Example 1 of Convolution Method

X ~ m-Erlang with mean β > 0

Express X = Y1 + Y2 + ... + Ym where Yj’s ~ IID exponential with mean β/m

Note that the speed of this algorithm is not robust to the parameter m

8-17

Example 2 of Convolution Method

Symmetric triangular distribution on [–1, +1] (again):

 Density:







+≤≤+−
≤≤−+

=
otherwise0

10 if1

01 if1

)(xx

xx

xf

0–1 +1

1

x

By simple conditional probability: If U1, U2 ~ IID U(0,1), then U1 + U2 ~

symmetric triangular on [0, 2], so just shift left by 1:

4342143421
21

)5.0()5.0(

1

21

21

YY

UU

UUX

−+−=
−+=

2 Us, 2 adds; no compares, multiplies, or s—clearly beats inverse transform,
composition

8-18

8.2.4 Acceptance-Rejection

Usually used when inverse transform is not directly applicable or is inefficient (e.g.,

gamma, beta)
Has continuous and discrete versions (we’ll just do continuous; discrete is similar)
Goal: Generate X with density function f

Specify a function t(x)
that majorizes f(x),
i.e., t(x) > f(x) for all x

x

 f (x) t (x)

Then t(x) > 0 for all x, but 1)()(=≥ ∫∫
∞

∞−

∞

∞−

dxxfdxxt so t(x) is not a density

Set c = 1)(≥∫
∞

∞−

dxxt

Define r(x) = t(x)/c for all x
Thus, r(x) is a density (integrates to 1)

Algorithm:
 1. Generate Y having density r
 2. Generate U ~ U(0,1) (independent of Y in Step 1)

 3. If U ≤ f(Y)/t(Y), return X = Y and stop;
 else go back to Step 1 and try again
 (Repeat 1— 2 — 3 until acceptance finally occurs in Step 3)

Since t majorizes f, f(Y)/t(Y) ≤ 1 so “U ≤ f(Y)/t(Y)” may or may not occur for a
given U

Must be able to generate Y with density r, hopefully easily—choice of t
On each pass, P(acceptance) = 1/c, so want small c = area under t(x), so want t to

“fit” down on top of f closely (i.e., want t and thus r to resemble f closely)
Tradeoff between ease of generation from r, and closeness of fit to f

8-19

Proof: Key—we get an X only conditional on acceptance in step 3. So

*prob.) l.cond' of (def.
)acceptance(

) ,acceptance(
)acceptance |() generated(

P
xYP

xYPxXP
≤

=

≤=≤

(Evaluate top and bottom of *.)

For any y,

)(/)())(/)(()| acceptance(ytyfytyfUPyYP =≤==

since U ~ U(0,1), Y is independent of U, and t(y) > f(y). Thus,

**/)(

))(of def.()(
)(
)(1

)()| ,acceptance(

)()| ,acceptance(

)()| ,acceptance(

)()| ,acceptance() ,acceptance(

yprobabilit in the ingcontradict range, on this

yprobabilit in the ngguaranteei range, on this

cxF

yrdyyt
yt
yf

c

dyyryYxYP

dyyryYxYP

dyyryYxYP

dyyryYxYPxYP

x

x

xYxY

x

xYxY

x

=

=

=≤=

=≤

+=≤=

=≤=≤

∫

∫

∫

∫
∫

∞−

∞−

≤≥

∞

≤≤

∞−

∞

∞−

4444444 34444444 21

4444444 34444444 21

8-20

Next,

***/1

)(
1

)(
)(
)(1

)()|acceptance()acceptance(

c

dyyf
c

dyyt
yt
yf

c

dyyryYPP

=

=

=

==

∫

∫

∫

∞

∞−

∞

∞−

∞

∞−

since f is a density and so integrates to 1. Putting ** and *** back into *,

),(
/1

/)(

)acceptance(
) ,acceptance(

) generated(

xF
c

cxF

P
xYP

xXP

=

=

≤
=≤

as desired.

