CHAPTER 8

Generating Random Variates

S 300 R g 1 0o [F o (o] PP PPPRR 2
8.2 Genera Approachesto Generating Random VariatesS...........ccccvvveeeeeeveicennnen. 3
8.2.1 INVEISE TIaNSIOMMN. ..ttt ettt sttt be et st sreenneenne 3
8.2.2 COMPOSITION......eeeeieeieete it sttt ettt bbbt b e e s e b e s b e e bt e b e e e e e e e e e e nbe b e neeenis 11
S B 0 1Yo 111 o o 1SS 16
8.2.4 ACCEDIANCE-REECHION.ccueiiieieiee ettt st sttt et sre e b e neesneeneas 18
8.2.5 SPECIA PrOPErTIES. ..ottt e 26
8.3 Generating Continuous RaNdOM VariatesS...........oovvvvveeiieesiiiiieeeee e 27
8.4 Generating Discrete Random Variaes..........ccevveevviiiieieee e 27
8.4.3 Arbitrary Discrete DISriIDULION.........ccooiiiieiee e e 28
8.5 Generating Random Vectors, Correlated Random Variates, and Stochastic
P OCESSES ...ttt 34
8.5.1 Usng Conditiona DISDULIONS........cc.eccuiiieiicie et 35
8.5.2 Multivariate Norma and Multivariate Lognormal.............ccoceerieeneniieneenie e 36
8.5.3 Correlated Gamma RaNdOM Va@ES.........ccveereereeiesiesie e seeste e ste e sseesse e sneenees 37
85.4 Generating from Multivariate FamIlies............oooevieieeie e 39
855 Generating Random Vectors with Arbitrarily Specified Margina Digtributions and Corrdations
... 40
8.5.6 Generating StOChaStiC PrOCESSES........ccuiiiiiiiie ittt sbe e a e e snne e 41
8.6 Generating Arrival PrOCESSESccveiie et 42
8.6.1 POISSON PrOCESS.......ciiteiiiaiieitie e see sttt sttt ettt st b et s be e nbe e atesbe et e e aeesreenbe e e e nbeeneas 42
8.6.2 Nonstationary POISSON PrOCESS..........coiuiiiiierierierie sttt st e 43
8.6.3 BTN AITIVAScuieiieieie ettt sttt bbb bttt b et et nrenns 50

81

8.1 Introduction

Algorithms to produce observations (“variates’) from some desired input
distribution (exponential, gamma, etc.)

Formal agorithm—depends on desired distribution

But all agorithms have the same genera form:

Generate one or more
1D U(O, 1) random
numbers

—>

Transformation

(depends on desired
distribution)

Return X ~ desired
distribution

Note critical importance of a good random-number generator (Chap. 7)

May be severd agorithms for adesired input distribution form; want:

Exact: X has exactly (not approximately) the desired distribution
Example of approximate agorithm:

TreatZ=U1+ Uz + - +U120—-6asN(0, 1)

Mean, variance correct; rely on CLT for approximate normality
Range clearly incorrect

Efficient: Low storage

Fast (marginal, setup)

Efficient regardiess of parameter values (robust)

Smple: Understand, implement (often tradeoff against efficiency)

Requires only U(0, 1) input

OneU ® one X

(if possible—for speed, synchronization in variance reduction)

8-2

8.2 General Approachesto Generating
Random Variates

Five general approaches to generating a univariate RV from a distribution:
Inverse transform
Composition
Convolution
Acceptance-rgection
Special properties

8.2.1 Inverse Transform

Simplest (in principle), “best” method in some ways, known to Gauss

Continuous Case

Suppose X is continuous with cumulative distribution function (CDF)
F(X) = P(X £ X) for al rea numbers x that is strictly increasing over al x

---------------------- Ifp-m=m---------c===ac Algorithm:
| (random-number generator)
/«-u: i 2. Find X such that F(X) = U
! ! and return this value X

! 0 ! *

Step 2 involves solving the equation F(X) = U for X; the solution is written
X = F-1(U), i.e.,, we must invert the CDF F

Inverting F might be easy (exponentid), or difficult (normal) in which case
numerical methods might be necessary (and worthwhile—can be made “exact”
up to machine accuracy)

8-3

Proof: (Assume F isdtrictly increasing for al x.) For afixed value x,,

P(returned X is£x) = P(F " (U) £x,) (def. of X in agorithm)
= P(F(F-1(V)) £ F(x)) (Fismonotone-)
= P(U £ F(x)) (def. of inverse function)
=POE£U E F(x)) (U3 Ofor sure)
=F(x)-0 (U~U(@©D)
= F(x) (as desired)

Proof by Picture:

i

._
(=2

Ty P
=

X, 1 Xo
Pick afixed vaue x,
X1 £ X, if andonly if U; £ F(X,), SO
P(X1£x) =PU;£F(x))
= F(x,), by definition of CDFs

8-4

Example of Continuous I nverse-Transform Algorithm Derivation

Weibull (a, b) distribution, parametersa >0and b >0

. o iab 2y la OF i v
Densﬂyfunctlonlsf(x)=iab X" € if x>0

i 0 otherwise
X 11. e (b
CDFis F(x)= ¢&f tydt=i>" © It x>0
¥ 70 otherwise
Solve U = F(X) for X:
U=1-e®/®"
e =1- U

- (X/b)® =In(1- U)
X /b =[In@- v)["?
X =b[- In@- U)]"?

