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Abstract

Scheduling on unrelated machines is one of the most general and classical variants of the
task scheduling problem. Fractional scheduling is the LP-relaxation of the problem, which
is polynomially solvable in the offline setting, and is a useful tool to design deterministic
and randomized approximation algorithms.

The mechanism design version of the scheduling problem was introduced by Nisan and
Ronen [23]. In this paper!, we consider the mechanism design version of the fractional
variant of this problem. We give lower bounds for any fractional truthful mechanism, and
consequently, our lower bounds also hold for any (randomized) mechanism for the integral
case. In the positive direction, we propose a truthful mechanism that achieves approximation
3/2 for 2 machines, matching the lower bound. This is the first new tight bound on the
approximation ratio of this problem, after the tight bound of 2, for 2 machines, obtained in
[23]. For n machines, our mechanism achieves an approximation ratio of 1 + 251

Motivated by the fact that all the known deterministic and randomized mechanisms for
the problem, assign each task independently from the others, we focus on an interesting
subclass of allocation algorithms, the task-independent algorithms. We give a lower bound
of 1+ ”51, that holds for every (not only monotone) allocation algorithm that takes in-
dependent decisions. Under this consideration, our truthful independent mechanism is the
best that we can hope from this family of algorithms.

1 Introduction

Mechanism design is an important branch of Microeconomics and in particular of Game Theory.
The objective of a mechanism designer is to implement a goal, e.g., to sell an object to a set
of potential buyers. The problem derives from the fact that the designer may not be informed
about some parameters of the input. These values are controlled by selfish agents that may have
incentive to misinform the designer, if this can serve their atomic interests. The mechanism
design approach concerns the construction of a game, so that the outcome (equilibrium) of the
game is the goal of the designer.

Task scheduling is one of the most important and well-studied problems in Computer Science,
as it often arises, in numerous forms, as a subproblem in almost every subfield of Computer
Science. One of its most classical and general variants is the scheduling on unrelated machines.
In this setting, there are n machines? and m tasks, and the processing time needed by machine
i to perform task j is determined by the ¢;; entry of an n x m matrix ¢. A common objective
is to assign the tasks to the machines in such a way, that the maximum load of the machines
(i.e., the makespan) is minimized.
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Nisan and Ronen [23] initiated the study of the mechanism design version of scheduling
on unrelated machines. In this form of the problem, the processing times that a machine ¢
needs in order to execute the tasks (vector ¢;), are private values that are known only to the
corresponding machine. The machines are controlled by selfish agents that aim at satisfying
their own interests, and in the particular case they are unwilling to perform any task. In order
to motivate them to reveal their actual values, the classical approach adopted by mechanism
design is to introduce side payments, i.e., to hire the machines. A mechanism for this problem
consists of an allocation algorithm and a payment scheme. We are interested in bounding the
approximation ratio of the mechanism’s allocation algorithm.

In the classical version of the problem, each task must be assigned to exactly one machine.
The LP-relaxation of the problem, also known as fractional scheduling, concerns the version
where instead of being assigned to a single machine, each task can be split among the machines.
Fractional variations of combinatorial problems have been studied extensively in network opti-
mization, e.g., routing splittable traffic or flow problems.

The fractional scheduling problem can be formulated as a linear program and hence it can
be solved in polynomial time. LP-relaxation turns out to be a useful tool in the design of
approximation algorithms (both deterministic and randomized)®. Furthermore, it turned out
to be a powerful technique to provide randomized truthful mechanisms (see e.g. [17, 3, 18]). It
is natural to ask how powerful LP-relaxation is in the mechanism design framework.

In this paper we consider the mechanism design version of the fractional scheduling on
unrelated machines. An interesting fact is that while the offline problem is polynomially solvable,
it turns out that in the mechanism design version of the problem it cannot be approximated
within a constant factor, even by non-polynomial mechanisms (see Section 3). This means,
that the additional properties that the allocation of a mechanism needs to satisfy in contrast
to a simple algorithm (cf. Section 2), do not allow us to achieve an exact solution, even in
non-polynomial time. Lower bounding fractional mechanisms is a nice approach to lower bound
randomized (and deterministic) mechanisms of the integral case, as splitting a job is clearly a
more radical solution than randomly assigning it.

