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Abstract—Network availability is of paramount importance in
optical telecommunication networks. Their rising connectivity
and consequently their availability is compromised by link
and node failures, usually due to physical force (e.g. digging,
earthquake or fire). Single link failures can in turn cause
multiple failures in case a failure hits a shared risk link group
(SRLG), which is a group of logically distinct links sharing
a common physical resource, be it a cable or a conduit. The
number and length of SRLGs, as well as the characteristics
of the underlying physical topology can significantly affect
network availability. Especially, the physical topology can be
represented by realistic synthetic graphs which are created by
numerous geographic graph generators. This work describes
the implementation and usage of six different physical topology
models (Random Geometric, Gabriel, Relative Neighborhood,
K-Nearest Neighbor, Waxman and Spatial Barabási-Albert) for
investigation of the influence of the underlying topology on
the optical telecommunication network availability. Network
availability is estimated using Monte Carlo simulations based on
a model of optical telecommunication network implemented by
network simulator ns-3. Scenarios utilizing six topology models
both in absence and presence of SRLGs are studied, and the
optical network availability sensitivity to the underlying physical
network topology is presented as the main result.

Index Terms—availability, graph theory, Monte Carlo simu-
lation, network topology, ns-3, optical network failures, shared
risk link groups

I. INTRODUCTION

Researchers in the telecommunications field often need to
assess new algorithms and protocols over realistic topologies.
So far, they have widely used topologies that are either regular,
e.g. tree, mesh, for analytic studies of algorithmic perfor-
mance, or synthetic randomly generated ones in the case of
running simulations. Even more, reference topologies [1], [2]
or instances of real topologies [3]–[6] are employed wherever
available, since telecom operators are usually reluctant to share
such information for business competitiveness and security
reasons (e.g. to aggravate physical-layer attacks).

However, as real-world topology data are becoming more
and more available, the structural and geographic properties of
telecommunication networks are analyzed in order to charac-
terize and model such topologies, mainly making use of graph
theory tools. Despite the engineers’ overriding role in the case
of networks, emergent and unplanned topological traits usually
appear in both the logical [7] and the physical level [8]. It has
been found that the physical topologies can rarely be described
by traditional patterns such as star, bus, ring, hierarchical
or full mesh graphs and thus a variety of approaches from
complex network theory have been discussed lately on the
formation of appropriate network models. Recently, Çetinkaya
et al. evaluated the fitness of geographical graph generators for
modeling physical level topologies [9]. They evaluated four
geographical graph models (Gabriel, geometric, population-
weighted geographical threshold, Waxman) and drew to the
conclusion that while none of these models capture the struc-
ture of real networks perfectly, though Gabriel graphs best
capture grid-like structure of physical level topologies.

It is natural to expect that the details of the underlying
network topology have an impact on the availability of net-
work services. Especially, when moving from small to larger
networks, beyond increasing the length of end-to-end path,
there is evidence that shared risk link groups (SRLGs) will
more probably be present and negatively impact availability.
(A shared risk link group is a structure containing two or
more logically disjoint links that share a physical location
and are subject to failing at the same time.) In particular,
Segovia, Callle and Villa analyzed the network availability
for six different physical network topologies [10], differing
in number of nodes and links, average node degree, network
diameter, link length and other indices. They inferred that large
topologies have very different average availability values from
smaller topologies, and that difference in availability in smaller
topologies could not be observed.



Meanwhile, there has been considerable research on the
impact of SRLGs on network availability. Doucette et al.
studied capacity requirements in the network in presence of
SRLGs, and proposed a design model that included elimination
of known SRLGs within budget limits and covering others
with additional capacity [11]. We previously analyzed the
impact of SRLG length variation on network availability using
a specific test topology, and concluded that unavailability
increases linearly with increasing SRLG length [12].

Building upon the work described above, in this paper we
compare six physical topology models in terms of resulting
network and connection availability. We specifically evaluate
availability in presence of SRLGs against the scenario where
no SRLGs are present. While failure dependency – inherent
in SRLGs – makes analytical computation of availability
complicated, we make use of Monte Carlo simulation uti-
lizing optical network availability model [12] implemented
by network simulator ns-3 [13], [14] to obtain results. We
expect that there will be a significant difference in network
availability for different topology models, and that the impact
of SRLGs on different topologies will also considerably vary.
We furthermore anticipate being able to correlate impact of
SRLGs with certain topological properties.

The paper is organized as follows: in Section II we describe
the topology models we have chosen for this study, in Sec-
tion III we refer to the topology implementation details and
statistical properties and in Section IV we briefly cover basics
of availability analysis in the field of optical networks. Finally,
in Section V we present the case study and the simulation
results, while in Section VI we conclude with some directions
and plans for future work.

II. NETWORK TOPOLOGIES

The recent appearance of geographic graph generators al-
lows the creation of several realistic synthetic graphs for exten-
sive simulation studies. Such graph models generate topologies
that fairly fit the observed real-world non-trivial topological
features that are neither purely regular nor purely random. The
most well-established physical level models are the Random
Geometric Graph model [15], the Gabriel Graph model [16],
the Relative Neighborhood Graph model [17], the K-Nearest
Neighbor Graph model [18], the Waxman model [19] and the
Spatial Barabási-Albert (or Preferential Attachment) model
[20]–[22], additionally to many others, less popular, such
as the Geographical Threshold Graph model [23], [24], the
Transit-Stub [25], the KU-LoCGen [26], the HINT [27], and
so on [28]. However, the above topology generators do not
take into account network design objectives and constraints
such as minimizing the latency, dimensioning the links, adding
redundancy or minimizing the network budget. Instead, their
main objective is to be realistic in terms of fitting the properties
of observed real networks, so they serve different purpose
than algorithms for optimized physical topology generation,
e.g. [29].

Apart from the inherent graph-theoretic interest when study-
ing spatial graph generation, the evaluation of such topologies

under failure scenarios always can provide critical information
about the network behavior and moreover contributes to under-
standing the network availability. Regarding the SRLG related
literature, the usage of synthetic graph topologies is somehow
narrow and rather limited to the Waxman and Barabási-Albert
models. Particularly, in [30] the authors presented an IP fast
reroute mechanism for SRLG failures in routing protocols
without global topology information. Through simulations on
both Waxman and Barabási-Albert topologies, they confirmed
that their mechanism can achieve a repair coverage close
to 100% for different SRLG size. Furthermore, for the ex-
periment setup in [31], in which a tool for network fault
diagnosis was presented, the authors used either Waxman or
Barabási-Albert as a physical connectivity pattern. As well,
the authors in [3] used synthetic network topologies based
on the Waxman model, together with some publicly avail-
able real topologies, for their evaluation methods of IP fast
reroute schemes. Likewise, in [4] where the fault localization
problem was considered, the authors employed Waxman-
based topologies along with real-world topologies in their
extensive simulations with the intention of demonstrating the
effectiveness of the proposed monitoring technique. Besides,
in [5] the performance of the proposed fast reroute scheme
was validated under a variety of real and synthetic Waxman
topologies. Similarly, real and Waxman graphs, jointly with 2-
level hierarchical graphs and purely random graphs were used
in [6] for experiments on efficient load balancing under a wide
range of failure scenarios.

A. Random Geometric Graph model

A random geometric graph is a random undirected graph
drawn on a bounded region, e.g. the unit square or on any
d-dimensional Euclidean space. It is generated as follows
[15]. First n nodes are placed (independent and identically
distributed) uniformly at random on the region. Consequently
for some specific distance threshold parameter r, nodes i and
j are connected if and only if the distance between them is at
most r:

d(i, j)≤ r (1)

where d(i, j) is the Euclidean distance between the two nodes
i and j. Modeling random networks in this way is simple and
easy to implement, and sometimes a more realistic alternative
to the classical random graph models of Erdős and Rényi [32].

B. Gabriel Graph model

The Gabriel graphs are named after K.R. Gabriel, who
introduced them in a paper with R.R. Sokal in 1969 [16].
In this connection scheme, two nodes are connected directly
if and only if there are no other nodes that fall inside the circle
(or sphere in three dimensions) associated with the diameter
that has the two nodes as endpoints. Mathematically, two
nodes i and j, from a set of n nodes, are connected if the
square of the distance between them is less than the sum of
the squared distance between each of these points and any
other point k. That is an undirected graph is constructed by



adding edges between nodes i and j if for all nodes k, k 6= i, j,
where d expresses the Euclidean distance:

d(i, j)2 ≤ d(i,k)2 +d( j,k)2 (2)

The Gabriel graphs are useful in modeling graphs with
geographic connectivity that resemble grids [16]. These syn-
thetic graphs when compared to AT&T, Level 3, Sprint, and
other physical networks, were found to most closely capture
the grid-like structure and at the same time achieve the
smallest cost among all of the graph models considered in [9].
Moreover, in [33] Bell Atlantic confirmed the Gabriel graph
model of their wire centers in Pennsylvania to be remarkably
similar to the topology of their inter-office network.

C. Relative Neighborhood Graph model
In computational geometry, the relative neighborhood graph

is a subgraph of the Gabriel graph. It is an undirected graph
created by connecting two nodes i and j, from a set of n
nodes, by an edge whenever there does not exist a third node
k that is closer to both i and j than they are to each other
[17]. In other words an edge is formed between i and j
if and only if there is no other node in the interior of the
intersection (lune) of the two circles, one with center at i and
the other centered at j, with the same radius d(i, j). Formally,
the relative neighborhood graph of a set of nodes in the plane is
defined as follows: Two nodes i and j define an edge when for
all nodes k, k 6= i, j, where d expresses the Euclidean distance:

d(i, j)≤max{d(i,k),d( j,k)} (3)

D. K-Nearest Neighbor Graph model
The k-nearest neighbor graph is a graph in which two nodes

i and j, from a set of n nodes, are connected by an edge,
if the distance between i and j is among the k-th smallest
distances from i to all other nodes [18]. The resulting set of
edges represents the outcome of the k nearest neighbors query
for each node. The directions of the edges may be ignored to
lead to an undirected graph.

E. Waxman Graph model
The Waxman topology model incorporates location informa-

tion into random graphs and was introduced by Waxman [19]
as a geographic model for the growth of a computer network.
In this model the n nodes of the network are uniformly
distributed in the plane and they are connected based on a
probability derived from the geographical distance between
the nodes, in contrast to the Erdős–Reńyi model where the
probability is fixed [32]. The probability to have an edge
between nodes i and j is given by:

P(i, j) = αe
−d(i, j)

βL (4)

where α,β ∈ 〈0,1], d(i, j) is the Euclidean distance from i to j,
and L denotes the maximum distance between any two nodes.
An increase in the parameter α increases the edge density,
while an increase in β yields a larger ratio of long edges to
short edges. The output of this model is an undirected graph
with a higher probability for edges between two nodes that
are close compared to two nodes further apart.

F. Spatial Barabási-Albert Graph model

The Barabási-Albert model generates scale-free networks
using a preferential attachment mechanism [34]. It implements
the key concept that highly connected vertices are likely to
become even more connected. Each new node in this evolving
model is connected to a number of existing nodes with a
probability proportional to the number of links that the existing
nodes already have.

Starting from the Barabási-Albert model, authors in [20]
developed a spatial version of the model. In this spatial model,
the network grows until n nodes have been created. For a fixed
integer m ≥ 1, each new node is given m links on arrival.
These new connections are not chosen uniformly; the new
node attaches itself to an existing node with a probability
that is proportional to the latter’s connectivity, as suggested
by Barabási and Albert [34]. Furthermore, since the cost of
connecting two nodes increases with geographical distance,
the probability that the new node connects to the already con-
nected node is inversely dependent on their distance. Hence,
well-connected nodes tend to become even better connected
with a bias towards less distant nodes as the network evolves.
The probability that the new node i connects to node j is:

P(i, j) =
k j

∑ j k j

1
(d(i, j))a (5)

where k is the degree of the node, d is the Euclidean distance
and α ≥ 0 is a parameter for controlling the distance effects.
The probabilities are to be normalized such that the sum of
all probabilities adds up to one.

This model leads to undirected graphs that take into account
the effect of geographical distance and in the same time
are characterized by the presence of few nodes with a large
number of links (called hubs), while most nodes only have
few ones.

III. IMPLEMENTATION AND STATISTICAL PROPERTIES OF
THE CHOSEN MODELS

In this study, we choose a 1000× 1000 (i.e. kilometers)
square plane as the 2-dimensional Euclidean space where we
place n = 100 nodes (independent and identically distributed)
uniformly at random. Two out of the six models are param-
eterless (the Gabriel and the Relative Neighborhood models)
using only node locations as input, while the rest require at
least one parameter. We choose these parameters upholding
biconnectivity as a prerequisite. A biconnected graph is a
connected graph (no isolated nodes) that if any node or edge
were to be removed, the graph will remain connected1. This
property is valuable in maintaining a graph with a two-fold
redundancy, to avoid disconnection upon the deletion of a
single node/edge. On the grounds of this redundancy property,
the use of biconnected graphs is very essential in the field
of networking and especially SRLG related studies. Simul-
taneously, we select the parameters’ values to minimize the

1When measuring the biconnectivity on the Relative Neighborhood graphs,
leaf nodes are not considered as articulation points since when a leaf is deleted
from a graph, the rest of the graph remains connected.



(a) Random Geometric Graph model (b) Gabriel Graph model (c) Relative Neighborhood Graph model

(d) 3-Nearest Neighbor Graph model (e) Waxman Graph model (f) Spatial Barabási-Albert Graph model

Figure 1. Visualizations of instances of the six topology types.

total wiring of the graph, which is another realistic assumption
for constructing networks in the physical level. In particular,
for the Random Geometric model r = 150, for the k-Nearest
Neighbor model k = 3, for the Waxman model α = 0.6 and
β = 0.3, for the Spatial Barabási-Albert model m = 2 and as
derived by the empirical analysis in [20] the value for α = 3.
We generate and test families of 100 networks of each of the
above models. In Figure 1 typical topologies of each model
are observed.

The basic statistical properties of such topologies are
referred here: the average shortest path, the diameter, the
average clustering coefficient, the degree (mean, minimum,
maximum). The average shortest path or average geodesic
path length is defined as the average number of steps along
the shortest paths for all possible pairs of network nodes.
The diameter of a network is the length (in number of
edges) of the longest shortest path between any two nodes
in the network. The average clustering coefficient is defined
as the average of all n local clustering coefficients Ci, where
Ci =

number of triangles connected to node i
number of triples centered on node i . In particular, a triangle

indicates that two neighbors of a node are also connected by
an edge, while the number of triples indicates the number of
permitted edges between the neighbors of a node. The degree
of a node is the number of edges directly connected to the

node. The total wiring is defined as the sum of edge lengths,
while the average link length is defined as the ratio of the
summation of all edge lengths to the number of edges, both
measured in kilometers here.

In Table I, the basic statistical properties for the six
topologies under study are presented. All values are rounded
to the nearest tenth decimal, while the standard deviation
appears in the parentheses. What turns out notably significant
is that the Relative Neighborhood graphs, along with the 3-
Nearest Neighbor and the Gabriel graphs show a considerably
lower cost in terms of total wiring. The Gabriel graphs have
already been found to closely capture the grid-like structure
of physical-level networks and at the same time achieve a
feasible cost [9]. These three models which have an advantage
in total wiring are also the best in terms of average link
length, but the worst in the average shortest path and diameter
properties. Even though, the main difference among these
three models is that the 3-Nearest Neighbor demonstrates
a quite higher average clustering coefficient. Although the
rest three models are more common in the literature as
synthetic topology generators, they produce graphs with high
or extremely high total wiring, i.e. Waxman, and a variety
of property values. The Waxman graphs appear to have a
very low average shortest path and diameter due to their high



Table I
BASIC STATISTICAL PROPERTIES FOR THE SIX TOPOLOGIES STUDIED (NODES=100, PLANE=1000×1000). STANDARD DEVIATION APPEARS IN THE

PARENTHESES.

Topology model Number
of edges

Average
shortest
path
(hops)

Diameter Average
clustering
coefficient

Total
wiring
(km)

Average
link
length
(km)

Mean
node
degree

Min
node
degree

Max
node
degree

Random Geometric
Graph

306.1
(20.9)

5.8
(0.4)

10.6
(1.6)

0.6
(0)

30577.2
(2149.8)

99.9
(1.6)

6.1
(0.4)

2.0
(0)

11.7
(1.5)

Gabriel Graph 180.5
(6.3)

6.0
(0.2)

11.1
(1.7)

0.2
(0)

17813.2
(930.2)

98.7
(2.9)

3.6
(0.1)

2.0
(0.2)

6.5
(0.6)

Relative Neighbor-
hood Graph

120.4
(3.1)

8.5
(0.5)

16.2
(2.1)

0
(0)

9757.5
(532.9)

81.0
(2.8)

2.4
(0.1)

1.0
(0)

3.9
(0.2)

3-Nearest Neighbor
Graph

189.8
(4.0)

7.8
(0.6)

14.0
(2.2)

0.5
(0)

16530.9
(679.6)

87.1
(2.8)

3.9
(0.1)

3.0
(0)

6.6
(0.7)

Waxman Graph 943.2
(42.4)

1.9
(0)

2.8
(0.4)

0.2
(0)

355024.3
(19025.9)

376.4
(12.1)

18.9
(0.9)

7.7
(1.4)

31.9
(2.8)

Spatial Barabási-
Albert Graph

197.0
(0)

3.4
(0.1)

5.7
(0.6)

0.3
(0.1)

36247.2
(2031.7)

184.0
(10.3)

3.9
(0)

2.0
(0.2)

18.1
(3.3)

number of edges, while the Random Geometric graphs show
the highest average clustering coefficient. Last, the Spatial
Barabási-Albert graphs result in low average shortest path and
diameter while maintaining a relatively low mean node degree,
compared to the aforementioned two models.

Unfortunately, the diversity in the values of statistical prop-
erties (i.e. number of edges, total wiring) may raise potential
concerns about performing a legitimate comparison. However,
this is both reasonable and unavoidable since each model has
– by definition – specific limitations and not all its attributes
can be controlled concurrently. For instance, we cannot impose
the generation of fewer edges on the Waxman model without
letting the existence of isolated nodes. Respectively, in the
Random Geometric model we cannot produce a biconnected
graph with a lesser value in r, than the one already assigned.
This is more evident in the parameterless models, where – by
default – we are unable to control the output traits. In short,
holding the same number of nodes, retaining biconnectivity
and then minimizing cost (where applicable), are the require-
ments for inclusion in the comparison, albeit we still observe
extremely diverse values in some models (e.g. Waxman),
which are kept in our analysis due to their prevalence in the
related literature.

IV. OPTICAL NETWORK AVAILABILITY ANALYSIS

Network availability is a probability that a repairable system
will be in operating state at a random moment in time. It
can be computed by both analytical and simulation methods.
The analytical method uses component mean time to failure
(MTTF) and mean time to repair (MTTR) to compute the
network availability, by considering the availability of logical
connections established in the network. Availability of logical
connections can be computed by computing availability of
paths they use, which can furthermore be reduced to consider-
ing availability of network components in the path. Analytical
method relies on serial and parallel relationships between
components of a path or paths used by a connection, but
the relationship among components can become complex in

presence of failure dependencies, which are neither serial nor
parallel relationships.

Unavailability is defined as a complement of availability.
Since availability values are usually very close to 1 (or 100%),
it is much easier to compare availability results based on the
order of magnitude in unavailability difference.

Monte Carlo simulation can be used for the estimation of
network availability. Particularly, it uses random numbers to
generate times to failure and times to repair for components in
the network, based on their MTTF and MTTR values. Failure
and repair events are then handled by the component model
implemented in a network simulator. It is possible to make
a failure (or a repair) in a particular component to affect
other components in a certain way. More specifically, this
makes it possible to model complex neither serial nor parallel
relationships such as failure dependency.

The network model we use is implemented by discrete event
network simulator ns-3. More details of the model and its
implementation can be found in [12].

V. CASE STUDY

For the evaluation of network availability we use 100 in-
stances for each of the six physical topology models described
above, totaling to 600 different physical topologies.

A. Scenario description

We evaluate scenarios where all pairs of nodes have bidi-
rectional logical connections, each having working and spare
path. As each test network has 100 nodes, 4950 bidirectional
connections are established. A more detailed traffic model
based on either population or other geographical properties
could as well be used instead of the full mesh connection
scheme. Since we use synthetic topologies, such a model
would require another randomly generated parameter - or set
of parameters - to be introduced. This in turn would affect
the results, and therefore make the correlations between topo-
logical properties and availability less evident. Additionally,
although the effect of node failures could be explored as well,



it is considered beyond the scope of this paper and therefore
the network nodes are assumed to be fully reliable.

We take cables having failure rate of 310 FIT per kilometer
(1 FIT = 1 failure in 109 hours), which includes fiber and inline
amplifier failures [35]. We assume MTTR to be 12 hours and
nodes in the network to be ideal2 (have availability equal 1).
We further consider that once a failure of a cable occurs, then
all contained fibers will also fail.

Logical connection is considered to be up if at least one of
the paths it uses is so, while otherwise it is considered down.
A path is regarded to be up if all the contained links are in
working state, or in other words, none of the contained links
in the path is in a failed state.

We use two measures of network availability as follows:
• s, t-availability, the smallest of all logical connection

availabilities,
• g-availability, the probability that all logical connections

in the network are up at a random time.
We now also define s, t-unavailability and g-unavailability

as complements of s, t-availability and g-availability (respec-
tively).

The SRLG model which has been used is the one described
in [12]. In particular, this model assumes that each SRLG
contains parts of two or more cables sharing a physical
location. If the cable part contained in SRLG fails, there is
a specific probability that the other cables are damaged too.
Notably, this probability is set to be 0.7 [36]. It is additionally
assumed that all cables are repaired in the common part upon
repair.

We simulate the scenarios with no SRLGs and 200 SRLGs
present in the network. In the case where SRLGs are present in
the network, their length is normally distributed with mean 3.0
km, and each SRLG contains two cables. We take all SRLGs to
be coincident, meaning that cables contained in SRLG share
a common node. We use SRLG-aware routing that sets up
working and spare paths for each logical connection which
are both link and SRLG-disjoint if possible, and only link-
disjoint otherwise.

For each topology instance we conduct 20 runs of Monte
Carlo simulation lasting 109 hours of simulated time, resulting
in 2000 simulation iterations done per physical topology model
for each scenario.

B. Simulation results and discussion

Simulation results presented in Figures 2 and 3 are obtained
by computing mean value and standard deviation on 2000 runs
for each topology model and each scenario, as well. It is
obvious that there is a significant difference both in g- and
s, t-unavailabilities among these models.

To begin with, the Relative Neighborhood model has the
highest unavailability among the models presented here. This
fact can be fairly perceptible given the presence of leaves in

2Our model allows configuration of MTTF and MTTR for optical network
components contained in nodes. Failures of network components could be
considered as well as link failures. However, such consideration falls outside
the scope of this paper.
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Figure 3. Simulation results g-unavailability: comparison of scenarios with
no SRLGs to scenarios with SRLGs present in the network.

the graph, and also by the zero value in the average clustering
coefficient. In addition, this model produces graphs with
lower number of edges than other models, which results in
inability to find link-disjoint spare paths for some connections.
This inability could also explain negligible difference in g-
unavailability in presence of SRLGs; if it is not possible to
find a backup path for some logical connection that is link-
disjoint, it will certainly not be possible to find one that is both
link- and SRLG-disjoint. On the other hand, the increase in
s, t-unavailability can be explained by the increase in average
backup path length in presence of SRLGs for those logical
connections whose SRLG-disjoint paths could be found.

Continuing, the Random Geometric model has the lowest
g-unavailability and is among the lowest with regard to s, t-
unavailability. Larger number of edges generally induce a
larger number of possible backup paths. In parallel, a larger
number of possible backup paths results in links being shared



by fewer number of backup paths set up when establishing
logical connections. This in turn results in a single failure on
average affecting lower number of logical connections, which
results in low value for s, t-unavailability. Relatively high
standard deviation can be explained by randomness inherent
in the model.

The Gabriel model is similar to the Random Geometric
in terms of g-unavailability, but at a much lower number of
edges and total wiring. This is reflected in the increase of s, t-
unavailability, since the number of possible backup paths in the
Gabriel model is lower compared to the Random Geometric
model. We can additionally observe that lower number of
edges compared to that of the Random Geometric model leads
to a more negative SRLGs impact on g-unavailability, due to
the fact that SRLG-disjoint backup paths are more unlikely to
exist on average.

For the Waxman model, the relatively low s, t-unavailability
can be explained by many possible paths due to having almost
an order of magnitude more edges than other models. Once
again, we deem it necessary to emphasize that despite this
last finding, still, the Waxman model is frequently common
in literature and thus it is included here for comparison aims.
Besides, the relatively high g-unavailability could be attributed
to large total wiring and therefore more failure occurrences in
time, affecting some of the logical connections. Furthermore,
we can observe that in the Waxman model SRLGs have a
negligible effect on unavailability; due to many possible paths
between two nodes, it is very likely that SRLG-disjoint paths
can be found. Negative effect of SRLG failure resulting in two
concurrent logical link failures is still present, however.

The 3-Nearest Neighbor model shows much lower s, t-
unavailability to Relative Neighborhood, albeit on the same or-
der of magnitude, which is plausibly expected due to the larger
number of edges. There is also an even greater improvement in
terms of g-unavailability, which however results in noticeable
impact of SRLGs. As also with Random Geometric model,
high standard deviation can be explained by randomness that
is inherent in the model.

Moreover, the Spatial Barabási-Albert model indicates very
good performance in terms of both s, t- and g-unavailability,
as well. Similarly to the Waxman model, the relatively high
total wiring results in a very low s, t-unavailability but this does
not hold also for g-unavailability. Additionally, the observation
about the effect of SRLGs on the Gabriel model does also hold
for the Spatial Barabási-Albert.

Besides, and since the Gabriel model has been found to
most closely fit real physical networks [9], the usage of
different topology models in availability related experiments
could lead to availability miscalculation. Thus, the utiliza-
tion of models such as the Waxman, the Spatial Barabasi-
Albert or the Random Geometric would underestimate the s, t-
unavailability, while the usage of models such as the Relative
Neighborhood or the 3-Nearest Neighbor would contrary result
in an overestimation of this metric. Regarding the estimation
of g-unavailability, the usage of the Random Geometric model
would probably underrate it, while the usage of any other

model, among the considered ones, would on the other hand
exaggerate its value.

VI. CONCLUSIONS

In this paper we implemented and used six different physical
topology models for investigating their influence on opti-
cal telecommunication network availability. We anticipated
observing an apparent difference in availability of logical
connections and a significant difference in the impact of
SRLGs on network availability for the considered topology
models. Eventually, the results actually did fulfill the above
expectations. On top of that, the findings elaborated above also
indicate a coupling between particular topological metrics and
optical network availability, albeit not a trivial one. Average
shortest path and diameter appear to have a critical effect
on s, t-availability, while regarding g-availability it turns up
to be influenced by the average shortest path and diameter
in combination with the total wiring as well. Nonetheless,
any possible correlation between those metrics and network
availability seems to be non-trivial and no definitive conclusion
has so far been reached about it.

In terms of future work, it would be quite intriguing to
further examine and explain the correlations between a richer
set of topological metrics and availability measurements. Since
it is unlikely that such correlations are trivial ones, let alone
including the presence of SRLGs, we are convinced that this
research direction will eventually contribute to a better under-
standing of the network availability determinants. Finally, the
challenging study of effective (in terms of network availability)
network topology construction based on such results is a
direction which warrants further attention and research.
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