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8.1  Introduction 
 
Algorithms to produce observations (“variates”) from some desired input 

distribution (exponential, gamma, etc.) 
 
Formal algorithm—depends on desired distribution 
 
But all algorithms have the same general form: 
 
 
 

 
Note critical importance of a good random-number generator (Chap. 7) 
 
May be several algorithms for a desired input distribution form; want: 
 

Exact:  X has exactly (not approximately) the desired distribution 
Example of approximate algorithm: 

Treat Z = U1 + U2 + ... + U12 – 6 as N(0, 1) 

Mean, variance correct; rely on CLT for approximate normality 
Range clearly incorrect 

 
Efficient:  Low storage 

Fast (marginal, setup) 
Efficient regardless of parameter values (robust) 

 
Simple:  Understand, implement (often tradeoff against efficiency) 
 
Requires only U(0, 1) input 
 

One U → one X 
(if possible—for speed, synchronization in variance reduction) 

Generate one or more 
IID U(0, 1) random 

numbers 

Transformation 
(depends on desired 

distribution) 

Return X ~ desired 
distribution 
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8.2  General Approaches to Generating 
Random Variates 
 
Five general approaches to generating a univariate RV from a distribution: 

Inverse transform 
Composition 
Convolution 
Acceptance-rejection 
Special properties 

 

8.2.1  Inverse Transform 
 
Simplest (in principle), “best” method in some ways; known to Gauss 
 
Continuous Case 
 
Suppose X is continuous with cumulative distribution function (CDF) 

F(x) = P(X ≤ x) for all real numbers x that is strictly increasing over all x 

 
Step 2 involves solving the equation F(X) = U for X; the solution is written 

X = F–1(U), i.e., we must invert the CDF F 
 
Inverting F might be easy (exponential), or difficult (normal) in which case 

numerical methods might be necessary (and worthwhile—can be made “exact” 
up to machine accuracy) 

Algorithm: 

1. Generate U ~ U(0, 1)  
(random-number generator) 

2. Find X such that F(X) = U 
and return this value X 
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Proof:  (Assume F is strictly increasing for all x.)  For a fixed value x0, 

P(returned X is ≤ x0) = P(F
–1

(U) ≤ x0) (def. of X in algorithm) 

 = P(F(F-1(U)) ≤ F(x0)) (F is monotone ↑) 
 = P(U ≤ F(x0)) (def. of inverse function) 

 = P(0 ≤ U ≤ F(x0)) (U ≥ 0 for sure) 

 = F(x0) – 0 (U ~ U(0,1)) 

 = F(x0) (as desired) 

 
Proof by Picture: 

 
 

 
Pick a fixed value x0 
 

X1 ≤ x0 if and only if U1 ≤ F(x0), so 

P(X1 ≤ x0) = P(U1 ≤ F(x0)) 

= F(x0),     by definition of CDFs 

x0 
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Example of Continuous Inverse-Transform Algorithm Derivation 
 

Weibull (α, β) distribution, parameters α > 0 and β > 0 

Density function is 

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Since 1 – U ~ U(0, 1) as well, can replace 1 – U by U to get the final algorithm: 
 
 1. Generate U ~ U(0, 1) 

 2. Return ( ) αβ /1
ln UX −=  
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Intuition Behind Inverse-Transform Method 

 (Weibull (α = 1.5, β = 6) example) 
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The algorithm in action: 
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Discrete Case 
 
Suppose X is discrete with cumulative distribution function (CDF) 

F(x) = P(X ≤ x) for all real numbers x 
 and probability mass function 

p(xi) = P(X = xi), 

 where x1, x2, ... are the possible values X can take on 

 
 Algorithm: 
  1. Generate U ~ U(0,1)  (random-number generator) 

  2. Find the smallest positive integer I such that U ≤ F(xI) 

  3. Return X = xI 

 
Step 2 involves a “search” of some kind; several computational options: 

Direct left-to-right search—if p(xi)’s fairly constant 

If p(xi)’s vary a lot, first sort into decreasing order, look at biggest one first, ..., 
smallest one last—more likely to terminate quickly 

Exploit special properties of the form of the p(xi)’s, if possible 

 
Unlike the continuous case, the discrete inverse-transform method can always be 

used for any discrete distribution (but it may not be the most efficient approach) 
 
Proof:  From the above picture, P(X = xi) = p(xi) in every case 
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Example of Discrete Inverse-Transform Method 
 
Discrete uniform distribution on 1, 2, ..., 100 
 
xi = i, and p(xi) = p(i) = P(X = i) = 0.01 for i = 1, 2, ..., 100 

 
      F (x )

x

1.00

1 2 3 98 99 100

0.01
0.02
0.03

0

0.99
0.98
0.97

 
 
“Literal” inverse transform search: 
 