Task-Independence We are especially interested in a family of mechanisms that we call
task-independent. A task-independent algorithm is any algorithm that in order to allocate task
J, only considers the processing times t;;, that concern the particular task. Such a consideration
is motivated by the fact that (to the best of our knowledge) all the known positive results for
this problem (e.g., see the mechanisms in [20, 23]), and in addition the mechanism that we
propose in this paper, belong to this family of mechanisms. The question that we address here
is: how far can we go with task-independent algorithms?

1.1 Related Work

Scheduling on unrelated machines is a classical NP-hard problem. Lenstra, Shmoys and Tar-
dos [19] gave a 2-approximation polynomial time algorithm, while they also proved that the
problem cannot be approximated (in polynomial time) within a factor less than 3/2. The mech-
anism design version of the problem originates in the seminal work of Nisan and Ronen [23].
They gave an n-approximation truthful mechanism and a lower bound of 2, while they conjec-
tured the actual bound to be n. Christodoulou, Koutsoupias and Vidali [10] improved the lower
bound to 14 /2. Narrowing the gap between the lower and the upper bound still remains a big
open question. Lavi and Swamy [18] studied the case where for every task there are two possible
running times for every machine. They came up with a 2-approximation truthful mechanism,
while they showed a lower bound of 1.14.

3In fact, it has been used in order to obtain the 2-approximation algorithm in [19].



Randomization usually reduces the approximation ratio and that is also the case for this
problem. Nisan and Ronen [23] proposed a randomized mechanism for 2 machines with approxi-
mation ratio 7/4. Mu’alem and Schapira [20] generalized this to a %n-approximation randomized
truthful mechanism for n machines. In the same work, they also gave a lower bound of 2 —1/n
for randomized mechanisms. Notice that all the known lower bounds for this problem (both
deterministic and randomized) follow due to the infrastructure of truthful mechanisms, and do
not reside in any computational assumption; consequently they hold even for non polynomial
time mechanisms.

From the mechanism design point of view, scheduling on related machines, was first studied
by Archer and Tardos [4]. In this variant of the problem, the private parameter for each
machine, is a single value (its speed). Archer and Tardos [4] characterized the class of truthful
mechanisms for this setting, in terms of a monotonicity condition of the mechanism’s allocation
algorithm. A similar characterization for one-parameter mechanism design problems (single
item auction) can also be found in Myerson [21]. For this problem, it turns out that the optimal
allocation algorithm can be modified to be a truthful mechanism. Archer and Tardos [4] gave a
randomized truthful 3-approximation algorithm, which was later improved to a 2-approximation
by Archer [2]. Andelman, Azar and Sorani [1] gave the first deterministic polynomial mechanism
for the problem, with an approximation ratio of 5. Kovacs [14] improved this by giving a 3-
approximation deterministic truthful mechanism, while finally the ratio was reduced to 2.8 [15].

In the field of Combinatorial Auctions, a wide variety of combinatorial optimization problems
has been considered from the mechanism design point of view (see for example [3, 6, 8, 11, 5, 12]
and references within). In this context, Saks and Yu [24] characterized the class of truthful
mechanisms for combinatorial auctions with convex valuations, generalizing results of [7, 13, 16].

1.2 Our results

In this paper, we consider the mechanism design version of fractional scheduling on unrelated
machines. We give a 2 — 1/n lower bound on the approximation ratio that can be achieved
by any truthful mechanism. This result shows that even in the case of such a problem, for
which the offline version can be exactly solved in polynomial time, its mechanism design analog
may turn out to be impossible to approximate, even by non-polynomial mechanisms. Notice
that giving a lower bound for fractional mechanisms is another way to obtain lower bounds for
randomized mechanisms for the integral case. Consequently, our 2 — 1/n lower bound extends
the lower bound in [20] to the class of fractional mechanisms. Note that a fractional mechanism
is more powerful than a randomized mechanism for the integral case, since it has the flexibility
to split a task among many machines, while a randomized mechanism, finally, has to assign the
whole task to a machine, and this affects its approximation ratio.

