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Abstract—As society progressively depends on large-scale 
telecommunications networks and their connectivity rapidly rises 
over time, it becomes of vital importance to study their 
topological features. On the backbone level uncertain 
disturbances of its constituent parts may affect a sizable 
proportion of the population, thus this can well explain the recent 
focus on evaluating backbone robustness metrics. Unlike 
previous empirical studies, which are limited to static snapshots 
of topologies, in this paper robustness algorithms are applied to 
networks over time. The temporal evolution of topological 
robustness is studied for a set of four real backbone networks by 
observing snapshots taken at regularly spaced points in time. It is 
found that only half of the fundamental robustness properties are 
changing over time with even fewer improving their values. The 
introduction of the time factor extends the robustness analysis 
and allows for deriving results on the network robustness 
dynamics. 

Keywords— backbone network topology; complex networks; 
network planning and design; network robustness; temporal 
network evolution 

I.  INTRODUCTION 

As the Internet market continues its spectacular growth, 
more and more applications are competing for network 
bandwidth. As a result, the related telecommunications 
networks evolve with rapidly escalating resources and 
connectivity, and progressively become an essential component 
of the national economic and social fabric. Unfortunately, this 
rising connectivity has an inherent vulnerability; if a network 
experiences a failure in its constituent parts this may have a 
dramatic impact on the behavior of the entire network and 
consequently affect a sizable proportion of the population. For 
example, earthquakes, tornadoes, floods, fires, power outages, 
malfunctioning due to equipment aging, fiber cuts, viruses and 
worms, terrorist attacks, and even operator mistakes may cause 
serious disruption for several days, especially when they are 
related to the backbone network which carries aggregated 
traffic connecting major nodes-cities of a country. Indeed, 
recently, analogous challenges have already been identified, for 
instance by the European Union [1], and policy steps have been 
made to establish procedures for the evaluation and protection 
of such critical infrastructures [2]. 

A key requirement towards diminishing the impact of such 
performance degradations, and accordingly reducing the 
economic loss, is the understanding of the topological aspects 
that prominently affect the network robustness. Robustness can 
be considered as a system’s ability to respond to changes in the 
external conditions while maintaining normal behavior [3] and 
as an indicator of the performance subject to specific 
challenges [4]. In particular, topological or structural 
robustness refers to surviving of connected components when 
damage occurs on the structure of the network, like node and 
link failure [3]. Thus, the assessment of topological robustness 
has to be included in the earliest stages of network planning 
and deployment in order to determine the response of the 
network to disturbances, especially in an increasingly uncertain 
and variable environment. Even when concerning the design of 
network protocols at interacting network layers, the topological 
robustness is a key feature to support their evaluation. 
Therefore, telecommunications engineers, security experts and 
policy makers seek to understand the techniques for 
determining network robustness and estimating the appropriate 
performance metrics that quantify the robustness of this critical 
infrastructure. 

Topological robustness has been studied in the context of 
graph theory and complex networks in order to explicitly 
propose different robustness measures, such as heterogeneity, 
symmetry ratio, algebraic connectivity, etc. [3, 5-13], or in 
order to use them for evaluating real-world networks [14]. For 
instance, in [5] robustness is measured as algebraic 
connectivity, and hence the study points to explicit influence of 
the network structure on the robustness. However, little is 
known about the relation between all these metrics over time, 
since the previous studies are concerned with static network 
snapshots [13, 14]. 

Given the lack of information about real network evolution 
over long periods, it is hard to convert robustness findings into 
statements about trends over time. Nevertheless, almost all 
large real-world networks evolve over time by the addition and 
deletion of nodes and links. In practice most 
telecommunications networks are designed incrementally over 
time. Studying the evolution of network connectivity over time 
can offer unique insights that cannot be derived from a single 
static snapshot. Recent findings on temporal network evolution 



mostly focus on the growth of Autonomous System (AS) level 
router network [15, 16] providing evidence that networks 
densify over time and that average distance between nodes 
often shrinks over time. Thus, while one can assert that real 
networks retain certain trends for the basic statistical metrics, it 
has not been clear how robustness metrics behave over time. 

Contrary to previous empirical studies, such as [14], this 
paper studies the temporal evolution of topological robustness. 
In particular, it explores the characteristics of four real 
backbone telecommunications networks over a temporal 
sequence of nodal interactions and uses twenty metrics to 
quantify topological robustness and identify their trends. Apart 
from the inherent graph-theoretic interest, the study of the 
structural properties of real networks always gives critical 
information about the network behavior and contributes to 
understanding its robustness and performance. To the best of 
our knowledge, this is the first detailed study of backbone 
topological robustness evolution over time. This study 
complements previous studies, which have focused on the 
robustness of telecommunication networks and allows to 

answer to the following questions: How do backbone networks 
evolve over time? Do all robustness metrics point in the same 
direction? What metric do network engineers appear to 
optimize as robustness metric?  

The rest of this paper is structured as follows. In Section 2 
the relevant topological metrics are presented. Section 3 
describes the dataset and discusses the results of applying the 
robustness algorithms. Finally, Section 4 concludes the 
analysis and proposes the directions for future work. 

II. TOPOLOGICAL ROBUSTNESS METRICS 

The common approach of regarding a telecommunication 
network as a graph is considered here. In particular, the 
topology is defined as an undirected and unweigthed graph 
which abstracts the connectivity of a backbone network. 

There is a wide range of topological properties offered for 
investigation, from the mean degree to more complex 
measures, such as the assortativity coefficient. A set of twenty 
commonly used measures that are more relevant to the 
topological robustness of a telecommunication network is 
selected at this point and can be seen in Table I. Given space 
limitations, notations and definitions are excluded here, 
although a brief description of the robustness metrics follows 
along with results in the next Section. In Table I, references 
include definitions and formulas of the considered metrics.  

TABLE II.  METRICS FOR THE EVALUATION OF ROBUSTNESS 

Topological Robustness metric Reference 

Mean degree [17] 

Average shortest path [17] 

Diameter [17] 

Average clustering coefficient [17] 

Assortativity coefficient [17] 

Vulnerability [6] 

Algebraic connectivity [5] 

Efficiency [18] 

Normalized betweenness centrality [19] 

Entropy [20] 

Average two-terminal reliability - targeted [21] 

Average two-terminal reliability - random [21] 

Symmetry ratio [7] 

Effective graph resistance [8] 

Natural connectivity [9] 

Percolation threshold [10] 

Heterogeneity [11] 

Average neighbor connectivity [13] 

Node connectivity [12] 

Edge connectivity [12] 

           
(a) CESNET 

 

           
(b) GARR 

 

           
(c) GEANT 

 

           
(d) RENATER 

 

Fig. 1.   Initial and final connectivity layouts of the considered networks. 



III. DATASET AND RESULTS 

A. Dataset description 

In the present paper the focus is particularly on backbone 
networks. Since public data about backbone topologies are 
limited for business competitiveness and security reasons, it is 
chosen to use time-evolving topologies of Research and 
Education Networks (REN) from a repository of well known 
real telecommunication networks [19]. The number of 
available networks is further limited when imposing the 
requirement of snapshots for a period of at least 10 years and 
final network size of at least 40 nodes. Finally, data from four 
real backbone networks are collected and analyzed, namely 
CESNET, GARR, GEANT and RENATER. The network 
configurations are on the Points-of-Presence (PoP) level of the 
logical - IP layer. The PoP level is motivating since it shows 
the wide-area links which are the most interesting when it 
comes to network design optimizations and it is the level at 
which robustness is often considered. The logical topology is 
usually the lightpath topology of an optical network, with a link 
or edge between two nodes (PoPs) if there is a lightpath 
between them. 

For ease of presentation, all considered networks are 
depicted to start at the same time step t=1 and each time step 
represents a year. However, actual initial and final date, as well 
as number of samples may be different for the networks under 
study, as seen in Fig. 2 and Fig. 3. The number of nodes and 
edges grows linearly over time. Nodes and edges are tripled on 
average at the final state. Thus, it is of great interest to 

investigate how the robustness measures have changed over 
those years. 

B. Topological robustness results 

First, the mean degree of a network is the average degree 
over all nodes and is a common connectivity feature of any 
topology [17]. The degree of a node is in fact the number of 
edges connected directly to that node. If a node with a high 
degree fails, there are more options to redirect traffic, thus 
networks with higher mean degree are “better-connected” on 
average and are expected to be more robust. However, this is a 
coarse metric since this is a mean value and there are at the 
same time nodes highly connected and others poorly 
connected. As seen in Fig. 4, the mean degree appears to be 
unchanging or slightly increasing over time for all networks. 

 

Fig. 2.   Number of nodes over time. 

 

Fig. 3.   Number of edges over time. 
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Fig. 4.   Mean degree over time. 

 
Fig. 5.   Average shortest path over time. 

 
Fig. 6.   Diameter over time. 
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The average shortest path is calculated as an average of all 
the shortest paths between all the possible origin-destination 
node pairs of the network [17]. Networks with small average 
shortest path are more robust since in the case of a failure they 
are likely to lose fewer connections. As observed in Fig. 5, 
average shortest path is slowly growing over time. 

The diameter is another common robustness metric of a 
network [17]. It is the longest of all the shortest paths between 
pairs of nodes and in general, a low diameter means higher 
robustness. However, in Fig. 6, all networks get higher 
diameter over time. 

Next, the average clustering coefficient, which provides an 
overall indication of the clustering in the networks based on 
triplets of nodes [17], shows that networks or snapshots with 

higher values are most robust, since their nodes are more 
interconnected with their neighbors. The overall trend in Fig. 7 
is that average clustering coefficient increases over time. 

Concerning the assortativity coefficient [17], when values 
are negative the network is called to be dissassortative, which 
means that has an excess of links connecting nodes of 
dissimilar degrees. Such networks are vulnerable to both 
random and targeted attacks. The opposite properties apply to 
assortative networks with positive values that have an excess of 
links connecting nodes of similar degrees. In Fig. 8, this metric 
takes higher values over time, with the exception of GEANT 
network where it remains constant. 

Although the concept of vulnerability has been introduced 
from different points of view, here the vulnerability of a 
network is strongly related to its regularity and the number of 
alternative edges that can balance a random or intentional 
attack [6]. Smaller values indicate higher robustness. It is 
found, as presented in Fig. 9, that network vulnerability 
decreases over time. 

The algebraic connectivity measures how difficult it is to 
break the network into islands or individual components [5]. It 
is defined as the second smallest laplacian eigenvalue and the 
larger it is, the greater the robustness of a topology against both 
node and link removal. It can be observed in Fig. 10 that it 
gradually receives lower values for all networks. 

The concept of efficiency of a network has been established 
as a measure of how efficiently it exchanges information [18]. 
It is similar to the distance and is the averaged sum of the 
reciprocal (multiplicative inverse) of the distances. Great 

 
Fig. 7.   Average clustering coefficient over time. 

 
Fig. 8.   Assortativity coefficient over time. 

 
Fig. 9.   Vulnerability over time. 
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Fig. 10.   Algebraic connectivity over time. 

 
Fig. 11.   Efficiency over time. 
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values of efficiency, point to great network robustness. In Fig. 
11, it is seen that efficiency slowly decreases over time. 

Considering the normalized betweenness centrality [19], it 
derives by dividing the maximum betweenness centrality by 
the average betweenness centrality for a network. Betweenness 
centrality quantifies the number of times a node acts as a bridge 
along the shortest path between two other nodes. This 
normalized metric is indicative of the hierarchy of the network 
and higher values indicate an increased vulnerability of 
targeted failures. Its behavior may be considered unchanging 
over time, with the exception of CESNET network, as seen in 
Fig. 12. 

The entropy of a graph is interpreted as its structural 
information content and serves as a complexity measure [20]. It 
provides an average measure of network’s heterogeneity, since 
it measures the diversity of the link distribution. Smaller values 
of entropy specify networks that are likely to be more robust. 
Fig. 13 depicts that all networks increase their entropy to one 
extent or another. 

Average two-terminal reliability (ATTR) metric is the 
probability that a randomly chosen pair of nodes remains 
connected after a failure [21]. It is the sum over the number of 
node pairs in the connected component divided by the total 
number of node pairs in the network. This ratio gives the 
fraction of node pairs that are connected to each other. 
Therefore, the higher the value (for a given node percentage 
removed, i.e., here 10%), the more robust the network is in 
response to a failure that affects the same number of nodes. 
Two methods are applied for node removal; the targeted attack 
which removes the high-degree nodes and the random failure 
that randomly removes nodes. In Fig. 14 and Fig. 15, both 
methods are found to leave almost unchanged the ATTR 
metric. 