(Depressing footnote: John von Neumann, in his 1951 paper developing this idea,

needed only a couple of sentences of words — no math or even notation — to
see that this method is valid.)

8-21

Example of Acceptance-Rejection

Beta(4,3) distribution, density is f(x) = 60 x3 (1 – x)2 for 0 ≤ x ≤ 1

Top of density is f(0.6) = 2.0736 (exactly), so let t(x) = 2.0736 for 0 ≤ x ≤ 1

Thus, c = 2.0736, and r is the U(0,1) density function

Algorithm:

 1. Generate Y ~ U(0,1)
 2. Generate U ~ U(0,1) independent of Y

 3. If U ≤ 60 Y3 (1 – Y)2 / 2.0736, return X = Y and stop;
 else go back to step 1 and try again

P(acceptance) in step 3 is 1/2.0736 = 0.48

8-22

Intuition

8-23

A different way to look at it—accept Y if U t(Y) ≤ f(Y), so plot the pairs
(Y, U t(Y)) and accept the Y’s for which the pair is under the f curve

8-24

A closer-fitting majorizing function:

 Higher acceptance probability on a given pass

 Harder to generate Y with density shaped like t (composition)

 Better ???

8-25

Squeeze Methods

Possible slow spot in A-R is evaluating f(Y) in step 3, if f is complicated

Add a fast pre-test for acceptance just before step 3—if pre-test is passed we know

that the test in step 3 would be passed, so can quit without actually doing the
test (and evaluating f(Y)).

One way to do this — put a minorizing function b(x) under f(x):

x

 f (x) t (x)

 b(x)

Since b(x) ≤ f(x), pre-test is first to check if U ≤ b(Y)/t(Y); if so accept Y right away
(if not, have to go on and do the actual test in step 3)

Good choice for b(x):
 Close to f(x) (so pre-test and step 3 test agree most of the time)
 Fast and easy to evaluate b(x)

8-26

8.2.5 Special Properties

Simply “tricks” that rely completely on a given distribution’s form

Often, combine several “component” variates algebraically (like convolution)

Must be able to figure out distributions of functions of random variables

No coherent general form — only examples

Example 1: Geometric

Physical “model” for X ~ geometric with parameter p (0 < p < 1):

X = number of “failures” before first success in Bernoulli trials with P(success) = p

Algorithm: Generate Bernoulli(p) variates and count the number of failures before

first success

Clearly inefficient if p is close to 0

Example 2: Beta

If Y1 ~ gamma(α1, 1), Y2 ~ gamma(α2, 1), and they are independent, then

X = Y1/(Y1 + Y2) ~ beta(α1, α2)

Thus, we effectively have a beta generator if we have a gamma generator

8-27

8.3 Generating Continuous Random Variates

Sixteen families of continuous distributions found useful for modeling simulation

input processes

Correspond to distributions defined in Chap. 6

At least one variate-generation algorithm for each is specifically given on pp. 459–

471 of SMA

Algorithms selected considering exactness, speed, and simplicity — often there are

tradeoffs involved among these criteria

8.4 Generating Discrete Random Variates

Seven families of discrete distributions found useful for modeling simulation input

processes

Correspond to distributions defined in Chap. 6

At least one variate-generation algorithm for each is specifically given on pp. 471–

478 of SMA

Algorithms selected considering exactness, speed, and simplicity — often there are

tradeoffs involved among these criteria

One of these seven is completely general if the range of the random variable is finite,

and will be discussed separately in Sec. 8.4.3 ...

8-28

8.4.3 Arbitrary Discrete Distribution

Common situation: Generate discrete X ∈ {0, 1, 2, ..., n} with mass function p(i) =
P(X = i), i = 0, 1, 2, ..., n

 In its own right to represent, say, lot sizes in a manufacturing simulation

 As part of other variate-generation methods (e.g., composition)

Why restrict to range {0, 1, 2, ..., n} rather than general {x1, x2, ..., xm}?

 Not as restrictive as it seems:

 Really want a general range {x1, x2, ..., xm}

 Let n = m – 1 and let p(j – 1) = P(X = xj), j = 1, 2, ..., m (= n + 1)

 (so j – 1 = 0, 1, ..., m – 1 (= n))

 Algorithm:
 1. Generate J on {0, 1, 2, ..., n} with mass function p(j)
 2. Return X = xJ+1

Have already seen one method to do this: Inverse transform

 Always works

 But may be slow, especially for large range (n)

8-29

Table Lookup

Assume that each p(i) can be represented as (say) a 2-place decimal

Example:

i 0 1 2 3
p(i) 0.15 0.20 0.37 0.28 1.00 = sum of p(i)’s

(must be exact — no roundoff allowed)

Initialize a vector (m1, m2, ..., m100) with

m1 = m2 = ... = m15 = 0 (first 100p(0) mj’s set to 0)

m16 = m17 = ... = m35 = 1 (next 100p(1) mj’s set to 1)

m36 = m37 = ... = m72 = 2 (next 100p(2) mj’s set to 2)

m73 = m74 = ... = m100 = 3 (last 100p(3) mj’s set to 3)

Algorithm (obvious):

 1. Generate J uniformly on {1, 2, ..., 100} (J = 100U + 1)
 2. Return X = mJ

Advantages:
 Extremely simple
 Extremely fast (marginal)

Drawbacks:
 Limited accuracy on p(i)’s—use 3 or 4 decimals instead?
 (Few decimals OK if p(i)’s are themselves inaccurate estimates)

 Storage is 10d, where d = number of decimals used
 Setup required (but not much)

8-30

Marsaglia Tables

As above, assume p(i)’s are q-place decimals (q = 2 above); set up tables

But will use less storage, a little more time

Same example:

i 0 1 2 3
p(i) 0.15 0.20 0.37 0.28 1.00 = sum of p(i)’s

(must be exact—no roundoff allowed)

Initialize a vector for each decimal place (here, need q = 2 vectors):

 “Tenths” vector: Look at tenths place in each p(i); put in that many copies of

the associated i

0 1 1 2 2 2 3 3 ← 10ths vector
1 2 3 2

“Hundredths” vector: Look at hundredths place in each p(i); put in that many
copies of the associated i

0 0 0 0 0 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 ← 100ths
vector

 5 0 7 8

Total storage = 8 + 20 = 28 = sum of all the digits in the p(i)’s

Was 100 for table-lookup method

8-31

Algorithm:

1. Pick 10ths vector with prob. 1/10 × (sum of 10ths digits) = 8/10.
If picked, return X = one of the entries in this vector with equal probability

(1/8 here).
If not picked, go on to step 2.

2. Pick 100ths vector with prob. 1/100 × (sum of 100ths digits) = 20/100.
If picked, return X = one of the entries in this vector with equal probability

(1/20 here).
If not picked, go on to step 3. (Won’t happen here.)

3. (Not present here.) Pick 1000ths vector with prob. 1/1000 × (sum of
1000ths digits)
If picked, return X = one of the entries in this vector with equal probability.
If not picked, go on to step 4.

etc.

Proof (by example for i = 2; other cases exactly analogous):

desired. as,37.0
100
20

20
7

10
8

8
3

) vector100thspick () vector100thspick |2(

) vector10thspick () vector10thspick |2()2 generated(

=

×+×=

=
+===

PXP

PXPXP

Main advantage: Less storage than table-lookup, especially for large number of

decimals required in the p(i)’s

8-32

The Alias Method

Improvement over A-R: If we “reject,” we don’t give up and start all over, but

instead return the alias of the generated Y

Set up two vectors of length n + 1 each:

 Aliases L0, L1, ..., Ln ∈ {0, 1, ..., n}

 Cutoffs F0, F1, ..., Fn ∈ [0, 1]

Algorithm:

 1. Generate I uniformly on {0, 1, ..., n} (I = (n + 1)U)
 2. Generate U0 ~ U(0,1) independent of I

 3. If U0 ≤ FI, return X = I; otherwise, return X = LI

Note that a “rejection” in step 3 results in returning the alias of I, rather than
throwing I out and starting all over, as in A-R

Proof: Complicated; embodied in algorithms to set up aliases and cutoffs

Intuition:

Approximate p(i)’s initially by simple discrete uniform I on {0, 1, ..., n}

Thus, I = i with probability 1/(n + 1) for each i ∈ {0, 1, ..., n}
For i with p(i) << 1/(n + 1), cutoff Fi is small, so will probably “move away” to

another value Li for which p(Li) >> 1/(n + 1)

For i with p(i) >> 1/(n + 1), cutoff Fi is large (like 1) or alias of i is itself (Li =
i), so will probably “keep” all the I = i values, as well as receive more from
other values with low desired probabilities

Clever part: can get an algorithm for cutoffs and aliases so that this shifting
works out to exactly the desired p(i)’s in the end

Advantage: Very fast

Drawbacks:
 Requires storage of 2(n + 1); can be reduced to n + 1, still problematic
 Requires the initial setup of aliases and cutoffs

(Setup methods for
aliases and cutoffs on
pp. 490–491 of SMA.)

8-33

Example of Alias method:

i 0 1 2 3
p(i) 0.1 0.4 0.2 0.3
Fi 0.4 0.0 0.8 0.0
Li 1 1 3 3

Picture:

How can the algorithm return X = 2?

Since 2 is not the alias of anything else, can get X = 2 only if we generate I = 2
and keep it (i.e., don’t change I = 2 to its alias F2 = 3)

Thus,

desired as 0.2,0.80.25

tlyindependen generated are and since)8.0()2(

)8.0 and 2()2(

=×=
≤==
≤===

UIUPIP

UIPXP

How can the algorithm return X = 3?

Can get X = 3 in two mutually exclusive ways:
 Generate I = 3 (since alias of 3 is L3 = 3, will always get a 3 here)
 Generate I = 2 but change it to its alias 3
Thus,

desired as 0.3,0.20.2525.0

)8.0 and 2()3()3(

=×+=
>=+=== UIPIPXP

8-34

8.5 Generating Random Vectors, Correlated
Random Variates, and Stochastic Processes

So far: IID univariate RVs

Sometimes have correlation between RVs in reality:

A = interarrival time of a job from an upstream process
S = service time of job at the station being modeled

Upstream
process → Station being

modeled

Perhaps a large A means that the job is “large,” taking a lot of time upstream—

then it probably will take a lot of time here too (S large)
i.e., Cor(A, S) > 0
Ignoring this correlation can lead to serious errors in output validity (see notes

for Chap. 6 for some specific numerical examples)
Need ways to generate it in the simulation

May want to simulate entire joint distribution of a random vector for input:
 Multivariate normal in econometric or statistical simulation

Important distinction:

Full joint distribution of random vector X

= (X1, X2, ..., Xn)T ∈ ℜn
vs.

Marginal distributions of each Xi and all
covariances or correlations

 These are the same thing only in the case of multivariate normal

 Could want either in simulation

8-35

8.5.1 Using Conditional Distributions

Suppose we know the entire joint distribution for a random vector X, i.e., for a

fixed x = (x1, x2, ..., xn)T ∈ ℜn, we know the value of the joint CDF

F(x) = P(X ≤ x) = P(X1 ≤ x1, ..., Xn ≤ xn)

This determines all the covariances and correlations

General method:

For i = 1, 2, ..., n, let Fi(•) be the marginal distribution of Xi

For k = 2, 3, ..., n, let Fk(• | X1, X2, ..., Xk–1) be the conditional distribution of
Xk given X1, X2, ..., Xk–1

Algorithm:

1. Generate X1 (marginally) from F1

2. Generate X2 from F2(• | X1)

3. Generate X3 from F3(• | X1, X2)

.

.

.
n. Generate Xn from Fn(• | X1, X2, ..., Xn–1)

n + 1. Return X = (X1, X2, ..., Xn)T

Proof: Tedious but straightforward manipulation of definitions of marginal and

conditional distributions

Completely general concept

Requires a lot of input information

8-36

8.5.2 Multivariate Normal and Multivariate Lognormal

One case where knowing the marginal distributions and all the

covariances/correlations is equivalent to knowing the entire joint distribution

Want to generate multivariate normal random vector X with:

 Mean vector µµ = (µ1, µ2, ..., µn)T

 Covariance matrix ΣΣ = [σij]n×n

Since ΣΣ must be positive definite, there is a unique lower-triangular n × n matrix C
such that ΣΣ = CCT (there are linear-algebra algorithms to do this)

Algorithm:

 1. Generate Z1, Z2, ..., Zn as IID N(0,1), and let Z = (Z1, Z2, ..., Zn)T

 2. Return X = µµ + CZ

Note that the final step is just higher-dimensional version of the familiar

transformation X = µ + σZ to get X ~ N(µ, σ) from Z ~ N(0,1)

Can be modified to generate a multivariate lognormal random vector

8-37

8.5.3 Correlated Gamma Random Variates

Want to generate X = (X1, X2, ..., Xn)T where

 Xi ~ gamma(αi, βi), αi’s, βi’s specified

 Cor(Xi, Xj) = ρij (specified)

Useful ability, since gamma distribution is flexible (many different shapes)

Note that we are not specifying the whole joint distribution, so there may be

different X’s that will satisfy the above but have different joint distributions

Difficulties:

The αi’s place limitations on what ρij’s are theoretically possible — that is, there
may not even be such a distribution and associated random vector

Even if the desired X is theoretically possible, there may not be an algorithm
known that will work

Even the known algorithms do not have control over the joint distribution

One known case:

Bivariate (n = 2); let ρ = ρ12

0 ≤ ρ ≤ 1111 /},min{ αααα

Positive correlation, bounded above

If α1 = α2 the upper bound is 1, i.e., is removed

If α1 = α2 = 1, have any two positively correlated exponentials

Algorithm (trivariate reduction):

1. Generate Y1 ~ gamma(211 ααρα − , 1)

2. Generate Y2 ~ gamma(212 ααρα − , 1)

3. Generate Y3 ~ gamma(21ααρ , 1)

4. Return X = (X1, X2)T = (β1(Y1 + Y3), β2(Y2 + Y3))T

Correlation is carried by Y3, common to both X1 and X2

8-38

Other solved problems:

Bivariate gamma with any theoretically possible correlation (+ or –)

General n-dimensional gamma, but with restrictions on the correlations that are

more severe than those imposed by existence

Negatively correlated gammas with common αi’s and βi’s

Any theoretically possible set of marginal gamma distributions and correlation

structure (see Sec. 8.5.5 below)

8-39

8.5.4 Generating from Multivariate Families

Methods exist for generating from:

Multivariate Johnson-translation families — generated vectors match empirical
marginal moments, and have cross-correlations close to sample correlations

Bivariate Bézier — limited extension to higher dimensions

8-40

8.5.5 Generating Random Vectors with Arbitrarily
Specified Marginal Distributions and Correlations

Very general structure

Arbitrary marginal distributions — need not be from same family; can even have
some continuous and some discrete

Arbitrary cross-correlation matrix — there are, however, constraints imposed by
the set of marginal distributions on what cross correlations are theoretically
feasible

Variate-generation method — normal-to-anything (NORTA)

Transform a generated multivariate normal random vector (which is easy to
generate) to get the desired marginals and cross-correlation matrix

F1, F2, ..., Fd are the desired marginal cumulative distribution functions (d
dimensions)

ρij(X) = desired correlation between the generated Xi and Xj (i and j are the
coordinates of the generated d-dimensional random vector X)

Generate multivariate normal vector Z = (Z1, Z2, ..., Zd)
T with Zi ~ N(0, 1) and

correlations ρij(Z) = Cor(Zi, Zj) specified as discussed below

For i = 1, 2, ..., d, set Xi = 1−
iF (Φ(Zi)), where Φ is the standard normal

cumulative distribution function (CDF)

Since Zi has CDF Φ , Φ(Zi) ~ U(0, 1), so Xi = 1−
iF (Φ(Zi)) is the inverse-

transform method of generation from Fi, but with a roundabout way of
getting the U(0, 1) variate

Evaluation of Φ and possibly 1−
iF would have to be numerical

Main task is to pre-compute the normal correlations ρij(Z), based on the desired
output correlations ρij(X), so that after the Zi’s are transformed via Φ and
then 1−

iF , the resultant Xi’s will have the desired correlation structure

This computation is done numerically via algorithms in the original Cario/Nelson
paper

Despite the numerical work, NORTA is very attractive due to its complete

generality

8-41

8.5.6 Generating Stochastic Processes

Need for auto-correlated input processes was demonstrated in examples in Chap. 6

AR, ARMA, ARIMA models can be generated directly from their definitions,

which are constructive

Gamma processes — gamma-distributed marginal variates with an autocorrelation

structure
Includes exponential autoregressive (EAR) processes as a special case

TES (Transform-Expand-Sample) processes

Flexible marginal distribution, approximate matching of autocorrelation structure
empirical observation

Generate sequence of U(0, 1)’s that are autocorrelated
Transform via inverse transform to desired marginal distribution
Correlation-structure matching proceeds via interactive software
Has been applied to telecommunications models

ARTA (Autoregressive To Anything)

Similar to NORTA (finite-dimensional) random-vector generation
Want generated Xi to have (marginal) distribution Fi, specified autocorrelation

structure
Generate AR(p) base process with N(0, 1) marginals and autocorrelation

specified so that Xi = 1−
iF (Φ(Zi)) will have the desired final autocorrelation

structure
Numerical method to find appropriate correlation structure of the base process

8-42

8.6 Generating Arrival Processes

Want to simulate a sequence of events occurring over time (e.g., arrivals of

customers or jobs)

Event times: t1, t2, t3, ... governed by a specified stochastic process

For convenience in dynamic simulations, want recursive algorithms that generate ti

from ti–1

8.6.1 Poisson Process

Rate = λ > 0

Inter-event times: Ai = ti – ti–1 ~ exponential with mean 1/λ

Algorithm (recursive, get ti from ti–1):

1. Generate U ~ U(0,1) independently

2. Return ti = ti–1 – (lnU)/λ

Note that –(lnU)/λ is the desired exponential variate with mean 1/λ

Obviously generalized to any renewal process where the Ai’s are arbitrary positive

RVs

8-43

8.6.2 Nonstationary Poisson Process

When events (arrivals, accidents, etc.) occur at a varying rate over time

Noon rush, freeways, etc.
Ignoring nonstationarity can lead to serious modeling/design/analysis errors

λ(t) = mean rate of
process (e.g.,
arrivals) at time t

Definition of process:

Let N(a, b) be the number of events in the time interval [a, b] (a < b)

Then N(a, b) ~ Poisson with mean ∫
b

a
dtt)(λ

Reasonable (but wrong) idea to generate:

Recursively, have an arrival at time t

Time of next arrival is t + expo (mean = 1/λ(t))

Why this is wrong:

In above figure, suppose an arrival occurs at time 5, when λ(t) is low

Then 1/ λ(t) is large, making the exponential mean large (probably)
Likely to miss the first “rush hour”

8-44

A Correct Idea: Thinning

Let λ* =
t

max λ(t), the “peak” arrival rate; “thin” out arrivals at this rate

Generate “trial” arrivals at the (too-rapid) rate λ*

For a “trial” arrival at time t, accept it as a “real” arrival with prob. λ(t)/λ*

Algorithm (recursive—have a “real” arrival at time ti–1, want to generate time ti of

the next “real” arrival):
 1. Set t = ti–1

 2. Generate U1, U2 ~ U(0,1) independently

 3. Replace t by t – (1/λ*) lnU1

 4. If U2 ≤ λ(t)/λ*, set ti = t and stop; else go back to step 2 and go on

Proof that Thinning Correctly Generates a Nonstationary Poisson Process:

Verify directly that the number of retained events in any time interval [a, b] is a

Poisson RV with mean ∫
b

a
dtt)(λ

Condition on the number of rate λ* trial events in [a, b]
Given this number, the trial events are U(a, b)

P(retain a trial point in [a, b])

)),(thiscall(
)(*

)(

1

*

)(

1
) at time ispoint trial|],[in point trialaretain (

location
point-trial

ofDensity

bap
ab

dtt

dt
ab

t

dt
ab

tbaP

b

a

b

a

b

a

−
=

−
=

−
=

∫

∫

∫

λ

λ

λ
λ

321

8-45

Let N*(a, b) = number of trial events in [a, b]

 Thus, N*(a, b) ~ Poisson with mean λ*(b – a)

 Also, N(a, b) ≤ N*(a, b), clearly

Then

() ()[] []




==
≤≤≥−

===
−

0 if1

0 and 1 if),(1),(
),(*|),(

kn

knkbapbap
kbaNnbaNP

nkn

n

k

 being the (binomial) probability of accepting n of the k trial points, each of
which has probability p(a, b) of being “accepted”

Thus, for n > 1 (must treat n = 0 case separately),

()[] []

desired. as
!

)(
)(exp

)algebra of days several(

!
)](*[

)](*exp[),(1),(

)),(*()),(*|),(()),((

n

dtt
dtt

k
ab

abbapbap

kbaNPkbaNnbaNPnbaNP

nb

ab

a

nk

k
nkn

n

k

nk











−=

−−−−=

=====

∫
∫

∑

∑
∞

=

−

∞

=

λ
λ

λλ

M

8-46

Intuition: piecewise-constant λ(t), time from 11:00 a.m. to 1:00 p.m.

8-47

Another Algorithm to Generate NSPP:

Plot cumulative rate function ∫=Λ
t

dyyt
0

)()(λ

Invert a rate-one stationary Poisson process (event times ti′) with respect to it

Algorithm (recursive):
 1. Generate U ~ U(0,1)

 2. Set ti′ = ti–1′ – ln U

 3. Return ti = Λ–1(ti′)

Compared to thinning:

Have to compute and invert Λ(t)
Don’t “waste” any trial arrivals

Faster if λ(t) has a few high spikes and is low elsewhere, and Λ(t) is easy to
invert

Corresponds to inverse-transform, good for variance reduction

8-48

Previous example: λ(t) piecewise constant, so Λ(t) piecewise linear—easy to invert

8-49

Generating NSPP with piecewise-constant λ(t) in SIMAN (similar for other process-
interaction languages)

Initialize global variables: X(1) = level of λ(t) on first piece

 X(2) = level of λ(t) on second piece
 etc.

Create a new “rate-changer” entity at the times when λ(t) jumps to a new rate

 (Or, create a single such entity that cycles back when λ(t) jumps)

When the next rate changer arrives (or the single rate changer cycles back), increase

global variable J by 1

Generate potential “customer arrivals” with interarrivals ~ exponential with mean

1/λ*, and for each of these “trial” arrivals:

Generate U ~ U(0,1)

If U ≤ X(J)/λ*, “accept” this as a “real” arrival and release entity into the model
Else dispose of this entity and wait for the next one

8-50

8.6.3 Batch Arrivals

At time ti, have Bi events rather than 1; Bi a discrete RV on {1, 2, ...}

Assume Bi’s are IID and independent of ti’s

Algorithm (get ti and Bi from ti–1):

1. Generate the next arrival time ti from the Poisson process

2. Generate Bi independently

3. Return with the information that there are Bi events at time ti

Could generalize:

Event times from some other process (renewal, nonstationary Poisson)

Bi’s and ti’s correlated somehow