Sincel-U ~U(0, 1) aswell, can replace 1 — U by U to get the fina agorithm:

1. Generate U ~ U(0, 1)
2. Return X =b(- Inu }"'?

8-5

I ntuition Behind I nverse-Transform M ethod
(Weibull (a = 1.5, b = 6) example)
F(x)

0 26 30 5 10 11.5 14.9

(a)

Sfix)
015

I

0.05

8-6

The algorithm in action:

F(x)

1

fx)
0.15

0.10 -

0.05 {

(a)

10

15

10
®

8-7

15

Discrete Case

Suppose X is discrete with cumulative distribution function (CDF)

F(X) = P(X £ x) for dl real numbers x
and probability mass function

p(i) = P(X=Xx),
where x,, X,, ... are the possible values X can take on

F(x)
________________ l e - e o = = = e -
p(xe)
Fp(xs)
U—l-—------)
| ;P(x4)

Fp(xs) :

FpG) |
I]p(xl) I)| | [
X1 X2 X3 X5 X6 X

Algorithm:
1. Generate U ~U(0,1) (random-number generator)

2. Find the smallest positive integer | such that U £ F(x)
3. Return X =x

Step 2 involves a “search” of some kind; severa computationa options:
Direct left-to-right search—if p(x)’s fairly constant

If p(x)’svary alot, first sort into decreasing order, look at biggest one first, ...,
smallest one las—more likdly to terminate quickly
Exploit special properties of the form of the p(x)’s, if possible

Unlike the continuous case, the discrete inverse-transform method can always be
used for any discrete distribution (but it may not be the most efficient approach)

Proof: From the above picture, P(X = x) = p(x) in every case

8-8

Example of Discrete | nverse-Transform M ethod

Discrete uniform distributionon 1, 2, ..., 100
X =i,and p(x) =p@) =P(X=i)=0.01fori=1,2, ..., 100

F(x)
1004+ - - ———-— — - — — — — — — —
0.99 e
0.98 —
0.97 —

0.03 —
0.02 —
0.01 —

1 2 3 98 99 100

“Literd” inverse transform search:

Generate U ~ U(0,1)

If U £0.01 return X = 1 and stop; else go on
If U £0.02 return X = 2 and stop; else go on
If U £ 0.03 return X = 3 and stop; else go on

WP

100. If U £0.99 return X = 99 and stop; else go on
101. Return X=100

Equivaently (on a U-for-U basis):

1. GenerateU ~U(0,1)
2. ReturnX=&100UG0+ 1

8-9

Generalized I nverse-Transform M ethod

Validfor any CDF F(X): return X = min{x: F(x) ¢ U}, where U ~U(0,1)
Continuous, possibly with flat spots (i.e., not strictly increasing)
Discrete
Mixed continuous-discrete

Problems with | nver se-Transform Appr oach

Must invert CDF, which may be difficult (numerical methods)
May not be the fastest or simplest approach for a given distribution

Advantages of | nverse-Transform Approach

Facilitates variance-reduction techniques; an example:
Study effect of speeding up a bottleneck machine
Compare current machine with faster one
To model speedup: Change service-time distribution for this machine

Run 1 (basdline, current system): Use inverse transform to generate servicetime
variates for existing machine

Run 2 (with faster machine): Use inverse transform to generate service-time
variates for proposed machine

Use the very same uniform U(0,1) random numbers for both variates:
Service timeswill be positively correlated with each other

Inverse-transform makes this correlation as strong as possible, in
comparison with other variate-generation methods

Reduces variahility in estimate of effect of faster machine
Main reason why inverse transform is often regarded as “the best” method
Common random numbers
Can have big effect on estimate quality (or computationa effort required)
Generating from truncated distributions (pp. 447-448 and Problem 8.4 of SMA)
Generating order statistics without sorting, for reliability models:
Y1, Yz, ..., Yo [ID ~ F; want Y;, — directly, generate Y;'s, and sort
Alternatively, return Y, = F{(V) where V ~ beta(i, n —i + 1)

8-10

8.2.2 Composition

Want to generate from CDF F, but inverse transform is difficult or ow

Suppose we can find other CDFs F1, Fo, ... (finite or infinite list) and weights p1,
P2, ... (pj ® Oand py + p2 + - = 1) such that for all X,

F(X) = p1F1(X) + poFa(X) + -

(Equivalently, can decompose density f(X) or mass function p(x) into convex
combination of other density or mass functions)

Algorithm:
1. Generate a positive random integer J such that P(J = j) = pj
2. Return X with CDF F; (given J = |, X is generated independent of J)

Proof: For fixed X,
Pretumed X£X) =g P(X£x|J=j)PA=j) (conditiononJ=j)
j

= A P(XEX|I=])p, (distribution of J)
j

=a FMp, (givenJ=j, X~ Fj)
j

= F(X) (decomposition of F)