The symmetry ratio is the ratio of the number of distinct 
eigenvalues of the network to the network diameter (actually, 
plus one in the denominator) [7]. Low symmetry values lessen 
the impact of losing a node. Thus, low values indicate more 
robust networks. In Fig. 16, symmetry ratio is growing over 
time. 

The notion of effective graph resistance is derived from the 
field of electric circuit analysis where it is defined as the 
accumulated effective resistance between all pairs of nodes [8]. 
It intuitively measures the presence and quality of back-up path 
possibilities. The smaller the effective graph resistance, the 
more robust the network. However, this metric is shown in Fig. 
17 to take higher values as the time passes. 

The natural connectivity characterizes the redundancy of 
alternative paths by quantifying the weighted number of closed 
walks of all lengths [9]. The theoretical motivation of this 
measure arises from the fact that the robustness of a network 
comes from the redundancy of alternative paths. The higher the 
value of natural connectivity, the more robust the network. 
Indeed, in Fig. 18 all networks increase their natural 
connectivity over time. 

Percolation threshold [10] is actually the critical fraction of 
nodes that need to be removed before the network disconnects. 
A high percolation threshold indicates a high fraction of nodes 

 
Fig. 12.   Normalized betweenness centrality over time. 

 

 
Fig. 13.   Entropy over time. 

 

 
Fig. 14.   ATTR – targeted (removal of 10% targeted nodes) over time. 

 

 
Fig. 15.   ATTR – random (removal of 10% random nodes) over time. 
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that can be removed without problems, which means the 
network is more robust. According to Fig. 19, the percolation 
threshold can be regarded as approximately unchanging over 
time.  

Heterogeneity is the standard deviation of the mean degree 
divided by the mean degree [11]. The lower the magnitude of 
its heterogeneity, the greater the robustness of the topology. It 
can be seen in Fig. 20 that heterogeneity is roughly unchanging 
over time. 

Average neighbor connectivity provides information about 
1-hop neighborhoods around a node. It is calculated as the 
average neighbor degree of the average k-degree node [13]. 
Higher values of average neighbor connectivity indicate higher 
robustness. With the exception of CESNET network, this 

metric may be considered as unchanging over time, as 
observed in Fig. 21. 

Node connectivity represents the smallest number of nodes 
whose removal results in a disconnected or single-node graph 
[12]. Thus, higher values mean higher robustness. In Fig. 22, 
this metric appears unchanging over time. 

Similarly, edge connectivity represents the smallest number 
of edges whose removal consequences in a disconnected or 
single-node graph [12]. In the same way as node connectivity, 
higher values represent higher robustness. Also, in Fig. 23 this 
metric turns out to be time-invariant. Of course, in star-like 
networks as those presented here, node and edge connectivity 
will always be one, since there is actually only one node and 
link disjoint path from the farthest node in the hierarchy to each 
other. This fact in conjunction with the observed high 
diameters makes topologies not particularly robust. 

C. Discussion of results 

There are many similarities in the robustness evolution 
between the different networks that allow for a classification of 
the robustness metrics (Table II). The evaluated features may 
be discriminated in unchanging features that stay constant over 
time, and in changing features that exhibit distinct changes 
over time. It is worth noting that almost half of the considered 
measures are time-invariant measures, thus their evaluation 
could be conducted using single snapshots of the topology. 
However, for the changing features, robustness appears to be 
dynamic in time and one robust network may be less robust in 

 
Fig. 16.   Symmetry ratio over time. 

 
Fig. 17.   Effective graph resistance over time. 

 
Fig. 18.   Natural connectivity over time. 
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Fig. 19.   Percolation threshold over time. 

 
Fig. 20.   Heterogeneity over time. 
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subsequent periods. 

Besides, it is obvious that not all of the changing features 
are pointing in the same direction. For example, in our dataset, 
average clustering coefficient, assortativity coefficient, 
vulnerability and natural connectivity demonstrate 
improvement, while other measures appear to worsen over 
time. It seems as if backbone networks have been designed to 
be more efficient in response to these specific kinds of 
robustness. Interconnection with neighbors, as derived by the 
average clustering coefficient and redundancy of alternative 
paths, as derived by the natural connectivity, emerge as the 
network engineers’ priorities in the backbone design. Results 
also indicate that links more and more connect nodes of similar 
degrees; the backbone configurations are gradually changing 
from disassortative networks to assortative networks, 
confirming the popularity of ring-based topologies in the 

backbone. The vulnerability metric, as an indicator of response 
of the topology subject to attacks on nodes and edges, is as well 
observed to always be improved over time.  