 1. Generate U ~ U(0,1) 
 2. If U ≤ 0.01 return X = 1 and stop; else go on 
 3. If U ≤ 0.02 return X = 2 and stop; else go on 
 4. If U ≤ 0.03 return X = 3 and stop; else go on 
 . 
 . 
 . 
 100. If U ≤ 0.99 return X = 99 and stop; else go on 
 101. Return X = 100 
 
Equivalently (on a U-for-U basis): 
 
 1. Generate U ~ U(0,1) 

 2. Return X = 100 U + 1 
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Generalized Inverse-Transform Method 
 

Valid for any CDF F(x):  return X = min{x: F(x) ≥ U}, where U ~ U(0,1) 
 Continuous, possibly with flat spots (i.e., not strictly increasing) 
 Discrete 
 Mixed continuous-discrete 
 
Problems with Inverse-Transform Approach 
 
Must invert CDF, which may be difficult (numerical methods) 
May not be the fastest or simplest approach for a given distribution 
 
Advantages of Inverse-Transform Approach 
 
Facilitates variance-reduction techniques; an example: 

Study effect of speeding up a bottleneck machine 
Compare current machine with faster one 
To model speedup:  Change service-time distribution for this machine 
Run 1 (baseline, current system):  Use inverse transform to generate service-time 

variates for existing machine 
Run 2 (with faster machine):  Use inverse transform to generate service-time 

variates for proposed machine 
Use the very same uniform U(0,1) random numbers for both variates: 

Service times will be positively correlated with each other 
Inverse-transform makes this correlation as strong as possible, in 

comparison with other variate-generation methods 
Reduces variability in estimate of effect of faster machine 
Main reason why inverse transform is often regarded as “the best” method 
Common random numbers 
Can have big effect on estimate quality (or computational effort required) 

Generating from truncated distributions (pp. 447-448 and Problem 8.4 of SMA) 
Generating order statistics without sorting, for reliability models: 
 Y1, Y2, ..., Yn IID ~ F; want Y(i) — directly, generate Yi’s, and sort 
 Alternatively, return Y(i) = F–1(V) where V ~ beta(i, n – i + 1) 
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8.2.2  Composition 
 
Want to generate from CDF F, but inverse transform is difficult or slow 
 
Suppose we can find other CDFs F1, F2, ... (finite or infinite list) and weights p1, 

p2, ... (pj ≥ 0 and p1 + p2 + ... = 1) such that for all x, 

F(x) = p1F1(x) + p2F2(x) + ... 

 
(Equivalently, can decompose density f(x) or mass function p(x) into convex 

combination of other density or mass functions) 
 
Algorithm: 
 1. Generate a positive random integer J such that P(J = j) = pj 

 2. Return X with CDF FJ (given J = j, X is generated independent of J) 

 
Proof:  For fixed x, 

P(returned X ≤ x) = ∑ ==≤
j

jJPjJxXP )()|(  (condition on J = j) 

 = ∑ =≤
j

jpjJxXP )|(  (distribution of J) 

 = ∑
j

jj pxF )(  (given J = j, X ~ Fj) 

 = F(x) (decomposition of F) 
 
The trick is to find Fj’s from which generation is easy and fast 

 
Sometimes can use geometry of distribution to suggest a decomposition 
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Example 1 of Composition Method (divide area under density vertically) 
 
Symmetric triangular distribution on [–1, +1]: 
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






+≤≤
≤≤−

+−
+

=
otherwise

10 if  

01 if  

0

1

1

)( x

x

x

x

xf  

0–1 +1

1

x

area=1/2area=1/2

 
 CDF:











+>

+≤<

≤≤−
−<

++−

++
=

1 if  

10 if  

01 if  

1 if  

1

2/12/

2/12/

0

)( 2

2

x

x

x

x

xx

xx
xF  

 

0–1 +1

1

x

1/2

 

 
Inverse-transform: 
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Composition:  Define indicator function for the set A as 
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 Composition algorithm: 
1. Generate U1, U2 ~ U(0,1) independently 

2. If U1 < 1/2, return X = 12 −U  

  Otherwise, return X = 211 U−−   

 

(Can eliminate ’s) 

Comparison of algorithms (expectations): 
Method U’s Compares Adds Multiplies ’s 

Inv. trnsfrm. 1 1 1.5 1 1 
Composition 2 1 1.5 0 1 

So composition needs one more U, one fewer multiply—faster if RNG is fast 
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Example 2 of Composition Method (divide area under density horizontally) 
 
 
Trapezoidal distribution on [0, 1] with parameter a (0 < a < 1):  
 
 

 Density: 


 ≤≤−−−

=
otherwise  0

10 if  )1(22
)(

xxaa
xf  

 
 
 
 
 
 

 CDF: 








>
≤≤−−−

<
=

1 if  1

10 if  )1()2(

0 if  0

)( 2

x

xxaxa

x

xF  

0 1 x

1

 
 
 
Inverse-transform: 

2)1()2()( XaXaXFU −−−== ; solve for 
a

U

a

a

a

a
X

−
−

−
−

−
−
−

=
1)1(4

)2(

)1(2

2
2

2

 

x 
0 1 

a 

2–a area = a 

area = 1–a 



8-15 

Composition: 
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 Composition algorithm: 

1. Generate U1, U2 ~ U(0,1) independently 

2. If U1 < a, return X =       U2  

  Otherwise, return X = 211 U−−  

 
 

(Can eliminate ) 

 

 

 

Comparison of algorithms (expectations): 
Method U’s Compares Adds Multiplies ’s 

Inv. trnsfrm. 1 0 2 1 1 
Composition 2 1 2(1 – a) 0 1 – a 

Composition better for large a, where F is nearly U(0,1) and it avoids the  
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8.2.3  Convolution 
 

Suppose desired RV X has same distribution as Y1 + Y2 + ... + Ym, where the Yj’s 
are IID and m is fixed and finite 

Write:  X  ~ Y1 + Y2 + ... + Ym, called m-fold convolution of the distribution of Yj 

Contrast with composition: 
Composition:  Expressed the distribution function (or density or mass) as a 

(weighted) sum of other distribution functions (or densities or masses) 
Convolution:  Express the random variable itself as the sum of other random 

variables 
Algorithm (obvious): 

 1. Generate Y1, Y2, ..., Ym independently from their distribution 

 2. Return X = Y1 + Y2 + ... + Ym 

 
 
Example 1 of Convolution Method 
 

X ~ m-Erlang with mean β > 0 

Express X = Y1 + Y2 + ... + Ym where Yj’s ~ IID exponential with mean β/m 

Note that the speed of this algorithm is not robust to the parameter m 
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Example 2 of Convolution Method 
 
Symmetric triangular distribution on [–1, +1] (again): 

 Density: 
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By simple conditional probability:  If U1, U2 ~ IID U(0,1), then U1 + U2 ~ 

symmetric triangular on [0, 2], so just shift left by 1: 
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2 Us, 2 adds; no compares, multiplies, or s—clearly beats inverse transform, 
composition 
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8.2.4  Acceptance-Rejection 
 
Usually used when inverse transform is not directly applicable or is inefficient (e.g., 

gamma, beta) 
Has continuous and discrete versions (we’ll just do continuous; discrete is similar) 
Goal:  Generate X with density function f 
 

Specify a function t(x) 
that majorizes f(x), 
i.e., t(x) > f(x) for all x 

x

      f (x )      t ( x )

 

Then t(x) > 0 for all x, but 1)()( =≥ ∫∫
∞

∞−

∞

∞−

dxxfdxxt  so t(x) is not a density 

Set c = 1)( ≥∫
∞

∞−

dxxt  

Define r(x) = t(x)/c for all x 
Thus, r(x) is a density (integrates to 1) 
 
Algorithm: 
 1. Generate Y having density r 
 2. Generate U ~ U(0,1) (independent of Y in Step 1) 

 3. If U ≤ f(Y)/t(Y), return X = Y and stop; 
   else go back to Step 1 and try again 
 (Repeat 1— 2 — 3 until acceptance finally occurs in Step 3) 
 

Since t majorizes f, f(Y)/t(Y) ≤ 1 so “U ≤ f(Y)/t(Y)” may or may not occur for a 
given U 

Must be able to generate Y with density r, hopefully easily—choice of t 
On each pass, P(acceptance) = 1/c, so want small c = area under t(x), so want t to 

“fit” down on top of f closely (i.e., want t and thus r to resemble f closely) 
Tradeoff between ease of generation from r, and closeness of fit to f 
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Proof:  Key—we get an X only conditional on acceptance in step 3.  So 
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Next, 
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since f is a density and so integrates to 1.  Putting ** and *** back into *, 
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as desired. 
 
(Depressing footnote:  John von Neumann, in his 1951 paper developing this idea, 

needed only a couple of sentences of words — no math or even notation — to 
see that this method is valid.) 
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Example of Acceptance-Rejection 
 

Beta(4,3) distribution, density is f(x) = 60 x3 (1 – x)2 for 0 ≤ x ≤ 1 
 

Top of density is f(0.6) = 2.0736 (exactly), so let t(x) = 2.0736 for 0 ≤ x ≤ 1 
 
Thus, c = 2.0736, and r is the U(0,1) density function 

 
 
Algorithm: 
 
 1. Generate Y ~ U(0,1) 
 2. Generate U ~ U(0,1) independent of Y 

 3. If U ≤ 60 Y3 (1 – Y)2 / 2.0736, return X = Y and stop; 
   else go back to step 1 and try again 
 
P(acceptance) in step 3 is 1/2.0736 = 0.48 
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Intuition 
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A different way to look at it—accept Y if U t(Y) ≤ f(Y), so plot the pairs  
(Y, U t(Y)) and accept the Y’s for which the pair is under the f curve 
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A closer-fitting majorizing function: 

 
 
 Higher acceptance probability on a given pass 
 
 Harder to generate Y with density shaped like t (composition) 
 
 Better ??? 
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Squeeze Methods 
 
Possible slow spot in A-R is evaluating f(Y) in step 3, if f is complicated 
 
Add a fast pre-test for acceptance just before step 3—if pre-test is passed we know 

that the test in step 3 would be passed, so can quit without actually doing the 
test (and evaluating f(Y)). 

 
One way to do this — put a minorizing function b(x) under f(x): 
 

x

      f (x )      t (x )

      b(x )
 

 

Since b(x) ≤ f(x), pre-test is first to check if U ≤ b(Y)/t(Y); if so accept Y right away 
(if not, have to go on and do the actual test in step 3) 

 
Good choice for b(x): 
 Close to f(x) (so pre-test and step 3 test agree most of the time) 
 Fast and easy to evaluate b(x) 



8-26 

8.2.5  Special Properties 
 
Simply “tricks” that rely completely on a given distribution’s form 
 
Often, combine several “component” variates algebraically (like convolution) 
 
Must be able to figure out distributions of functions of random variables 
 
No coherent general form — only examples 
 
 
Example 1:  Geometric 
 
Physical “model” for X ~ geometric with parameter p (0 < p < 1): 
 
X = number of “failures” before first success in Bernoulli trials with P(success) = p 
 
Algorithm:  Generate Bernoulli(p) variates and count the number of failures before 

first success 
 
Clearly inefficient if p is close to 0 
 
 
Example 2:  Beta 
 

If Y1 ~ gamma(α1, 1), Y2 ~ gamma(α2, 1),  and they are independent, then 

 

X = Y1/(Y1 + Y2) ~ beta(α1, α2) 

 
Thus, we effectively have a beta generator if we have a gamma generator 
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8.3  Generating Continuous Random Variates 
 
Sixteen families of continuous distributions found useful for modeling simulation 

input processes 
 

Correspond to distributions defined in Chap. 6 
 
At least one variate-generation algorithm for each is specifically given on pp. 459–

471 of SMA 
 
Algorithms selected considering exactness, speed, and simplicity — often there are 

tradeoffs involved among these criteria 
 

8.4  Generating Discrete Random Variates 
 
Seven families of discrete distributions found useful for modeling simulation input 

processes 
 

Correspond to distributions defined in Chap. 6 
 
At least one variate-generation algorithm for each is specifically given on pp. 471–

478 of SMA 
 
Algorithms selected considering exactness, speed, and simplicity — often there are 

tradeoffs involved among these criteria 
 
One of these seven is completely general if the range of the random variable is finite, 

and will be discussed separately in Sec. 8.4.3 ... 
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8.4.3  Arbitrary Discrete Distribution 
 

Common situation:  Generate discrete X ∈ {0, 1, 2, ..., n} with mass function p(i) = 
P(X = i), i = 0, 1, 2, ..., n 

 
 In its own right to represent, say, lot sizes in a manufacturing simulation 
 
 As part of other variate-generation methods (e.g., composition) 
 
Why restrict to range {0, 1, 2, ..., n} rather than general {x1, x2, ..., xm}? 

 
 Not as restrictive as it seems: 
 
  Really want a general range {x1, x2, ..., xm} 

 
  Let n = m – 1 and let p(j – 1) = P(X = xj), j = 1, 2, ..., m (= n + 1) 

   (so j – 1 = 0, 1, ..., m – 1 (= n)) 
 
  Algorithm: 
   1. Generate J on {0, 1, 2, ..., n} with mass function p(j) 
   2. Return X = xJ+1 

 
Have already seen one method to do this:  Inverse transform 
 
 Always works 
 
 But may be slow, especially for large range (n) 
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Table Lookup 
 
Assume that each p(i) can be represented as (say) a 2-place decimal 
 
Example: 

i  0 1 2 3  
p(i)  0.15 0.20 0.37 0.28 1.00 = sum of p(i)’s 

(must be exact — no roundoff allowed) 
 
Initialize a vector (m1, m2, ..., m100) with 

m1   = m2  = ... = m15 = 0 (first 100p(0) mj’s set to 0) 

m16 = m17 = ... = m35 = 1 (next 100p(1) mj’s set to 1) 

m36 = m37 = ... = m72 = 2 (next 100p(2) mj’s set to 2) 

m73 = m74 = ... = m100 = 3 (last 100p(3) mj’s set to 3) 

 
Algorithm (obvious): 

 1. Generate J uniformly on {1, 2, ..., 100}   (J = 100U + 1) 
 2. Return X = mJ 

 
Advantages: 
 Extremely simple 
 Extremely fast (marginal) 
 
Drawbacks: 
 Limited accuracy on p(i)’s—use 3 or 4 decimals instead? 
  (Few decimals OK if p(i)’s are themselves inaccurate estimates) 

 Storage is 10d, where d = number of decimals used 
 Setup required (but not much) 
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Marsaglia Tables 
 
As above, assume p(i)’s are q-place decimals (q = 2 above); set up tables 
 
But will use less storage, a little more time 
 
Same example: 

i  0 1 2 3  
p(i)  0.15 0.20 0.37 0.28 1.00 = sum of p(i)’s 

(must be exact—no roundoff allowed) 
 
Initialize a vector for each decimal place (here, need q = 2 vectors): 
 
 “Tenths” vector:  Look at tenths place in each p(i); put in that many copies of 

the associated i 
 

0 1 1 2 2 2 3 3  ← 10ths vector 
1  2    3    2 

 
“Hundredths” vector:  Look at hundredths place in each p(i); put in that many 
copies of the associated i 

 

0 0 0 0 0     2 2 2 2 2 2 2 3 3 3 3 3 3 3 3  ← 100ths 
vector 

    5      0        7              8 

 
Total storage = 8 + 20 = 28 = sum of all the digits in the p(i)’s 
 
Was 100 for table-lookup method 
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Algorithm: 
 

1. Pick 10ths vector with prob. 1/10 × (sum of 10ths digits) = 8/10. 
If picked, return X = one of the entries in this vector with equal probability 

(1/8 here). 
If not picked, go on to step 2. 
 

2. Pick 100ths vector with prob. 1/100 × (sum of 100ths digits) = 20/100. 
If picked, return X = one of the entries in this vector with equal probability 

(1/20 here). 
If not picked, go on to step 3.  (Won’t happen here.) 
 

3. (Not present here.)  Pick 1000ths vector with prob. 1/1000 × (sum of 
1000ths digits) 
If picked, return X = one of the entries in this vector with equal probability. 
If not picked, go on to step 4. 
 

etc. 
 
Proof (by example for i = 2; other cases exactly analogous): 
 

desired. as,37.0
100
20

20
7

10
8

8
3

) vector100thspick () vector100thspick |2(

) vector10thspick () vector10thspick |2()2 generated(

=

×+×=

=
+===

PXP

PXPXP

 

 
Main advantage:  Less storage than table-lookup, especially for large number of 

decimals required in the p(i)’s 
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The Alias Method 
 
Improvement over A-R:  If we “reject,” we don’t give up and start all over, but 

instead return the alias of the generated Y 
 
Set up two vectors of length n + 1 each: 

 Aliases L0, L1, ..., Ln ∈ {0, 1, ..., n} 

 Cutoffs F0, F1, ..., Fn ∈ [0, 1] 

 
Algorithm: 

 1. Generate I uniformly on {0, 1, ..., n}   (I = (n + 1)U) 
 2. Generate U0 ~ U(0,1) independent of I 

 3. If U0 ≤ FI, return X = I; otherwise, return X = LI 

Note that a “rejection” in step 3 results in returning the alias of I, rather than 
throwing I out and starting all over, as in A-R 

 
Proof:  Complicated; embodied in algorithms to set up aliases and cutoffs 
 
Intuition: 

Approximate p(i)’s initially by simple discrete uniform I on {0, 1, ..., n} 

Thus, I = i with probability 1/(n + 1) for each i ∈ {0, 1, ..., n} 
For i with p(i) << 1/(n + 1), cutoff Fi is small, so will probably “move away” to 

another value Li for which p(Li) >> 1/(n + 1) 

For i with p(i) >> 1/(n + 1), cutoff Fi is large (like 1) or alias of i is itself (Li = 
i), so will probably “keep” all the I = i values, as well as receive more from 
other values with low desired probabilities 

Clever part:  can get an algorithm for cutoffs and aliases so that this shifting 
works out to exactly the desired p(i)’s in the end 

 
Advantage:  Very fast 
 
Drawbacks: 
 Requires storage of 2(n + 1); can be reduced to n + 1, still problematic 
 Requires the initial setup of aliases and cutoffs 

(Setup methods for 
aliases and cutoffs on 
pp. 490–491 of SMA.) 
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Example of Alias method: 
 

i 0 1 2 3 
p(i) 0.1 0.4 0.2 0.3 
Fi 0.4 0.0 0.8 0.0 
Li 1 1 3 3 

Picture: 

     
 
How can the algorithm return X = 2? 

Since 2 is not the alias of anything else, can get X = 2 only if we generate I = 2 
and keep it (i.e., don’t change I = 2 to its alias F2 = 3) 

Thus, 

desired as 0.2,0.80.25

tlyindependen generated are  and  since )8.0()2(

)8.0 and 2()2(

=×=
≤==
≤===

UIUPIP

UIPXP

 

 
How can the algorithm return X = 3? 