Thetrick isto find Fj’s from which generation is easy and fast

Sometimes can use geometry of distribution to suggest a decomposition

811

Example 1 of Composition M ethod (divide area under density vertically)

Symmetric triangular distribution on [-1, +1]:
i x+1 if -1£X£0
Density: f(X)=f- x+1 if 0£ x£ +1

¥ 0 otherwise

0 If x<-1
X?/2+x+1/2 if -1£EXEOQ
- X2+ x+1/2 if O<x£+1
1 if x>+1

Inverse-transform:

I X2/2+ X +1/2 if U<1/2U
U=FX)=i _, . 7
P- X212+ X +1/21if U2 1/2)

iJau-1 if U <1/20

X =
11- J2(L- U) if U3 1/2}

812

area=1/2 tl area=1/2

- solve for

i1 if xT A
Composition: Define indicator function for the set A as | A(x)::'O £ T A
10 if x

f(x) = X+l 14X + (- X+l (X)
= 0520+ D110} + 052~ x+ D)}
i L) & 2(x)
2 2
-1 0 +1X -1 0 +1X
F(X)=x*+2x+1 F,(X) =- X* +2x
F'U)=U -1 F,'U)=1- +1- U

Composition algorithm:
1. Generate U1, U ~ U(0,1) independently

2. 1f U< 12, reum X = /U, - 1 (Can diminate ,/ '9)
Otherwise, return X =1- ,/1- U,

Comparison of algorithms (expectations):

Method U's Compares Adds Multiplies ['S
Inv. trnsfrm. 1 1 15 1 1
Composition 2 1 15 0 1

So composition needs one more U, one fewer multiply—faster if RNG is fast

8-13

Example 2 of Composition M ethod (divide area under density horizontally)

Trapezoida digtribution on [0, 1] with parameter a (0 <a<1):

2-a -
_ 12- a-2(1- a)x if 0ExX£L aea=a
Dengty: f(x)=ji _
10 otherwise a _ aea=1l-a
Ve
X
0 1
i0if x<O 1
CDF: F(x)={(2- a)x- (1- a)x’ if 0EX£1L
11if x>1 0O 1 x
Inverse-transform:

U=F(X)=(2- a)X - (1- a)X?; solvefor X = 2-a \/(a- 2)22 -
2(1- a) 41- a)* 1-a

814

Composition:

f(X) = al oy (9}

P f1(x)
Just U(0,1)

14—

o 1 X
F(x)=x
F'U)=U

Composition agorithm:
1. Generate U1, Uo ~ U(0,1) independently
2. IfUij<a, return X=U>

Otherwise, return X =1- ,/1- U,

Comparison of algorithms (expectations):

+ (1- af2@-)y (0}

P2

2

.

fo(x)

o 1 X

F,(X) =- X* +2x

F,'U)=1- 4/1- U

(Can diminate ,/)

Method U's Compares Adds Multiplies 'S
Inv. trnsfrm. 1 0 2 1 1
Composition 2 1 2(1-a) 0 l-a

Composition better for large a, where F is nearly U(0,1) and it avoids the f

8-15

8.2.3 Convolution

Suppose desired RV X has same digtribution as Y1 + Y2 + -+ + Y, wherethe Yj's
are 11D and misfixed and finite

Writee X ~ Y1+ Y2 + - + Ypp, called m-fold convolution of the distribution of Y;

Contrast with composition:

Composition: Expressed the distribution function (or density or mass) asa
(weighted) sum of other distribution functions (or densities or masses)

Convolution: Expressthe random variable itself as the sum of other random
variables

Algorithm (obvious):
1. Generate Y1, Yo, -+, Ym independently from their distribution
2. Raeurn X=Y1+ Yo+ --- + Yq

Example 1 of Convolution M ethod

X~ m-Erlangwithmeanb >0
Express X = Y1 + Y2 + -« + Yy where Yj's ~ |ID exponentid with mean b/m
Note that the speed of this algorithm is not robust to the parameter m

8-16

Example 2 of Convolution M ethod

Symmetric triangular distribution on [-1, +1] (again):

i x+1 if - 1EXE0 1
Densty: f(X)=1- x+1 if O£ x£ +1
i

i 0 otherwise -1 o0 +1 X

By simple conditiona probability: If Uq, U2 ~ 11D U(0,1), then U1 + Up ~
symmetric triangular on [0, 2], so just shift left by 1.
X = U,+U,-1
= U,- 05+, - 0.52

Y Y2

2 Us, 2 adds; no compares, multiplies, or f s—clearly beats inverse transform,
composition

817

8.2.4 Acceptance-Reection

Usually used when inverse transform is not directly applicable or isinefficient (e.g.,
gamma, beta)

Has continuous and discrete versions (we'll just do continuous; discrete is similar)

Goal: Generate X with density function f

Specify afunction t(x) ‘/t(x) f(x)
that majorizes f(x),
l.e., t(x) > f(x) for dl x

X

¥

¥
Thent(x) >0foral x, but §(x)dx3 §f (x)dx=1 so t(x) isnot adensity
-¥ -¥

¥
Setc= y(x)dx31
-¥

Definer(x) = t(x)/cfor dl x
Thus, r(x) isadendty (integratesto 1)