Beyond improvements, it is surprising to discover that 
some well-recognized metrics are getting worse. For example, 
the average distance between nodes appears increasing, in 
contrast to the literature findings that it often shrinks over time 
[15]. This is probably due to the fact that in backbones all 
nodes from the beginning of the observation belong to only one 
connected component, which is rare enough in other real-world 
networks. Moreover, contradictory outputs are obtained by the 
measurements of algebraic connectivity which show that no 
great attention is paid to the difficulty to cut the network into 
independent components. The decrease in the efficiency metric 
is in accordance to the increase in the average distance between 
nodes, and this may be explainable as most studied networks 
are in their early growth stage. The robustness deterioration 
caused by the entropy increase probably presents the engineers’ 
low priority on balanced link distribution. As well, the 
observed high symmetry ratio (low symmetric networks) and 
high effective graph resistance indicate that there are obstacles 
or low intention to achieve a departure from random topologies 
and in the same time to retain good back-up path possibilities.  

Although the results may not generalize beyond these 
networks, they represent a case study and a first attempt to 

 
Fig. 21.   Average neighbor connectivity over time. 

 
Fig. 22.   Node connectivity over time. 

 
Fig. 23.   Edge connectivity over time. 
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TABLE II.  OBSERVED TRENDS OF ROBUSTNESS METRICS 

Topological Robustness metric Trend over time 

Mean degree unchanging 

Average shortest path worsening 

Diameter worsening 

Average clustering coefficient improving 

Assortativity coefficient improving 

Vulnerability improving 

Algebraic connectivity worsening 

Efficiency worsening 

Normalized betweenness centrality unchanging 

Entropy worsening 

Average two-terminal reliability - targeted unchanging 

Average two-terminal reliability - random unchanging 

Symmetry ratio worsening 

Effective graph resistance worsening 

Natural connectivity improving 

Percolation threshold unchanging 

Heterogeneity unchanging 

Average neighbor connectivity unchanging 

Node connectivity unchanging 

Edge connectivity unchanging 



perform extensive graph-based robustness analysis over time. 
There are biases in the collection methodology since networks 
are samples of published academic networks that satisfy the 
data availability over time. So, the results here are descriptive 
rather than representative, but nevertheless provide some 
insights on the way the fundamental network robustness 
properties vary with time. 

IV. CONCLUSIONS 

In this paper a robustness analysis over time of four real 
telecommunication networks has been carried and several well-
known robustness metrics have been considered. 

It is surprising to find, based on the growth patterns of these 
networks, that only about half of the regarded measures have 
changed over the past years, even though the number of their 
nodes and edges has tripled on average during this time period. 
Regarding the measures that do change, not all of them are 
pointing in the same direction. For example, average clustering 
coefficient, assortativity coefficient, vulnerability and natural 
connectivity exhibit improvement, while many other measures 
appear to worsen over time. Besides, caution is needed for the 
interpretation of the trends on the metrics which may appear 
conflicting e.g., existence of alternative paths appears 
improving in terms of average clustering coefficient but 
worsening in terms of effective graph resistance. The above 
results indicate the importance of evaluating real networks and 
models against a wide variety of measures rather than relying 
on a single metric, and evidently over time. Network modeling 
efforts will need to incorporate mechanisms that handle such 
changing dynamics. Results also have potential application in 
various settings, including forecasting of time-varying network 
parameters, in anomaly detection on networks, and in creating 
realistic network generators. 

In terms of future work, it would be interesting to further 
examine the robustness metrics for which the robustness is 
found to degrade over time. Also, the consideration of data 
from commercial networks, for long time periods and at several 
network levels would allow for useful comparisons. Finally, a 
supplement of the present robustness evaluation is intended 
that will examine functional robustness and services 
performance, in a service discriminated approach (e.g., Video-
on-Demand, Internet Protocol television, Peer-to-peer, etc.). 
This functional robustness, as the ability of the network to 
maintain its total throughput or at least minimize the traffic 
disruption [22], should take into account the functioning of the 
services offered. This may require a departure from the classic 
shortest path choices and consider more expedient algorithms, 
such as Suurballe’s algorithm [23]. 
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