In the positive direction, we give a truthful mechanism with approximation ratio 3/2 for
2 machines, which matches our lower bound. This is the first new tight bound that we have
for any variant of the problem, after the tight bound of 2 in the integral case, obtained for 2
machines in the original paper of Nisan and Ronen [22]. The generalization of our mechanism
for n machines gives us an approximation ratio of 1 + "Tfl

Next we turn our attention to a family of mechanisms that we call task-independent. This
family consists of mechanisms, where the decision for the assignment of a task, depends only
on the processing times that concern the particular task (time column that corresponds to
the task). Considering task-independence is motivated by the fact that all known ’reasonable’
deterministic and randomized mechanisms for this problem are task-independent. Furthermore,
this sort of independence has attractive properties: easy to design by applying methods for one-
parameter auctions, fits well with on-line settings, where tasks may appear one-by-one. It is
natural to ask if there is room for improvement on the approximation ratio by use of such
mechanisms. We extend this question for the class of task-independent algorithms that need
not satisfy the additional properties imposed by truthfulness. We give a lower bound of 1+ "T_l



on the approximation ratio of any algorithm that belongs to this class. Our mechanism is also
task-independent, and hence is optimal over this family of algorithms.

2 Problem definition

In this section we fix the notation that we will use throughout the paper, furthermore we give
some preliminary definitions and cite relevant results.

There are n machines and m tasks. Each machine i € [n] needs ¢;; units of time to perform
task j € [m]. We denote by t; the row vector corresponding to machine i, and by ¢/ the column
vector of the running times of task j. We assume that each machine ¢ € [n] is controlled by
a selfish agent that is unwilling to perform any operation, and vector t; is private information
known only to her. The vector t; is also called the type of agent 1.

Any mechanism defines for each player i a set A; of available strategies, the player (agent)
can choose from. We will consider direct revelation mechanisms, i.e., A; = T; for all 7, meaning
that the players strategies are to simply report their types to the mechanism. In general, T;
consists of all possible vectors b; € R, that is, a player may report a false vector b; # t;, if this
serves his interests.

A mechanism M = (z,p) consists of two parts:

An allocation algorithm: The allocation algorithm z, depends on the players’ bids b =
(b1,...,by), with 0 < z;; < 1 denoting the fraction of task j that is assigned to the
machine 7. In the unsplittable case, these variables take only integral values z;; = {0, 1}.
Every task must be completely assigned to the machines’ set, so Eie[n] zi; =1, Vje€[m]

A payment scheme: The payment scheme p = (p1,...,p,), also depends on the bid values b.
The functions py, ..., p, stand for the payments that the mechanism hands to each agent.

The wutility u; of a player ¢ is the payment that he gets minus the actual time that he needs
in order to execute the set of tasks assigned to her, u;(b) = pi(b) — >_ ¢ ij®i;(b).

We are interested in truthful mechanisms. A mechanism is truthful, if for every player,
reporting his true type is a dominant strategy. Formally,

ui(ti,b_i) > ui(t;,b_i), Vi € [n],t; eTy,b_; €T,

where T__; denotes the possible types of all players disregarding i.

We remark here, that once we adopt the solution concept of dominant strategies, focusing
on direct revelation and in particular on truthful mechanisms is not at all restrictive, due to the
Revelation Principle. Roughly, the Revelation Principle states that any problem that can be
implemented by a mechanism with dominant strategies, can also be implemented by a truthful
mechanism (cf. [23]).