Algorithm:
1. Generate Y having density r
2. Generate U ~ U(0,1) (independent of Yin Step 1)
3. If U £f(/t(Y), return X = Y and stop;
else go back to Step 1 and try again
(Repeat 1— 2 — 3 until acceptance finaly occursin Step 3)

Sincet mgorizest, f(Y)t(Y) £ 1 so “U £ f(Y)/t(Y)” may or may not occur for a
given U
Must be able to generate Y with density r, hopefully easily—choice of t

On each pass, P(acceptance) = 1/c, so want small ¢ = area under t(x), so want t to
“fit” down on top of f closdly (i.e., want t and thus r to resemble f closely)

Tradeoff between ease of generation from r, and closeness of fit to f

8-18

Proof: Key—we get an X only conditional on acceptancein step 3. So
P(generated X £x) = P(Y £ x|acceptance
Placceptance Y £) et of condll. prob.) *
P(acceptance

(Evaluate top and bottom of *.)

For any vy,
P(acceptancel Y = y) = P(U £ (y)/t(y)) = T (y)/t(y)
since U ~ U(0,1), Yisindependent of U, and t(y) > f(y). Thus,

P(acceptanceY £ X) = @i P(acceptance Y £ X|Y =y)r(y)dy

= (‘i P(acceptance Y £ x|Y = y)r(y)dy +

Y£xon thigange, guaranteeingY £xin theprobability

(S P(acceptanceY £ x|Y = y)r(y)dy

Y3 x on thisrange, contradictngY £xin theprobability

X
\

Q, P(acceptanceY £ x|Y = y)r(y)dy

x f(y)
QWKY) dy (def.of r(y))

(xX)/c **

1
C
F

8-19

Next,
¥
P(acceptance) = (‘jD(acceptance|Y =y)r(y)dy

)
Y Oty O, ty)dy
=25 ay
- ¥
=1/c *xx

sincefisadensty and so integratesto 1. Putting ** and *** back into *,
P(acceptance Y £ X)

P(acceptance
_FX)/c
- 1c
=F(x),

P(generated X £ X) =

as desired.

(Depressing footnote: John von Neumann, in his 1951 paper developing thisidea,
needed only a couple of sentences of words — no math or even notation — to
see that this method is valid.)

8-20

Example of Acceptance-Reg ection

Beta(4,3) distribution, density isf(x) =60 x3 (1 —x)2for0£x£ 1
Top of density isf(0.6) = 2.0736 (exactly), so let t(x) = 2.0736for O£ X£ 1

Thus, ¢ = 2.0736, and r isthe U(0,1) density function

A

Hx)

fx)

r(x)

(=4
e
n
P
o
Y

Algorithm:

1. Generate Y~ U(0,1)

2. Generate U ~ U(0,1) independent of Y

3. If U£60Y3(1-Y)2/2.0736, return X = Y and stop;
else go back to step 1 and try again

P(acceptance) in step 315 1/2.0736 = 0.48

8-21

I ntuition

A

0.5

8-22

Sf(x)

t(x)

1.0

A different way to look at it—accept Yif U t(Y) £ f(Y), so plot the pairs
(Y, U t(Y)) and accept the Y s for which the pair is under the f curve

A

t(x)

8-23

A closer-fitting mgorizing function:
A

t(x)

fx)

0 0.5 1.0 x

Higher acceptance probability on a given pass
Harder to generate Y with density shaped like t (composition)

Better 77?

8-24

Squeeze M ethods

Possible slow spot in A-Risevaluating f(Y) in step 3, if f is complicated

Add afast pre-test for acceptance just before step 3—if pre-test is passed we know
that the test in step 3 would be passed, so can quit without actually doing the
test (and evauating f(Y)).

One way to do this— put a minorizing function b(x) under f(x):

/t(x) f(x)

(x)

Since b(x) £ f(x), pre-test isfirst to check if U £ b(Y)/t(Y); if so accept Y right away
(if not, have to go on and do the actua test in step 3)

Good choice for b(x):

Close to f(X) (so pre-test and step 3 test agree most of the time)
Fast and easy to evauate b(X)

8-25

8.2.5 Special Properties

Simply “tricks’ that rely completely on a given distribution’s form

Often, combine severa “component” variates algebraicaly (like convolution)
Must be able to figure out distributions of functions of random variables

No coherent general form — only examples

Example 1: Geometric

Physical “model” for X ~ geometric with parameter p (O<p < 1):
X = number of “faillures’ before first successin Bernoulli trials with P(success) = p

Algorithm: Generate Bernoulli(p) variates and count the number of failures before
first success

Clearly inefficient if piscloseto O

Example 2: Beta

If Y1 ~gamma(ai, 1), Y2 ~ganmala s, 1), and they are independent, then

X=Y1/(Y1 + Y2) ~beta(ay, a2)

Thus, we effectively have a beta generator if we have a gamma generator

8-26

8.3 Generating Continuous Random Variates

Sixteen families of continuous distributions found useful for modeling smulation
Input processes

Correspond to distributions defined in Chap. 6

At least one variate-generation agorithm for each is specifically given on pp. 459—
471 of SMA

Algorithms selected considering exactness, speed, and simplicity — often there are
tradeoffs involved among these criteria

8.4 Generating Discrete Random Variates

Seven families of discrete distributions found useful for modding smulation input
processes

Correspond to distributions defined in Chap. 6

At least one variate-generation agorithm for each is specificaly given on pp. 471—
478 of SMA

Algorithms selected considering exactness, speed, and simplicity — often there are
tradeoffs involved among these criteria

One of these seven is completely generd if the range of the random variable isfinite,
and will be discussed separately in Sec. 8.4.3 ...

8-27

8.4.3 Arbitrary Discrete Distribution

Common Stuation: Generate discrete X T {0, 1, 2, ..., n} with mass function p(i) =
P(X=1),i=0,1,2,..,n

In its own right to represent, say, lot sizes in a manufacturing smulation
As part of other variate-generation methods (e.g., composition)
Why restrict to range {0, 1, 2, ..., n} rather than genera {x1, X2, ..., Xm} ?
Not as restrictive as it seems:
Redly want a genera range {xa, X2, ..., Xm}

Leen=m-1landletp(—-1)=P(X=x),j=1,2,..,m(=n+1)
(soj—1=0,1,..,m=1(=n))

Algorithm:;
1. GenerateJon {0, 1, 2, ..., n} with mass function p(j)

2. Return X = X341

Have aready seen one method to do this: Inverse transform
Always works

But may be dow, especidly for large range (n)

8-28

Table L ookup

Assume that each p(i) can be represented as (say) a 2-place decimal

Example:
[0 1 2

3

pi) | 015 020 037

0.28

1.00 =sumof p(i)'s
(must be exact — no roundoff allowed)

Initialize a vector (my, Ny, ..., Mop) with

m =mp =-=ms5 =0
me=myz=-=mg =1
Mge=Mg7 =--=Myp2 =2
M73 = M74 =+ =mMgo =3

Algorithm (obvious):

(first 200p(0) my"s set to O)
(next 100p(1) my"s set to 1)
(next 100p(2) my’s set to 2)
(lest 100p(3) My’ s set to 3)

1. Generate J uniformly on {1, 2, ..., 100} (J=é&100UG+ 1)

2. Return X = m,

Advantages:
Extremey smple
Extremely fast (marginal)

Drawbacks:

Limited accuracy on p(i)’s—use 3 or 4 decimals instead?
(Few decimas OK if p(i)’'s are themselves inaccurate estimates)

Storage is 104, where d = number of decimals used

Setup required (but not much)

8-29

Marsaglia Tables

As above, assume p(i)’'s are g-place decimals (q = 2 above); set up tables

But will use less storage, alittle more time

Same example:
[0 1 2 3

p(i) 0.15 0.20 0.37 0.28 1.00 = sum of p(i)’'s
(must be exact—no roundoff allowed)

Initialize a vector for each decimal place (here, need q = 2 vectors):

“Tenths’ vector: Look at tenths place in each p(i); put in that many copies of
the associated i

01122233 = 10thsvector
1 2 3 2

“Hundredths’ vector: Look at hundredths place in each p(i); put in that many
copies of the associated |

00000 222222233333333 - 100ths
Vector
5 0 7 8

Total storage =8 + 20 = 28 = sum of dl thedigitsinthe p(i)'s

Was 100 for table-lookup method

Algorithm:

1. Pick 10ths vector with prob. /10 * (sum of 10ths digits) = 8/10.
If picked, return X = one of the entriesin this vector with equal probability
(1/8 here).
If not picked, go on to step 2.

2. Pick 100ths vector with prob. /100 ~ (sum of 100ths digits) = 20/100.
If picked, return X = one of the entries in this vector with equal probability
(1/20 here).
If not picked, go on to step 3. (Won't happen here.)

3. (Not present here.) Pick 1000ths vector with prob. /1000 ~ (sum of
1000ths digits)
If picked, return X = one of the entriesin this vector with equal probability.

If not picked, go on to step 4.

etc.
Proof (by examplefor i = 2; other cases exactly analogous):

P(generated X =2) = P(X = 2| pick 10ths vector) P(pick 10ths vector) +
P(X = 2| pick 100ths vector) P(pick 100ths vector)
3.8 , 1.2
8 10 20 100
=0.37, asdesired.

Main advantage: L ess storage than table-lookup, especidly for large number of
decimalsrequired inthe p(i)’s

8-31

The Alias M ethod

Improvement over A-R: If we “reject,” we don't give up and start all over, but
instead return the alias of the generated Y

Set up two vectors of length n + 1 each: (Setup methods for
- 0 aliases and cutoffs on
AliasssLo, L1, ..., Ln | {0, 1, ..., n} op. 490491 of SVIA)

Cutoffs Fg, F1, ..., Fn1 [0, 1]

Algorithm:
1. Generatel uniformly on{0, 1, ..., n} (1 =4n+ 1)Ud
2. Generate Ug ~ U(0,1) independent of |

3. If Up £ Fy, return X = I; otherwise, return X = L

Note that a“rgection” in step 3 resultsin returning the alias of |, rather than
throwing | out and starting al over, asin A-R

Proof: Complicated; embodied in algorithms to set up aiases and cutoffs

[ntuition:

Approximate p(i)’'sinitialy by smple discrete uniform 1 on {0, 1, ..., n}

Thus, | = i with probability 1/(n + 1) foreachi1 {0, 1, ..., n}

For i with p(i) << /(n + 1), cutoff Fj issmall, so will probably “move away” to
another value L for which p(Lj) >> 1/(n + 1)

For i with p(i) >> 1/(n + 1), cutoff Fjislarge (likel) or diasof i isitsdf (Lj =
1), so will probably “keep” al the | =i values, aswell as receive more from
other values with low desired probabilities

Clever part: can get an agorithm for cutoffs and aliases so that this shifting
works out to exactly the desired p(i)’sin the end

Advantage; Very fadt
Drawbacks:

Requires storage of 2(n + 1); can be reduced to n + 1, ill problematic
Requires the initia setup of aliases and cutoffs

8-32

Example of Alias method:

i 0 1 2 3
n(i 0.1 0.4 0.2 0.3
F 0.4 0.0 0.8 0.0
L, 1 1 3 3

Picture:

0.4 0.4

03 03}

02} /
i

0.1

]

XX
QR

Q

0.2

o

.,v,.,..
X
55
%

J
J
£
3
RS
4|
q
J

0.1

How can the dgorithm return X = 2?
Since 2 isnot the dias of anything else, can get X = 2 only if we generate | = 2
and keepit (i.e, don't change | = 2toitsaliasF, = 3)
Thus,
P(X=2) =P(l =2andU £ 0.8)
=P(I =2) P(U £0.8) sincel andU are generated independently
=0.25" 0.8=0.2, asdesired

How can the agorithm return X = 3?
Can get X = 3 in two mutudly exclusve ways.
Generate | = 3 (since diasof 3isL; =3, will dways get a3 here)
Generate | = 2 but changeittoitsadias 3
Thus,
P(X=3)=P(l =3) +P(l =2andU >0.8)
=0.25+0.25" 0.2=0.3, asdesred

8.5 Generating Random Vectors, Correlated
Random Variates, and Stochastic Processes

Sofar: 11D univariate RVs

Sometimes have correlation between RVsin redlity:
A = interarrival time of ajob from an upstream process
S=sarvicetime of job at the station being modeled

Upstream Station being
process ® modeled

Perhaps alarge A means that the job is “large,” taking alot of time upstream—
then it probably will take alot of time here too (S large)

I.e,, Cor(A, S >0

Ignoring this correlation can lead to serious errors in output validity (see notes
for Chap. 6 for some specific numerical examples)

Need ways to generate it in the smulation

May want to smulate entire joint distribution of arandom vector for input:
Multivariate normal in econometric or statistica ssimulation

Important distinction:

Full joint distribution of random vector X Vs Marginal distributions of each X; and dl
= (X1, X2, .., Xp)TT A" " | covariances or correlations

These are the same thing only in the case of multivariate normal

Could want either in Smulation

8.5.1 Using Conditional Distributions

Suppose we know the entire joint distribution for arandom vector X, i.e., for a
fixed X = (xq, X2, ..., Xn)T T A", we know the value of the joint CDF

F(X) = P(X £X) = P(X1 £ X1, ..., Xn £ Xn)
This determines al the covariances and correlations

Genera method:
Fori=1,2, ..., n,let Fi(s) bethe marginal distribution of X
Fork=2,3, ..., n,let Fx(*| X1, X2, ..., Xk-1) be the conditiona distribution of
Xk given X1, X2, ..., Xk-1

Algorithm:
1. Generate X1 (margindly) from F1
2. Generate Xo from Fo(» | X1)
3. Generate X3 from F3(¢ | X1, X2)
n. Generate X from Fp(¢ | X1, X2, ..., Xn-1)

n+1. RetunX = (X1, X2, ..., Xp)T

Proof: Tedious but straightforward manipulation of definitions of margina and
conditiona distributions

Completely general concept

Requires alot of input information

8.5.2 Multivariate Normal and Multivariate L ognor mal

One case where knowing the margina distributions and al the
covariances/correations is equivalent to knowing the entire joint distribution

Want to generate multivariate normal random vector X with:
Mean vector m= (my, np, ...,)T

Covariance matrix S = [Sij]n’ n

Since S must be positive definite, there is a unique lower-triangular n © n matrix C
suchthat S = CCT (there are linear-algebra algorithms to do this)

Algorithm:
1. Generate Z1, Zo, ..., ZnaslID N(0,1), and let Z = (Z1, Zo, ..., Zp)T
2. Reteurn X =m+ CZ

Note that the find step isjust higher-dimensiond version of the familiar
transformation X = m+ sZto get X ~N(m s) from Z ~ N(0,1)

Can be modified to generate a multivariate lognormal random vector

8-36

8.5.3 Correlated Gamma Random Variates

Want to generate X = (X1, Xo, ..., Xn)T where
Xi ~gamma(a;j, bj), aj's, bi's specified
Cor(Xi, Xj) = rij (specified)

Useful ability, since gamma distribution is flexible (many different shapes)

Note that we are not specifying the whole joint distribution, so there may be
different X’ s that will satisfy the above but have different joint distributions

Difficulties:

The aj’s place limitations on what r jj’s are theoretically possible — that is, there
may not even be such a distribution and associated random vector

Even if the desired X istheoretically possible, there may not be an algorithm
known that will work

Even the known algorithms do not have control over the joint distribution

One known case:
Bivariate(n =2); letr =r
Ofr £ min{al,al}/\/eﬁ
Positive correlation, bounded above
If a1 =apthe upper boundisl,i.e, isremoved

If a1 =a» =1, have any two postively correlated exponentias
Algorithm (trivariate reduction):

1. Generate Y1 ~gamma(a, - r jaa,, 1)
2. Generate Yo ~gamma(a, - r+aa, , 1)
3. Generate Y3 ~ gamma(r jaa, , 1)

4. Return X = (X1, X2)T = (b1(Y1 + Y3), b2(Y2 + Y3))T
Correlation is carried by Yz, common to both X1 and X2

8-37

Other solved problems:
Bivariate gamma with any theoretically possible correlation (+ or —)

Genera n-dimensional gamma, but with restrictions on the correlations that are
more severe than those imposed by existence

Negatively correlated gammas with common aj’s and bj’'s

Any theoretically possible set of marginal gamma distributions and correlation
structure (see Sec. 8.5.5 below)

8.5.4 Generating from Multivariate Families

Methods exist for generating from:

Multivariate Johnson-trandation families — generated vectors match empirica
margina moments, and have cross-correlations close to sample correlations

Bivariate Bézier — limited extension to higher dimensions

8-39

8.5.5 Generating Random Vectorswith Arbitrarily
Specified Marginal Distributionsand Correlations

Very genera structure

Arbitrary margina distributions — need not be from same family; can even have
some continuous and some discrete

Arbitrary cross-correlation matrix — there are, however, constraints imposed by
the set of margina distributions on what cross correlations are theoretically
feasble

Variae-generation method — normal-to-anything (NORTA)

Transform a generated multivariate normal random vector (which is easy to
generate) to get the desired marginas and cross-correlation matrix

F., Fo, ..., Fq arethe desired marginal cumulative distribution functions (d
dimensions)
rj(X) = desired correlation between the generated X and X; (i and j are the

coordinates of the generated d-dimensiona random vector X)

Generate multivariate normal vector Z = (Zy, Zs, ..., Zg)" with Z, ~ N(0, 1) and
correlationsr ;(Z) = Cor(Z;, Z;) specified as discussed below

Fori=1,2,..,dsetX = F*(F (Z)),wheeF isthe standard normal
cumulative distribution function (CDF)

SinceZ hasCDF F, F (Z) ~U(0, 1), so X; = F*(F (Z)) isthe inverse
transform method of generation from F;, but with a roundabout way of
getting the U(O, 1) variate

Evauation of F and possibly F,* would have to be numerical

Main task isto pre-compute the normal correlationsr j(Z), based on the desired
output correlationsr j(X), so that after the Z's are transformed via F and
then Fi‘l, the resultant X;’s will have the desired correation structure

This computation is done numerically viaagorithmsin the origind Cario/Nelson
paper

Despite the numerical work, NORTA is very attractive due to its complete
generdity

8.5.6 Generating Stochastic Processes

Need for auto-correlated input processes was demonstrated in examples in Chap. 6

AR, ARMA, ARIMA models can be generated directly from their definitions,
which are constructive

Gamma processes — gammeardistributed margina variates with an autocorrelation
structure

Includes exponentia autoregressive (EAR) processes as a special case

TES (Transform-Expand-Sample) processes
Flexible margina distribution, approximate matching of autocorrelation structure
empirical observation
Generate sequence of U(0, 1)’ sthat are autocorrelated
Transform viainverse transform to desired marginal distribution
Correlation-structure matching proceeds via interactive software
Has been applied to telecommunications models

ARTA (Autoregressive To Anything)
Similar to NORTA (finite-dimensional) random-vector generation

Want generated X; to have (margina) distribution F;, specified autocorrelation
structure

Generate AR(p) base process with N(O, 1) marginals and autocorrelation
specified so that X; = F"*(F (Z)) will have the desired final autocorrelation
structure

Numerical method to find appropriate correlation structure of the base process

8-41

8.6 Generating Arrival Processes

Want to smulate a sequence of events occurring over time (e.g., arrivals of
customers or jobs)

Event times. ty, to, t3, ... governed by a specified stochastic process
For convenience in dynamic simulations, want recursive algorithms that generate t;

from ti_1

8.6.1 Poisson Process
Rate=1 >0
Inter-event times. A = tj — ti—1 ~ exponentia with mean /I
Algorithm (recursive, get tj from tj—1):
1. Generate U ~ U(0,1) independently
2. Returntj = ti_; — (InU)/I

Note that —(InU)/I isthe desired exponentia variate with mean 1/l

Obvioudy generalized to any renewal process wherethe Ai’s are arbitrary positive
RVs

8-42

8.6.2 Nonstationary Poisson Process

When events (arrivals, accidents, etc.) occur at a varying rate over time
Noon rush, freeways, etc.
Ignoring nonstationarity can lead to serious modeling/design/analysis errors

| (t) = mean rate of
process (e.g.,
arivas) a timet

A

Definition of process:
Let N(a, b) be the number of eventsin thetimeinterva [a, b] (a < b)

Then N(a, b) ~ Poisson with mean g1 (t)

Reasonable (but wrong) idea to generate:
Recursvdy, have an arrivd a time t

Time of next arrival ist + expo (mean = U/ (1))

Why thisiswrong:
In above figure, suppose an arriva occurs at time 5, when | (t) islow

Then 1/1 () islarge, making the exponentia mean large (probably)
Likely to miss the first “rush hour”

A Correct Ideaz Thinning
Let| * = max| (t), the “peak” arriva rate; “thin” out arrivals at thisrate
t

Generate “trial” arrivals at the (too-rapid) rate | *
For a“trid” arrivd at timet, accept it asa“real” arrival with prob. | (t)/I *

Algorithm (recursve—have a“red” arrivd at time ti—1, want to generate time t;j of
the next “red” arriva):

1. Sett=1t_

2. Generate U1, U2 ~ U(0,1) independently

3. Replacetby t— (11 *) InUq

4. If U2 £1 (t)/1 *, set tj = t and stop; else go back to step 2 and go on

Proof that Thinning Correctly Generates a Nonstationary Poisson Process:

Veify directly that the number of retained eventsin any timeintervd [a, b] isa
Poisson RV with mean 1 (t) dt

Condition on the number of rate | * trid eventsin [a, b]

Given this number, the trid events are U(a, b)

P(retain atria point in [a, b])

= QP(retan atria pointin[a,b] | trid point |satt|met) — dt

Hr—/
Densityof
trial- point
location

ol (1) 1 R

I *b-a

y (t) dt _

IQ* b2 (cdl this p(a, b))

Let N*(a, b) = number of trid eventsin [a, b]
Thus, N*(a, b) ~ Poisson withmean | *(b — a)
Also, N(a, b) £ N*(a, b), clearly

Then

Y [k nfq _ k-n . 3
p(N(ab) = n [N* (a6 = k) =) Mlpab)]"[- p(ab)] if k* 1and0En £k
7l ifn=k=0
being the (binomial) probability of accepting n of the k trial points, each of
which has probability p(a, b) of being “accepted”

Thus, for n > 1 (must treat n = O case separately),
P(N(a,b) =n) =§¥_ P(N(a,b)=n|N* (a,b) =k)P(N * (a,b) =k)

k=n

=& ([o@ b - pa)]"expl-1 * (o~ ay
(severd daysof agebra)

&Y byl
e w8 O
expé QI (t)dt[j

b- &)
k!

asdesired.
nl

Intuition: piecewise-constant | (t), time from 11:00 am. to 1:00 p.m.

A(D

05 —]

A =S e U
:]

Another Algorithm to Gener ate NSPP:

Plot cumulative rate function L (t) = él (y)dy

Invert arate-one stationary Poisson process (event times t;¢ with respect to it

Algorithm (recursive):
1. Generate U ~U(0,1)
2. Sett¢=t_,¢-InU
3. Returnt; = L7(t9

Compared to thinning:
Have to compute and invert L (t)
Don't “waste’ any trid arrivas

Faster if | (t) has afew high spikes and islow el sewhere, and L (t) is easy to
invert
Corresponds to inverse-transform, good for variance reduction

8-47

Previous example: | (t) piecewise constant, so L (t) piecewise linear—easy to invert

ADA
50
40
30 e ———
/:
4
20 i
10
Ol:——ii R :L' i . — 3
11:00 12:00 1:.00 ¢
(@
A(DA
N
osf — |
—
0 1 . L
11:00 12:00 1:00 ¢
(b)

Generating NSPP with piecewise-constant | (t) in SI MAN (similar for other process-
Interaction languages)

Initidize globa variables: X(1) =levd of | (t) onfirst piece
X(2) =levd of | (t) on second piece
etc.

Create a new “rate-changer” entity at the timeswhen | (t) jumpsto anew rate
(Or, create a single such entity that cycles back when | (t) jumps)

When the next rate changer arrives (or the single rate changer cycles back), increase
globa variable J by 1

Generate potential “customer arrivals’ with interarrivals ~ exponential with mean
/1 *, and for each of these “trid” arrivals;

Generate U ~ U(0,1)
If UEX(J) /™, “accept” thisasa“red” arrival and release entity into the model
Else dispose of this entity and wait for the next one

8-49

8.6.3 Batch Arrivals

At timetj, have Bj events rather than 1; Bj adiscrete RV on{1, 2, ...}
Assume Bj’s are IID and independent of tj's
Algorithm (get tj and Bj from tj_1):

1. Generate the next arrivd time tj from the Poisson process

2. Generate Bj independently
3. Return with the information that there are Bj events at time t;

Could generdize:

Event times from some other process (renewal, nonstationary Poisson)

Bi’s and tj’ s correlated somehow