Can get X = 3 in two mutually exclusive ways: 
 Generate I = 3 (since alias of 3 is L3 = 3, will always get a 3 here) 
 Generate I = 2 but change it to its alias 3 
Thus, 

desired as 0.3,0.20.2525.0

)8.0 and 2()3()3(

=×+=
>=+=== UIPIPXP
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8.5  Generating Random Vectors, Correlated 
Random Variates, and Stochastic Processes 
 
So far:  IID univariate RVs 
 
Sometimes have correlation between RVs in reality: 

A = interarrival time of a job from an upstream process 
S = service time of job at the station being modeled 
 

Upstream 
process  →  Station being 

modeled 

 
Perhaps a large A means that the job is “large,” taking a lot of time upstream—

then it probably will take a lot of time here too (S large) 
i.e., Cor(A, S) > 0 
Ignoring this correlation can lead to serious errors in output validity (see notes 

for Chap. 6 for some specific numerical examples) 
Need ways to generate it in the simulation 

 
May want to simulate entire joint distribution of a random vector for input: 
 Multivariate normal in econometric or statistical simulation 
 
Important distinction: 
 

Full joint distribution of random vector X 

= (X1, X2, ..., Xn)T ∈ ℜn 
vs. 

Marginal distributions of each Xi and all 
covariances or correlations 

 
 These are the same thing only in the case of multivariate normal 
 
 Could want either in simulation 
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8.5.1  Using Conditional Distributions 
 
Suppose we know the entire joint distribution for a random vector X, i.e., for a 

fixed x = (x1, x2, ..., xn)T ∈ ℜn, we know the value of the joint CDF 

F(x) = P(X ≤ x) = P(X1 ≤ x1, ..., Xn ≤ xn) 

 
This determines all the covariances and correlations 
 
General method: 

For i = 1, 2, ..., n, let Fi(•) be the marginal distribution of Xi 

For k = 2, 3, ..., n, let Fk( • | X1, X2, ..., Xk–1) be the conditional distribution of 
Xk given X1, X2, ..., Xk–1 

 
Algorithm: 

1. Generate X1 (marginally) from F1 

2. Generate X2 from F2( • | X1) 

3. Generate X3 from F3( • | X1, X2) 

. 

. 

. 
n. Generate Xn from Fn( • | X1, X2, ..., Xn–1) 

n + 1. Return X = (X1, X2, ..., Xn)T 

 
Proof:  Tedious but straightforward manipulation of definitions of marginal and 

conditional distributions 
 
Completely general concept 
 
Requires a lot of input information 
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8.5.2  Multivariate Normal and Multivariate Lognormal 
 
One case where knowing the marginal distributions and all the 

covariances/correlations is equivalent to knowing the entire joint distribution 
 
Want to generate multivariate normal random vector X with: 

 Mean vector µµ  = (µ1, µ2, ..., µn)T 

 Covariance matrix ΣΣ  = [σij]n×n 

 

Since ΣΣ  must be positive definite, there is a unique lower-triangular n × n matrix C 
such that ΣΣ  = CCT (there are linear-algebra algorithms to do this) 

 
Algorithm: 

 1. Generate Z1, Z2, ..., Zn as IID N(0,1), and let Z = (Z1, Z2, ..., Zn)T 

 2. Return X = µµ  + CZ 
 
Note that the final step is just higher-dimensional version of the familiar 

transformation X = µ + σZ to get X ~ N(µ, σ) from Z ~ N(0,1) 
 
Can be modified to generate a multivariate lognormal random vector 
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8.5.3  Correlated Gamma Random Variates 
 

Want to generate X = (X1, X2, ..., Xn)T where 

 Xi ~ gamma(αi, βi), αi’s, βi’s specified 

 Cor(Xi, Xj) = ρij (specified) 
 

Useful ability, since gamma distribution is flexible (many different shapes) 
 
Note that we are not specifying the whole joint distribution, so there may be 

different X’s that will satisfy the above but have different joint distributions 
 

Difficulties: 

The αi’s place limitations on what ρij’s are theoretically possible — that is, there 
may not even be such a distribution and associated random vector 

Even if the desired X is theoretically possible, there may not be an algorithm 
known that will work 

Even the known algorithms do not have control over the joint distribution 
 

One known case: 

Bivariate (n = 2); let ρ = ρ12 

0 ≤ ρ ≤ 1111 /},min{ αααα  

Positive correlation, bounded above 

If α1 = α2 the upper bound is 1, i.e., is removed 

If α1 = α2 = 1, have any two positively correlated exponentials 

Algorithm (trivariate reduction): 

1. Generate Y1 ~ gamma( 211 ααρα − , 1) 

2. Generate Y2 ~ gamma( 212 ααρα − , 1) 

3. Generate Y3 ~ gamma( 21ααρ , 1) 

4. Return X = (X1, X2)T = (β1(Y1 + Y3), β2(Y2 + Y3))T 

Correlation is carried by Y3, common to both X1 and X2 
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Other solved problems: 
 

Bivariate gamma with any theoretically possible correlation (+ or –) 
 
General n-dimensional gamma, but with restrictions on the correlations that are 

more severe than those imposed by existence 
 

Negatively correlated gammas with common αi’s and βi’s 

 
Any theoretically possible set of marginal gamma distributions and correlation 

structure (see Sec. 8.5.5 below) 
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8.5.4  Generating from Multivariate Families 
 
Methods exist for generating from: 
 

Multivariate Johnson-translation families — generated vectors match empirical 
marginal moments, and have cross-correlations close to sample correlations 

 
Bivariate Bézier — limited extension to higher dimensions 
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8.5.5  Generating Random Vectors with Arbitrarily 
Specified Marginal Distributions and Correlations 
 
Very general structure 

Arbitrary marginal distributions — need not be from same family; can even have 
some continuous and some discrete 

Arbitrary cross-correlation matrix — there are, however, constraints imposed by 
the set of marginal distributions on what cross correlations are theoretically 
feasible 

 
Variate-generation method — normal-to-anything (NORTA) 

Transform a generated multivariate normal random vector (which is easy to 
generate) to get the desired marginals and cross-correlation matrix 

F1, F2, ..., Fd are the desired marginal cumulative distribution functions (d 
dimensions) 

ρij(X) = desired correlation between the generated Xi and Xj (i and j are the 
coordinates of the generated d-dimensional random vector X) 

Generate multivariate normal vector Z = (Z1, Z2, ..., Zd)
T with Zi ~ N(0, 1) and 

correlations ρij(Z) = Cor(Zi, Zj) specified as discussed below 

For i = 1, 2, ..., d, set Xi = 1−
iF (Φ(Zi)), where Φ  is the standard normal 

cumulative distribution function (CDF) 

Since Zi has CDF Φ , Φ(Zi) ~ U(0, 1), so Xi = 1−
iF (Φ(Zi)) is the inverse-

transform method of generation from Fi, but with a roundabout way of 
getting the U(0, 1) variate 

Evaluation of Φ  and possibly 1−
iF  would have to be numerical 

Main task is to pre-compute the normal correlations ρij(Z), based on the desired 
output correlations ρij(X), so that after the Zi’s are transformed via Φ  and 
then 1−

iF , the resultant Xi’s will have the desired correlation structure 

This computation is done numerically via algorithms in the original Cario/Nelson 
paper 

 
Despite the numerical work, NORTA is very attractive due to its complete 

generality 
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8.5.6  Generating Stochastic Processes 
 
Need for auto-correlated input processes was demonstrated in examples in Chap. 6 
 
AR, ARMA, ARIMA models can be generated directly from their definitions, 

which are constructive 
 
Gamma processes — gamma-distributed marginal variates with an autocorrelation 

structure 
Includes exponential autoregressive (EAR) processes as a special case 

 
TES (Transform-Expand-Sample) processes 

Flexible marginal distribution, approximate matching of autocorrelation structure 
empirical observation 

Generate sequence of U(0, 1)’s that are autocorrelated 
Transform via inverse transform to desired marginal distribution 
Correlation-structure matching proceeds via interactive software 
Has been applied to telecommunications models 

 
ARTA (Autoregressive To Anything) 

Similar to NORTA (finite-dimensional) random-vector generation 
Want generated Xi to have (marginal) distribution Fi, specified autocorrelation 

structure 
Generate AR(p) base process with N(0, 1) marginals and autocorrelation 

specified so that Xi = 1−
iF (Φ(Zi)) will have the desired final autocorrelation 

structure 
Numerical method to find appropriate correlation structure of the base process 
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8.6  Generating Arrival Processes 
 
 
Want to simulate a sequence of events occurring over time (e.g., arrivals of 

customers or jobs) 
 
Event times:  t1, t2, t3, ... governed by a specified stochastic process 

 
For convenience in dynamic simulations, want recursive algorithms that generate ti 

from ti–1 

 
 

8.6.1  Poisson Process 
 

Rate = λ > 0 
 

Inter-event times:  Ai = ti – ti–1 ~ exponential with mean 1/λ 
 
Algorithm (recursive, get ti from ti–1): 

 

1. Generate U ~ U(0,1) independently 
 

2. Return ti = ti–1 – (lnU)/λ 

 

Note that –(lnU)/λ is the desired exponential variate with mean 1/λ 
 
Obviously generalized to any renewal process where the Ai’s are arbitrary positive 