The objective function that we consider in order to evaluate the performance of a mecha-
nism’s allocation algorithm, is the maximum load of a machine (makespan). The makespan of
the allocation algorithm z with respect to a given input ¢t is

Mech(t) L ax tijxij(t).
i€ln]
j€[m]

Since we aim at minimizing the makespan, the optimum is Opt(t) = ming max;e(y) 3 ;) tij%ij-
We are interested in the approximation ratio of the mechanism’s allocation algorithm. A
mechanism M is c-approximate, if the allocation algorithm is c-approximate, that is, if ¢ >
Mech(t) Ve T

though our mechanism is polynomially computable, we do not aim at minimizing the
running time of the algorithm; we are looking for mechanisms with low approximation ratio.
Our lower bounds also don’t make use of any computational assumptions.




A useful characterization of truthful mechanisms in terms of the following monotonicity
condition, helps us to get rid of the payments and focus on the properties of the allocation
algorithm.

Definition 1. An allocation algorithm is called monotone® if it satisfies the following property:
for every two sets of tasks ¢ and ¢ which differ only on machine i (i.e., on the i-the row) the
associated allocations z and ' satisfy

(2 — ) - (i — 15

7

) <0,
where - denotes the dot product of the vectors, that is, >, (i — 2};)(ti; — t};) < 0.

The following theorem states that every truthful mechanism has to satisfy the monotonicity
condition. It was used by Nisan and Ronen [23] in order to obtain their lower bounds.

Theorem 1. FEvery truthful mechanism is monotone.

Saks and Yu [24] proved that in the combinatorial auctions setting with convex valuations,
monotonicity is also a sufficient condition (i.e., there exist payments that can make a monotone
algorithm into a truthful mechanism). For the one-parameter case, that is when every agent has
a single value to declare (e.g., the speed of her machine), Myerson [21] (for auction setting) and
Archer and Tardos [4] (for scheduling setting), showed that the monotonicity of the (allocation)
algorithm is a necessary and sufficient condition for the existence of a truthful payment scheme.
In this case they also provide an explicit formula for the payments. In their theorem cited
below, the notion of a decreasing output function corresponds to a monotone algorithm in the
one-parameter setting.

Theorem 2. [21, 4] The output function admits a truthful payment scheme if and only if it is
decreasing. In this case the mechanism is truthful if and only if the payments p;(b;,b_;) are of
the form

b;
hl(b_z) + bZ.I‘Z(bZ, b_i) — / xi(u, b_i) du
0

where the h; are arbitrary functions.

3 Lower bound for truthful mechanisms

Here we will give a lower bound on the approximation ratio of any fractional truthful mechanism.

Theorem 3. There is no deterministic truthful mechanism that can achieve an approximation
ratio better than 2 — %, where n is the number of the machines.

Proof. Let t be the actual time matrix of the players as below

0, j=1
tij = 1, 7=n+1
A, otherwise

and x = z(t) be the corresponding allocation that a truthful mechanism M = (x,p) gives with
respect to t. For significantly large values of A, player i gets substantially the whole portion of
task ¢, otherwise the approximation ratio is high, e.g., for A = %, every player ¢ should get a
portion greater than 1 — (n — 1)J, otherwise the approximation ratio is at least 2.

Clearly, there is a player k € [n], with zg, 1 > % Now let’s consider how the allocation
algorithm of the mechanism behaves if the following time matrix is given as input

4Also known as weakly monotone.



=1 t=kj=1
th=¢ 1—¢ i=kj=n+1
tij, otherwise
The following claim states that due to monotonicity, the mechanism cannot assign to player k
a substantially smaller portion of the n + 15 task than %

— €.

Claim 1. If 2,41 > %, then for the allocation 2’ = x(t) on input ¢’ it holds that z},,  , > %

Proof. Due to the monotonicity condition (Theorem 1) we have that for every player i € [n], it
holds that

Z (tij — tgj)(ffij - x;y) <0

j€lm]
and by applying this to the k-th player we get

1

(0= ——)(@rk = @) + (1= 1+ ) (@hni1 = Thpyr) <0,

from which we get

/
, T — Thi 1 46
> