
Mechanism design for scheduling

George Christodoulou
Max-Planck-Institut für Informatik,

Saarbrücken, Germany.

gchristo@mpi-inf.mpg.de

Elias Koutsoupias∗

Department of Informatics

University of Athens, Greece

elias@di.uoa.gr

Abstract

We consider mechanism design issues for scheduling problems and we
survey some recent developments on this important problem in Algorithmic
Game Theory. We treat both the related and the unrelated version of the
problem.

1 The scheduling problem

The problem of scheduling unrelated machines [21, 14] is oneof the most funda-
mental algorithmic problems: There aren machines andm tasks∗ and machinei
can execute taskj in time ti j . These times can be totally unrelated (thus the name
of the problem). The objective is to allocate the tasks to machines to minimize the
makespan (the time needed to finish all tasks). Thus the output is simply a parti-
tion of them tasks inton sets. A convenient way to express it is to use indicator
variablesxi j ∈ {0,1}: xi j is 1 iff task j is allocated to machinei. Each taskj is
allocated to exactly one machine, therefore we must have

∑n
i=1 xi j = 1 for every j.

With this notation, the computational problem can be expressed more precisely:
givenn×m valuesti j , find appropriatexi j ∈ {0,1} which satisfy these constraints
and minimize maxmi=1

∑

j xi j ti j .
From the traditional algorithmic point of view, the unrelated machines schedul-

ing problem is one of the most important open problems. We know that the
problem is NP-hard; it is even NP-hard to approximate it within 3/2 [21]; this
lower bound applies also to some special cases [11]. On the positive side, there
is a polynomial-time approximation algorithm with approximation ratio 2 [21].

∗Partially supported by IST-15964 (AEOLUS) and IST-2008-215270 (FRONTS).
∗We opt for the game-theoretic notation here and we denote thenumber of machines and tasks

with n andm respectively. In the scheduling literature, they usually use the opposite notation.

gchristo@mpi-inf.mpg.de
elias@di.uoa.gr

Closing the gap between the lower and upper bounds on the approximation ratio
remains a long-standing major algorithmic problem.

There are many interesting variants of the problem. When, forexample, the
timesti j are inversely proportional to the speed of the machine, thatis, when there
are speedssi and timespj such thatti j = pj/si, we have the special case of the
problem called the related machines scheduling problem. Also, when we allow a
task to be split across the machines, which is to say thatxi j are nonnegative reals
instead of integers, we call this the fractional schedulingproblem. The computa-
tional complexity of these problems is completely settled:There is a polynomial
time approximation scheme (PTAS) [13] for the related machines problem and
a fully-PTAS (FPTAS) [15] when the number of machines is fixed; the general
case is strongly NP-complete, so we don’t expect to find an FPTAS unless P=NP.
For the fractional version of the problem, there is a polynomial-time algorithm
(because it can be expressed as a linear program).

Nisan and Ronen in their seminal work [27, 28] which started the area of Al-
gorithmic Mechanism Design considered the unrelated machines problem from a
game-theoretic point of view: suppose that each machinei is a rational agent who
is the only one knowing the values of rowti. Suppose further that the machines
want to minimize their execution time. Without any incentive, the machines will
lie in order to avoid getting any task. To coerce the machinesto cooperate, we
pay them to execute the tasks. The payments do not have to be proportional to
the execution times, but can be arbitrary functions. The combination of the algo-
rithmic problem of allocating the tasks to machines together with the incentives
in the form of payments is called a mechanism. In this article, we survey recent
developments in this area of mechanisms for the scheduling problem.

We consider direct revelation mechanisms with dominant truthful strategies.
Direct revelation means that the players—who know the mechanism in advance—
declare their hidden values to the mechanism which collectsthe values and com-
putes an allocation of tasks and appropriate payments to theplayers. In such a
mechanism, a player may have an incentive to lie and declare values other than
his true values. If the mechanism is such that, independently of the values of the
other players, a player has no incentive to lie, we say that the mechanism is truth-
ful (with dominant truthful strategies). These mechanismsare very desirable and
easy to be implemented since there is no reason for machines to strategize. There
other weaker notions of truthfulness but we don’t consider them in this note.

2 Mechanism design

The mechanism design setting for scheduling is a special case of the social choice
problem. We define here the more general framework so that we can place the

scheduling problem within the general picture. In the social choice setting, there
aren players and a set of possible outcomesA which in most cases is considered
finite. The players may value the outcomes differently. For each player there
is a valuation functionvi : A → R which gives the value of playeri for every
outcome. The goal of the mechanism designer is to implement asocial choice
function f which assigns a desirable outcome to every set of valuation functions.
For example, a social choice function selects the outcome for which the median
of the valuations of the players is maximum. More generally,for every set of
valuation functions there may be a set of desirable outcomesand the mechanism
designer wants to implement a social choice function which selects one of these
outcomes.

When we consider problems with finitely many possible outcomes, we can
recast the above in a more familiar notation. A mechanism design problem with
n players andk = |A| outcomes is defined by a subsetD of Rn×k. We callD the
domain of the mechanism design problem. A social choice function f is simply
a function fromD to {1, . . . , k} (or more generally to the collection of subsets of
{1, . . . , k}).

An instance of a mechanism design problem is simply a point ofD. A concrete
way to represent a point ofD is by a real-valuedn × k matrix v. Each playeri
knows the values of row ˆvi; this is private information and it is not known to the
mechanism. In a direct-revelation mechanism, each playeri declares valuesvi

of row i. These values may be different than ˆvi. The declarations of the players
form a matrixv. The mechanism takes as input this matrixv and computes two
quantities: an outcomeo = o(v) ∈ {1, . . . , k} (the outcome of the mechanism) and
paymentsp = p(v) ∈ Rn for the players. The payoff of playeri is the value of the
original row at the outcome minus the payment: ˆvi,o − pi.

In summary, a mechanism design problem is defined by a setD of n × k real
matrices (a subset ofRn×k) and a functionf from D to subsets of{1, . . . , k}. The
mechanism designer must come up with an outcome function

o : D→ {1, . . . , k},
and a payment scheme

p : D→ Rn,

such that the outcomeo is a desirable outcome (o(v) ∈ f (v̂)) and the payment
scheme induces the players to declare values which produce desirable outcomes.

The mechanism istruthful when the outcome and payment functions are such
that the players gain nothing by not declaring their true values, i. e., the objective
of each playeri, for every declared valuesv−i of the other players, is maximized
when playeri declaresvi = v̂i. This notion of truthfulness is called dominant-
strategy truthfulness since declaring the true values is a dominant strategy for
each player.

The Revelation Principlestates that for every mechanism there is an equiv-
alent truthful mechanism which on the same input ˆv has the same outcome and
payments. This frees us to consider only truthful mechanisms.

Here are a few typical mechanism design domains:

Example (The unrestricted domain): One of the most natural mech-
anism design problems forn players andk outcomes is whenD is the
wholeRn×k space.

Example (The combinatorial auction domain): The outcomes are
all allocations ofm items ton players; there arek = nm possible
allocations. The domain is defined by valuesvi,x, one for each playeri
and for each allocationx. An allocationx is defined by a matrix where
xi j is a variable indicating whether taskj is allocated to playeri. The
valuesvi,x satisfy the natural restriction that the valuation of a player
depends only on the items allocated to him:vi,x = vi,x′ when the two
allocations agree on playeri (that is, whenxi = x′i). In economic terms
this condition says that there are no externalities. Another natural
restriction is that the value of a player can only increase when he gets
additional items (vi,x ≥ vi,x′ when xi j ≥ x′i j for j = 1, . . . ,m). The
values are also nonnegative and they are exactly 0 when a player is
allocated no item.

For example, forn = 3 players andm = 2 items the domainD
contains the points ofR3×9 which are of the form:

u1,12 u1,1 u1,1 u1,2 u1,2 0 0 0 0
0 u2,2 0 u2,1 0 u2,12 u2,1 u2,2 0
0 0 u3,2 0 u3,1 0 u3,2 u3,1 u3,12

,

where the values are nonnegative andui,12 ≥ ui,1 andui,12 ≥ ui,2.
For the special case of the single-item auction, the matrix is a

diagonal one where the valueui,i is the valuation of playeri for the
item.

Example (The unrelated machines domain): This is a special case
of the combinatorial auction when the domain is additive. Itis also a
cost game (as opposed to a payoff one). The outcomes again are all
allocations ofm tasks ton players (k = nm). The domain is defined by

vi,x =
∑m

j=1 xi j ti j . For example, forn = 2 players andm = 2 tasks the
domainD contains the points ofR2×4 for which are of the form:

t11+ t12 t11 t12 0
0 t22 t21 t21+ t22

whereti j ’s are nonnegative.

2.1 Known mechanisms

Given a domain, one can ask whether there are any (truthful) mechanisms. If we
view the payments as the means to implement a social choice function, we can
rephrase the question: For which social choice functions are there payment func-
tions so that the resulting mechanism is truthful? In this way we focus on the
social choice function. For example, for the single-item auction domain, are there
payment functions for a mechanism to allocate the item to theplayer with maxi-
mum (private) value? with the second maximum value? As we will discuss soon,
the answer to the first question is positive and to the second question negative.

There are few mechanisms that are known to be truthful and thebest-studied
one is the VCG mechanism [31, 8, 12].

Example (The VCG mechanism and affine maximizers): The VCG
mechanism implements the social choice function of selecting the
outcome (column) with the maximum total value:

f (v) = argmax
j∈{1,...,k}

n
∑

i=1

vi j .

A generalization of this mechanism is the affine maximizer which
weights with positive multipliersλi the values of each player (row)i
and add a constantγ j to the value of each outcome (column)j:

f (v) = argmax
j∈{1,...,k}

n
∑

i=1

λivi j + γ j .

The VCG mechanism is truthful for every domain. The payments (for the gen-
eral domain) align the objective of each playerl with the social choice function.
This can be achieved when the payments are

pl(v) = − 1
λl

∑

i,l

λivi j + γ j

.

Playerl wants the mechanism to select an outcomej which maximizesvl j−pl(v) =
1
λl

∑n
i=1 λivi j + γ j. This is the same expression with the argmax expression above

and shows that the player’s objective is achieved at the social choice function. The
VCG has slightly different payments: Because these payments may be negative,
the VCG mechanism adds appropriate values to the payment of each player that
depend only on the values of the other players (this keeps theplayer truthful).

Another interesting class of mechanisms for the schedulingproblem are the
task independent mechanisms: Each task is allocated independently of the remain-
ing tasks. Not all task-independent mechanisms are truthful. Task-independent
mechanisms are special cases of threshold mechanisms:

Example (Threshold mechanisms): A threshold mechanism for the
scheduling domain is one for which there are threshold functionshi j

such that the mechanism allocates itemj to player i if and only if
vi j ≥ hi j (v−i). What distinguishes these mechanisms from general
mechanisms is that the thresholds depend only on the values of the
other players but not on the other values of the player himself. It
is not true in general that every set of functionshi j defines a legal
mechanism, as they have to be consistent between them. In particular,
the threshold functions should be such that every itemj is allocated
to exactly one player. In other words, exactly one of the constraints
vi j ≥ hi j (v−i), for i = 1, . . . ,n, should be satisfied.

3 Truthfulness

One of the central questions in mechanism design is to find a nice characterization
of truthful mechanisms. In algorithmic terms, we want to determine which algo-
rithms are implementable, i.e., for which algorithms for the scheduling problem
there exist payments that make the players truthful. It should be clear that for rich
domains, such as the scheduling domain, not all algorithms are truthful. In fact, it
seems that the set of truthful algorithms is very limited, but whether this is the case
or not is perhaps the most outstanding open problem in algorithmic mechanism
design:

Open Problem. Characterize the set of truthful mechanisms for scheduling.

But what kind of characterization we seek? We are going to see that we do
have a necessary and sufficient condition, the so-called Monotonicity Property.
But we want a characterization which is more than a necessary and sufficient con-
dition. An important result in the area of mechanism design,Roberts’ Theorem

[16], shows exactly the type of characterization we seek. Roberts’ Theorem ap-
plies to the unrestricted domain and states that the only truthful mechanisms for
this domain ofk ≥ 3 outcomes are the affine maximizers. In a sense, this is a very
disappointing result, because it says that only very simplealgorithms can be im-
plemented. The question becomes much more interesting for restricted domains
and in particular for the auction and scheduling domain. It is a simple observation
that when we restrict the domain the set of available mechanisms can only become
richer. More precisely, for domainsD ⊂ D′, every truthful mechanism forD′ is
also a truthful mechanism forD.

We discuss below the Monotonicity Property which a simple necessary and
sufficient condition for truthfulness. This is true for every convex domain, but we
restrict the discussion to the scheduling domain.

Definition 3.1 (Monotonicity Property). An allocation algorithm is called mono-
tone if it satisfies the following property: for every two sets of tasks t and t′ which
differ only on machine i (i.e., on the i-the row) the associated allocations x and x′

satisfy
(xi − x′i) · (ti − t′i) ≤ 0,

where· denotes the dot product of the vectors, that is,
∑m

j=1(xi j − x′i j)(ti j − t′i j) ≤ 0.

The property, which sometimes in the literature is called weak monotonicity,
essentially states that when we increase the times of the tasks for machinei, the
allocation for the machine can only become smaller. Notice that the Monotonicity
Property involves only the allocation of one player (thei-th player).

Theorem 3.2(Saks and Yu). A mechanism is truthful if and only if its allocations
satisfy the Monotonicity Property.

To establish that the Monotonicity Property is necessary for truthfulness is
easy (it was done for example in [28]) and we show it below. Saks and Yu showed
that it is also a sufficient condition. In fact, they showed a much more general
result: the property is sufficient for every convex domain; this includes the unre-
stricted domain and the combinatorial auction domains.

To show that the property is necessary condition for truthful mechanisms, we
observe that the payments cannot depend directly on the declarationti of player
i, but indirectly through the selected outcomex(t) and the declarationst−i of the
other players, that is,pi(t) = pi(xi(t), t−i). To see this, suppose that there existti , t′i
such thatxi(ti , t−i) = xi(t′i , t−i), but pi(ti , t−i) < pi(t′i , t−i). Then the player whose
true processing times areti has incentive to declare falsely that its processing
times aret′i in order to increase his utility, as we havepi(ti , t−i) −

∑m
j=1 ti xi j <

pi(t′i , t−i) −
∑m

j=1 ti xi j , contradicting the truthfulness of the mechanism.

When playeri has valuationsti, he has no incentive to declaret′i when

ti xi − pi(xi , t−i) ≤ ti x
′
i − pi(x

′
i , t−i)

Similarly, when we inverse the roles oft andt′, we have

t′i x
′
i − pi(x

′
i , t
′
−i) ≤ t′i xi − pi(xi , t

′
−i)

Now if we add the above inequalities and take into account that the instances differ
only on thei-th player, that is,t′−i = t−i, we get the Monotonicity Property.

The implications are that we don’t have to consider at all thepayment algo-
rithm. This transforms the problem from the realm of Game Theory to the realm
of Algorithms. To prove lower bounds or to design good mechanisms, we can
completely forget about mechanisms, payments, truthfulness etc, and simply fo-
cus on the subclass of monotone allocation algorithms.

The Monotonicity Property has a straightforward geometricform. For sim-
plicity, let us consider 2 tasks and consider the space of possible valuations for
a particular machinei. The generalization to more tasks is straightforward. Fix
the valuest−i of the remaining players. For every (ti1, ti2), let us consider how
a mechanism which satisfies the Monotonicity Property allocates the tasks. In
particular, letRxi1xi2 denote the set of inputs of playeri for which the mechanism
has allocation (xi1, xi2) for the i-th player. The Monotonicity Property is equiv-
alent to the constraint that the boundary betweenRxi1xi2 andRx′i1x′i2

is of the form
(x′i1− xi1)ti1+ (x′i2− xi2)ti2 = 0. Since the allocation variablesxi1 andxi2 are 0-1, the
boundaries have very specific slopes. Therefore the allocation of the mechanism
should have one the 2 forms of Figure 1.

ti1

ti2

R11 R01

R10 R00

ti1

ti2

R11 R01

R10 R00

Figure 1: The two possible ways to partition the positive orthant.

In other words, a mechanism is truthful if and only if it partitions theRn×2

space so that the appropriate lower dimensional cuts have the form of Figure 1.
Thus characterizing the truthful mechanisms amounts to characterize the parti-
tions ofRn×m that have specific lower dimensional cuts.

Affine minimizers are the special class of algorithms for which the boundaries
in Figure 1 are linear functions of the values of the other players. The diagonal

part in the picture exist if and only if the additive constants γ j are not all equal.
On the other hand, threshold mechanisms are exactly those whose diagonal part
has 0 length (i.e., the partition is defined by orthogonal hyperplanes).

A recent paper by Dobzinski and Sundararajan [10] gives a simple character-
ization of mechanisms for 2 machines. They consider only mechanisms which
have bounded approximation ratio with respect to makespan and they show that
only task-independent mechanisms can be truthful. In [7], amore complete char-
acterization was given which is independent of the approximation ratio: for 2
machines only affine minimizers and threshold algorithms can be truthful†.

In the next 2 sections we consider positive and impossibility results for the
unrelated machines problem. In the last section, we discusspositive results for
the related machines version.

4 Upper bounds for the unrelated case

There are only a few positive results which give approximation algorithms for the
unrelated machines scheduling problem. We discuss most of them here:

Deterministic mechanisms: Nisan and Ronen [28] gave a mechanism that is
n-approximate. The mechanism is essentially the VCG, i.e., itassigns jobj to the
machine with minimumti j . It runs independent second-price auctions per item,
which is equivalent to the VCG because the valuations in the scheduling domain
are additive.

Randomized mechanisms: There are two major notions of truthfulness for
randomized mechanisms:universally truthfuland truthful in expectationmech-
anisms. A universally truthful mechanism is a probability distribution over truth-
ful deterministic mechanisms; this means that even when theplayers know the
outcome of the random choices (coins), they have no incentive to lie. This is in
contrast to the truthful in expectation mechanisms where players has no incen-
tive to lie before the random choices but they may have incentive to lie after the
random choices.

Nisan and Ronen [28] suggested the following 1.75-approximate randomized
mechanism for 2 machines. The mechanism is a universally truthful one and
it works as follows: For every taskj, with probability 1/2 the algorithm gives
the item to the minimizer ofmin{t1 j ,

4
3t2 j}, and with 1/2 to the minimizer of

†This holds only for decisive mechanisms, that is mechanismswhere all allocations are pos-
sible; non-decisive algorithms are not very natural and among their properties is that they have
unbounded approximation ratio.

min{t2 j ,
4
3t1 j}. Mu’alem and Schapira [24] extended the mechanism forn machines

which gives approximation ratio 1.875n.
Recently, the result of Nisan and Ronen for 2 machines was improved by

Lu and Yu [22] who gave a 1.67-approximation mechanism; theyimproved this
later [23] to 1.59.

Fractional mechanisms: Christodoulou et al. [5] gave an algorithm for the frac-
tional version of the problem which allocates each task independently. The frac-
tions of task j assigned to machines 1,2, . . . ,n are inversely proportional to the
squares of the execution times of taskj. For example, for 2 machines the alloca-
tion of task j is given by

x1 j =
t22 j

t21 j + t22 j

x2 j =
t21 j

t21 j + t22 j

.

The mechanism has approximation ration+1
2 and this is optimal for task-independent

mechanisms.

Restricted Domain mechanisms: Lavi and Swamy [20] studied two cases where
the valuation domain is restricted. Instead of allowingti j to get any positive real
values, they restrict the values to 2: low and high. They showthat in such domains
there exist algorithms with constant approximation ratio,in contrast to general do-
mains where the current best upper bounds are linear with respect ton.

These domains are not convex and Theorem 3.2 of Saks and Yu [30] does not
apply. Instead a more complicated property, the cycle monotonicity property [29],
is necessary and sufficient for this domain (and every other domain): The cycle
monotonicity property considers closed paths of inputs andrequires that the sum
of a certain expression is nonnegative over every cycle. TheMonotonicity Prop-
erty is the special case when the cycles have length 2.

When the tasks are allowed to have different low and high values, Lavi and
Swamy gave a 3-approximate algorithm which is truthful in expectation. The
algorithm computes the optimal fractional solution, it transforms it to a cycle-
monotone fractional allocation, and finally rounds it usingrandomized rounding.
When all tasks have the same low and high values, an even betterresult is possi-
ble: they gave a 2-approximate deterministic cycle-monotone algorithm based on
maxflow.

5 Lower bounds for the unrelated case

In this section we summarize the main impossibility resultsand techniques for the
unrelated machines problem. It so happens that all the lowerbounds for this prob-

lem (deterministic, fractional, and randomized) are basedon the restrictions of
truthfulness and they hold independently of computationalcomplexity considera-
tions. In other words, the lower bounds apply even to exponential-time algorithms.

Nisan and Ronen [28] gave a lower bound of 2 for any truthful deterministic
mechanism for 2 machines‡. Christodoulou et al. [6] improved the lower bound
to 1+

√
2 = 2.41 for 3 or more machines, and Koutsoupias and Vidali [17] to

1 + φ ≈ 2.61 for n machines wheren is arbitrarily large. It is a major open
problem to close the gap between the lower and the upper bound.

Conjecture (Nisan and Ronen). No mechanism has approximation ratio better
than n.

Mu’alem and Schapira [24] gave a lower bound of 2− 1
n for randomized truth-

ful in expectation mechanisms (which also applies to universally truthful mecha-
nisms). Christodoulou et al. [5] showed that the same bound holds even for frac-
tional domains. Notice that while for deterministic and fractional mechanisms we
have tight bounds for 2 machines, for randomized mechanismsthere is still a gap
between the lower bound of 1.5 and the upper of 1.59. It is an interesting open
problem here is to close this gap. Interestingly, even for the restricted domain of
two values, Lavi and Swamy [20] showed a lower bound of 11/10.

In the next subsections we discuss the basic ideas behind thelower bounds for
deterministic mechanisms. We don’t consider randomized and fractional settings,
but the main ideas are similar (although sometimes more complicated) [24, 5].

5.1 The case of 2 machines

Recall that every truthful mechanism is monotone. A useful tool that comes out
of the Monotonicity Property and is used implicitly or explicitly in most of the
lower bound proofs is the following.

Lemma 5.1. Let t be the input matrix and let x= x(t) be the allocation produced
by a truthful mechanism. Suppose that we change only the processing times of
machine i in such a way that t′i j > ti j when xi j = 0, and t′i j < ti j when xi j = 1. A
truthful mechanism does not change the allocation to machine i, i.e., xi(t′) = xi(t).

Proof. By the Monotonicity Property 3.1, we have that

m
∑

j=1

(ti j − t′i j)(xi j (t) − xi j (t
′)) ≤ 0.

‡It is almost trivial to see that any lower bound forn machines applies to the case of more than
n machines.

Observe that all terms of the sum are nonnegative (by the premises of the lemma).
The only way to satisfy the inequality is to have all terms equal to 0, that is,
xi j (t) = xi j (t′).

Now we will use this lemma to get easily a lower bound of 2, which first
appeared in [28].

Theorem 5.2. Any truthful mechanism has approximation ratio of at least2 for
two or more machines.

Proof. Suppose that we have an instance withn = 2 andm = 3 andti j = 1, for
all i, j. Any allocation algorithm can either allocate all tasks to asingle machine
(say the first one), or partition them (say the first two tasks to the first machine and
the third task to the second machine). In the former case, we apply Lemma 5.1 to
the first player (where the star symbol indicates allocation, andǫ is an arbitrarily
small positive number):

t =

(

1⋆ 1⋆ 1⋆

1 1 1

)

⇒ t′ =

(

1− ǫ⋆ 1− ǫ⋆ 0⋆

1 1 1

)

.

The resulting assignment ont′ has approximation ratio of2(1−ǫ)
1 ≈ 2. In the latter

case, we apply Lemma 5.1 to the second player:

t =

(

1⋆ 1⋆ 1
1 1 1⋆

)

⇒ t′ =

(

1⋆ 1⋆ 1
1+ ǫ 1+ ǫ 0⋆

)

.

The resulting assignment ont′ has approximation ratio of21+ǫ ≈ 2.

5.2 The case of 3 or more machines

There is a qualitative difference between the case of 2 machines and the case
of 3 or more machines. For 2 machines, the allocation of a player completely
determines the allocation of the other player. This is not true for more than 2
players and it complicates the situation.

There are basically two approaches one can follow to prove a lower bound.
One approach is to provide a global characterization of all possible mechanisms,
such as Roberts’ Theorem. This approach however requires thesolution of the
characterization problem which is potentially a more difficult problem. For exam-
ple, Christodoulou et al. [7] use this approach to extend the lower bound of 2 [27]
to instances with only 2 tasks.

The other approach is to use an appropriately chosen subset of the input in-
stances. The Monotonicity Property implies some relationsbetween the alloca-
tions of these instances. We can use them to show that one of the instances has

high approximation ratio. A typical application of this approach is forthe lower
bound of 2.41 [6] and 2.61 [17]. In [6] as we will see later the set of instances is
small. It consists of instances of 2 and 3 machines respectively and no more than 5
tasks. In [17], they use the same principles but apply them inan infinite subset of
inputs using a double induction to keep track of how all theseallocations depend
on each other.

We sketch here the proof of the 2.41 lower bound.

Theorem 5.3.Any truthful mechanism has approximation ratio of at least1+
√

2
for three or more machines.

The general idea of the proof is the following: We start with the set of tasks

t =

0 ∞ ∞ a a
∞ 0 ∞ a a
∞ ∞ 0 a a

,

for some parametera > 1. This set of tasks essentially admits two distinct al-
locations (up to symmetry). This is true because the first three tasks need to be
assigned to a single machine by any mechanism with bounded approximation ra-
tio. For each allocation, we increase or decrease some values appropriately. Them
is is shown that in order to keep the approximation ratio low (below 1+ α), the
following set of tasks must have the allocation indicated bythe stars (in which the
first machine gets both tasks 4 and 5):

t =

0⋆ ∞ ∞ 1⋆ 1⋆

∞ 0⋆ ∞ a a
∞ ∞ 0⋆ a a

.

Finally, the input of the first player is modified as the following matrix indicates.
By using a lemma that is similar in spirit to Lemma 5.1, but in addition takes into
account the fact that there is a unique way to allocate the first three tasks, we get
the allocation

t =

α⋆ ∞ ∞ 1− ǫ⋆ 1− ǫ⋆
∞ 0⋆ ∞ a a
∞ ∞ 0⋆ a a

.

This allocation has an approximation ratio ofa+2
α

, for arbitrarily small value of
ǫ. Taking into account that the ratio is at most 1+ α we get the theorem.

6 Related machines

In this section, we consider the important special case of the scheduling problem,
therelatedmachines version. In this setting, the processing times of the tasks are

p1 ≥ . . . ≥ pm, while the machines have speedss1, . . . , sn. Given an assignment
of the jobs to the machines, letwi denote the workload assigned to machinei. The
makespanC(w, s) is maxi wi/si. Monotonicity for this special case is very simple.
An algorithm is monotone (truthful) when it has the following property: when
we decrease the speed of a machinei, keeping all other speeds the same, the new
workload on machinei can only decrease.

The mechanism design version of the problem was first studiedby Archer and
Tardos [3]. It is a very important problem in Algorithmic Mechanism Design,
because it’s a typical single-parameter problem, which means that each player has
only one real private value and his objective is proportional to this value (for a
precise definition see Chapters 9 and 12 of [26]). Such problems were studied
extensively by Myerson [25]. Furthermore, the optimal allocation is monotone
and therefore truthful, but it cannot be computed in polynomial time unless P=NP.
It is therefore an appropriate example to explore the interplay between truthfulness
and computational complexity. It is a major open problem whether adeterministic
monotone PTAS exists for this problem§. A very recent breakthrough result [9]
shows that there exists a randomized truthful-in-expectation PTAS.

In contrast to the scheduling problem of unrelated machines, in this special
case there exist truthful mechanisms that output an optimalallocation. A concrete
example is the Lex-Opt algorithm which outputs the lexicographically first opti-
mal allocation; the lexicographic order is with respect to the loads (w1, . . . ,wn) of
the machines.

Theorem 6.1. [3] Lex-Opt is monotone

Proof. Let w = (w1, . . . ,wn) be the workload vector computed by Lex-Opt on
input s = (s1, . . . , sn). We consider the case when machinei reports a slower
speeds′i < si. Let w′ be the new schedule for inputs′ = (s′i , s−i). To show that
Lex-Opt is monotone we need to show thatw′i ≤ wi.

Clearly the optimal makespan of the new speed vector can only increase, i.e.
C(w′, s′) ≥ C(w, s). Let’s consider first the case whereC(w, s) = C(w, s′). The
workload vectorw is the lexicographically first and therefore Lex-Opt will se-
lect this for speedss′. Clearly in this case,w′i = wi. In the other case, when
the makespanC(w, s′) is greater thanC(w, s), let’s assume that machinei is the
bottleneck in schedulew, i.e., C(w, s′) = wi

s′i
> C(w, s). But sincew′ is the

lexicographically-first optimal workload fors′, we have thatC(w′, s′) ≤ C(w, s′),
and therefore

w′i
s′i
≤ C(w′, s′) ≤ C(w, s′) = wi

s′i
. Again,w′i ≤ wi.

We next consider randomized approximation polynomial-time mechanisms
and then deterministic ones.
§We assume that a mechanism runs in polynomial time when both the allocation algorithm and

the payment algorithm run in polynomial time.

6.1 Randomized mechanisms

We will discuss 2 mechanisms in this section. The first mechanism is due to
Archer and Tardos [3] and has approximation ratio 3. Later Archer [2] improved
the randomized rounding procedure obtaining a 2-approximate mechanism. The
second mechanism is due to Dhangwatnotai et al. [9] and is a randomized PTAS.
Both mechanisms are truthful-in-expectation and they have similar approach: they
create first a monotone fractional solution and then apply a randomized rounding
procedure. The randomization is useful only to guarantee truthfulness and has no
implication on the approximation ratio.

A 2-approximate truthful in expectation mechanism [3, 2]
Given the speed vectors = (s1, . . . , sn), the algorithm first computes the fol-

lowing threshold

TLB = max
j

min
i

max

pj

si
,

∑ j
k=1 pk

∑i
l=1 sl

, (1)

which is a lower bound of the optimal makespanC(w, s).
GivenTLB, the algorithm computes a fractional assignment as follows: It as-

signs the jobs in non-increasing order with respect to theirsize, i.e.p1 ≥ . . . ≥ pm.
It first assigns as many jobs as possible to the fastest machine so that its load be-
comes equal toTLB. It may have to assign a fraction of some job to achieve this
(thus the assignment is fractional). It continues the same procedure for the re-
maining machines. The threshold is such that all jobs will beassigned to the
machines.

We now describe a randomized rounding procedure turn the fractional alloca-
tion into an integral one: Pick a random numberα uniformly at random in [0,1].
Assume that taskj is fractionally assigned to machinesi andi + 1. If xi j ≥ α then
assign the task to machinei, otherwise assign it to machinej.

Theorem 6.2.The above algorithm is monotone.

Proof. All we need to prove is that the fractional workloads are monotone. This is
because the expected workload of every machine is equal to the fractional work-
load (sinceα was chosen uniformly).

Assume now that a machinei reports a smaller speeds′i < si and letw andw′

be the workload vectors. To show monotonicity we need to showw′i ≤ wi. Let
si = β · s′i , for someβ > 1. The new thresholdT′LB can only increase, but it can
be bounded byT′LB ≤ β · TLB. If machinei had loadTLB, thenw′i ≤ T′LB · s′i ≤
β · TLB · s′i ≤ TLB · si = wi.

If machinei was not full (that is, it had load less thanTLB), then it can at most
take the load that exceeded the previous machines. Now that the thresholdT′LB

has increased, the total workload on those machines withk < i can only increase.
Therefore the workload of machinei can only decrease.

A PTAS truthful in expectation mechanism Very recently, Dhangwatnotai et
al. [9] suggested the following randomized PTAS, that is truthful in expectation.

The algorithm first groups the jobs of size that differ within a factor of 1+ ǫ
from each other, for some smallǫ. Then it smooths the jobs, i.e., it pretends
that every job has a size equal to the average of its group. Then the algorithm
constructs a setP of allowable (fractional) partitions of jobs to the machines,
giving also a total ordering of these partitions. Then the algorithm optimizes over
the partitions inP. From the fractional partitionP, we get a fractional schedule
w(P), by giving to machine with thei-th slowest speed, thei-th smallest partition
set. Then using randomized rounding we get an integral schedule. Finally we
replace the smoothed jobs with the real ones. The algorithm does this by random
shuffling.

Theorem 6.3.The above randomized PTAS is monotone.

Proof. Again it is enough to show that the fractional schedule of thesmoothed
jobs is monotone.

Assume that machinei reports a smaller speeds′i < si and lets = (si , s−i)
and s′ = (s′i , s−i) be the corresponding speed vectors. Let machinei be thek-th
slowest ins and thek′-th slowest ins′, with k′ ≤ k. Let us denote byP = P(s)
andP′ = P(s′) the corresponding partitions chosen by the algorithm in both cases.
Let us also denote byw(P) = (w1(P), . . . ,wn(P)), the sorted (in increasing order)
workload vector with respect to the partitionP. We need to prove thatwk′(P′) ≤
wk(P).

Clearly the makespans satisfyC(w(P′), s′) ≥ C(w(P), s), since machinei has
decreased its speed. Let us first assume that the schedule induced by the partition
P, does not increase the makespan fors′, i.e. C(w(P), s′) = C(w(P), s). Therefore
P′ = P and since the playeri has decreased its position in the sorted speed vector
s′, it is wk′(P′) = wk′(P) ≤ wk(P).

If the schedule induced byP causes an increase of the makespan fors′, then
the bottleneck is one of the machines in the positions between k′ andk, say the
machine with indexl ∈ [k′, k].

The workload of the machine in this position decreases, i.e.wl(P′) ≤ wl(P)
because

wl(P′)
s′l
≤ C(w(P′), s′) ≤ C(w(P), s′) =

wl(P)
s′l
.

Finally we getwk′(P′) ≤ wl(P′) ≤ wl(P) ≤ wk(P), as needed.

6.2 Deterministic mechanisms

We now consider deterministic mechanisms for the related machines problem.
We distinguish 2 cases: the case of fixed number of machines (for which there is
a FPTAS for the non-mechanism-design version) and the case of variable number
of machines (for which there is a PTAS but no FPTAS unless P=NP).

6.2.1 Fixed number of machines

Auletta et al. [4] give the first deterministic polynomial-time monotone algorithm
for the fixed number of machines problem. Their algorithm is 4-approximate.
The algorithm schedules optimally theh largest jobs, for some parameterh and it
assigns the rest of the jobs in a greedy fashion. A central point of their approach
is that the greedy allocation is monotone for the special case when the speeds are
powers of 2. They first round down the originals speeds in the closest power of 2,
and then apply their monotone algorithm.

This result was improved by Andelman et al. [1] who gave a PTASand a
different mechanism FPTAS. The PTAS algorithm first modifies the set M of the
jobs to a setM′ as follows: It partitions the jobs into a setB of big jobs, and a set
S of small jobs. A job is inB if its size is above some thresholdT. Then, jobs in
S are packed into chunks of size in [T/2,T] (the last chunk may have size than
T/2). Let us call the set of chunksS′. The working set of jobs is the merge of
the two sets,M′ = B∪ S′, for which we find the optimal assignment applying the
lexicographically first optimal algorithm Lex-Opt .

The algorithm is trivially monotone, as the construction ofthe modified job
setM′ is independent of the speed vector and because the Lex-Opt algorithm is
monotone, as we showed in Theorem 6.1.

Andelman et al. [1] gave a different monotone FPTAS for the problem. The al-
gorithm takes any black-box algorithm with approximation ratioc and transforms
it to a monotone algorithm with approximationc(1+ ǫ), for everyǫ > 0. They use
this on the FPTAS of [15].

The transformation is performed in 3 steps:

1. In the first step the algorithm produces a modified vector ofspeedsd as
follows: First it rounds the speeds down to powers of (1+ ǫ). Then it
normalizes the vector such thatdn = 1. Finally, it rounds the machines that
are very slow, with respect to some thresholdL to (1+ ǫ)−L.

2. In the second step the algorithm performs an enumeration over all the differ-
ent vectorsd′ with speeds (1+ ǫ)−i, with i ∈ {0, L}. For every such vectord′,
it applies the black-box algorithm. Finally it sorts the workloads such that
the machine with thei-th smallest speed will get thei-th smallest workload.

3. In the final step, it tries all the sorted assignments tod and outputs the
assignment that minimizes the makespan (choosing the lexicographically
first in case of ties).

6.2.2 Arbitrary number of machines

The following algorithm due to Andelman et al. [1] is based onthe ideas of the
algorithm of Archer and Tardos (Section 6.1) and has approximation ratio 5. To
overcome the problem of derandomizing imposed by monotonicity they modify
the speed set.

The currently best deterministic algorithm is due to Kovacs[18]. The algo-
rithm first rounds the speeds down to the closest power of 2, i.e. di = 2⌊log si⌋.
Then it runs the well-known algorithm Longest Processing Time first (LPT) on
the modified speed vectord. Finally, among machines of the same rounded speed,
the algorithm reorders the assigned work such thatwi ≤ wi+1. The algorithm is
monotone and attains approximation ratio 2.8 [19]. The proof of its monotonicity
is complicated and it is beyond the scope of this article.

7 Conclusions

The scheduling problem with its many facets is one of the driving problems of
the area of Algorithmic Mechanism Design. There are many interesting open
problems, but we feel that the following are the most important:

• Characterize the set of truthful mechanisms for unrelated machines.

• Close the gap between the lower (2.61) and the upper (n) bound on the
approximation ratio for unrelated machines. Also important are the same
questions about the fractional and randomized case.

• Give a deterministic PTAS mechanism for the related machines problem or
prove that none exists.

References

[1] Nir Andelman, Yossi Azar, and Motti Sorani. Truthful approximation mechanisms
for scheduling selfish related machines.Theory of Computing Systems, 40(4):423–
436, 2007.

[2] Aaron Archer. Mechanisms for Discrete Optimization with Rational Agents. PhD
thesis, Cornell University, January 2004.

[3] Aaron Archer and Éva Tardos. Truthful mechanisms for one-parameter agents. In
42nd Annual Symposium on Foundations of Computer Science (FOCS), pages 482–
491, 2001.

[4] Vincenzo Auletta, Roberto De Prisco, Paolo Penna, and Giuseppe Persiano. De-
terministic truthful approximation mechanisms for scheduling related machines. In
Volker Diekert and Michel Habib, editors,STACS, volume 2996 ofLecture Notes in
Computer Science, pages 608–619. Springer, 2004.

[5] George Christodoulou, Elias Koutsoupias, and Annamária Kovács. Mechanism de-
sign for fractional scheduling on unrelated machines. InAutomata, Languages and
Programming: 34th International Colloquium (ICALP), pages 40–52, 2007.

[6] George Christodoulou, Elias Koutsoupias, and Angelina Vidali. A lowerbound for
scheduling mechanisms. InACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1163–1170, 2007.

[7] George Christodoulou, Elias Koutsoupias, and Angelina Vidali. A characterization
of 2-player mechanisms for scheduling. InAlgorithms - ESA 2008, 16th Annual
European Symposium, pages 297–307, 2008.

[8] E. H. Clark. Multipart pricing of public goods.Public Choice, 11:17–33, 1971.

[9] Peerapong Dhangwatnotai, Shahar Dobzinski, Shaddin Dughmi, andTim Rough-
garden. Truthful approximation schemes for single-parameter agents. In FOCS,
pages 15–24, 2008.

[10] Shahar Dobzinski and Mukund Sundararajan. On characterizations of truthful mech-
anisms for combinatorial auctions and scheduling. InACM Conference on Electronic
Commerce, pages 38–47, 2008.

[11] Tomás Ebenlendr, Marek Krcal, and Jiri Sgall. Graph balancing: aspecial case of
scheduling unrelated parallel machines. In Shang-Hua Teng, editor,SODA, pages
483–490. SIAM, 2008.

[12] T. Groves. Incentives in teams.Econometrica, 41:617–663, 1973.

[13] Dorit S. Hochbaum and David B. Shmoys. A polynomial approximation scheme for
scheduling on uniform processors: Using the dual approximation approach. SIAM
J. Comput., 17(3):539–551, 1988.

[14] D.S. Hochbaum.Approximation algorithms for NP-hard problems. PWS Publishing
Co. Boston, MA, USA, 1996.

[15] Ellis Horowitz and Sartaj Sahni. Exact and approximate algorithms for scheduling
nonidentical processors.J. ACM, 23(2):317–327, 1976.

[16] Roberts Kevin. The characterization of implementable choice rules.Aggregation
and Revelation of Preferences, pages 321–348, 1979.

[17] E. Koutsoupias and A. Vidali. A lower bound of 1+phi for truthful scheduling
mechanisms. InMathematical Foundations of Computer Science (MFCS), pages
454–464, Krumlov, Czech Republic, 26-31 August 2007.

[18] Annamária Kovács. Fast monotone 3-approximation algorithm for scheduling re-
lated machines. InAlgorithms - ESA 2005, 13th Annual European Symposium, pages
616–627, 2005.

[19] Annamária Kovács.Fast Algorithms for Two Scheduling Problems.PhD thesis,
Universität des Saarlandes, 2007.

[20] Ron Lavi and Chaitanya Swamy. Truthful mechanism design for multi-dimensional
scheduling via cycle monotonicity. InACM Conference on Electronic Commerce
(EC), 2007.

[21] J.K. Lenstra, D.B. Shmoys, and É. Tardos. Approximation algorithms for scheduling
unrelated parallel machines.Mathematical Programming, 46(1):259–271, 1990.

[22] Pinyan Lu and Changyuan Yu. An improved randomized truthful mechanism for
scheduling unrelated machines. InSTACS, pages 527–538, 2008.

[23] Pinyan Lu and Changyuan Yu. Randomized truthful mechanisms for scheduling
unrelated machines. InWINE, pages 402–413, 2008.

[24] Ahuva Mu’alem and Michael Schapira. Setting lower bounds on truthfulness. In
Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1143–1152, 2007.

[25] Roger B. Myerson. Optimal auction design.Mathematics of Operations Research,
6(1):58–73, 1981.

[26] N. Nisan, T. Roughgarden, E. Tardos, and V.V. Vazirani.Algorithmic Game Theory.
Cambridge University Press, 2007.

[27] Noam Nisan and Amir Ronen. Algorithmic mechanism design (extended abstract).
In Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing
(STOC), pages 129–140, 1999.

[28] Noam Nisan and Amir Ronen. Algorithmic mechanism design.Games and Eco-
nomic Behavior, 35:166–196, 2001.

[29] Jean-Charles Rochet. A necessary and sufficient condition for rationalizability in a
quasilinear context.Journal of Mathematical Economics, 16:191–200, 1987.

[30] Michael E. Saks and Lan Yu. Weak monotonicity suffices for truthfulness on convex
domains. InProceedings 6th ACM Conference on Electronic Commerce (EC), pages
286–293, 2005.

[31] W. Vickrey. Counterspeculation, Auctions and Competitive Sealed Tenders.Journal
of Finance, pages 8–37, 1961.

	The scheduling problem
	Mechanism design
	Known mechanisms

	Truthfulness
	Upper bounds for the unrelated case
	Lower bounds for the unrelated case
	The case of 2 machines
	The case of 3 or more machines

	Related machines
	Randomized mechanisms
	Deterministic mechanisms
	Fixed number of machines
	Arbitrary number of machines

	Conclusions