RVs 
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8.6.2  Nonstationary Poisson Process 
 
When events (arrivals, accidents, etc.) occur at a varying rate over time 

Noon rush, freeways, etc. 
Ignoring nonstationarity can lead to serious modeling/design/analysis errors 
 

 
 

λ(t) = mean rate of 
process (e.g., 
arrivals) at time t 

 
 
Definition of process: 

Let N(a, b) be the number of events in the time interval [a, b] (a < b) 

Then N(a, b) ~ Poisson with mean ∫
b

a
dtt)(λ  

 
Reasonable (but wrong) idea to generate: 

Recursively, have an arrival at time t 

Time of next arrival is t + expo (mean = 1/λ(t)) 
 
Why this is wrong: 

In above figure, suppose an arrival occurs at time 5, when λ(t) is low 

Then 1/ λ(t) is large, making the exponential mean large (probably) 
Likely to miss the first “rush hour” 
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A Correct Idea:  Thinning 

Let λ* = 
t

max λ(t), the “peak” arrival rate; “thin” out arrivals at this rate 

Generate “trial” arrivals at the (too-rapid) rate λ* 

For a “trial” arrival at time t, accept it as a “real” arrival with prob. λ(t)/λ* 
 
Algorithm (recursive—have a “real” arrival at time ti–1, want to generate time ti of 

the next “real” arrival): 
 1. Set t = ti–1 

 2. Generate U1, U2 ~ U(0,1) independently 

 3. Replace t by t – (1/λ*) lnU1 

 4. If U2 ≤ λ(t)/λ*, set ti = t and stop; else go back to step 2 and go on 

 
 
Proof that Thinning Correctly Generates a Nonstationary Poisson Process: 
 
Verify directly that the number of retained events in any time interval [a, b] is a 

Poisson RV with mean ∫
b

a
dtt)(λ  

Condition on the number of rate λ* trial events in [a, b] 
Given this number, the trial events are U(a, b) 
 
P(retain a trial point in [a, b]) 
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Let N*(a, b) = number of trial events in [a, b] 

 Thus, N*(a, b) ~ Poisson with mean λ*(b – a) 

 Also, N(a, b) ≤ N*(a, b), clearly 
 
Then 

( ) ( )[ ] [ ]




==
≤≤≥−

===
−

0 if1

0 and 1 if),(1),(
),(*|),(

kn

knkbapbap
kbaNnbaNP

nkn

n

k

 

 being the (binomial) probability of accepting n of the k trial points, each of 
which has probability p(a, b) of being “accepted” 

 
Thus, for n > 1 (must treat n = 0 case separately), 
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Intuition:  piecewise-constant λ(t), time from 11:00 a.m. to 1:00 p.m. 
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Another Algorithm to Generate NSPP: 
 

Plot cumulative rate function ∫=Λ
t

dyyt
0

)()( λ  

Invert a rate-one stationary Poisson process (event times ti′) with respect to it 
 
Algorithm (recursive): 
 1. Generate U ~ U(0,1) 

 2. Set ti′ = ti–1′ – ln U 

 3. Return ti = Λ–1(ti′) 
 
Compared to thinning: 

Have to compute and invert Λ(t) 
Don’t “waste” any trial arrivals 

Faster if λ(t) has a few high spikes and is low elsewhere, and Λ(t) is easy to 
invert 

Corresponds to inverse-transform, good for variance reduction 
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Previous example:  λ(t) piecewise constant, so Λ(t) piecewise linear—easy to invert 
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Generating NSPP with piecewise-constant λ(t) in SIMAN (similar for other process-
interaction languages) 

 

Initialize global variables: X(1) = level of λ(t) on first piece 

  X(2) = level of λ(t) on second piece 
  etc. 
 

Create a new “rate-changer” entity at the times when λ(t) jumps to a new rate 

 (Or, create a single such entity that cycles back when λ(t) jumps) 
 
When the next rate changer arrives (or the single rate changer cycles back), increase 

global variable J by 1 
 
Generate potential “customer arrivals” with interarrivals ~ exponential with mean 

1/λ*, and for each of these “trial” arrivals: 
 

Generate U ~ U(0,1) 

If U ≤ X(J)/λ*, “accept” this as a “real” arrival and release entity into the model 
Else dispose of this entity and wait for the next one 
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8.6.3  Batch Arrivals 
 
 
At time ti, have Bi events rather than 1; Bi a discrete RV on {1, 2, ...} 

 
Assume Bi’s are IID and independent of ti’s 

 
Algorithm (get ti and Bi from ti–1): 

 

1. Generate the next arrival time ti from the Poisson process 

2. Generate Bi independently 

3. Return with the information that there are Bi events at time ti 

 
Could generalize: 

 
Event times from some other process (renewal, nonstationary Poisson) 
 
Bi’s and ti’s correlated somehow 

 


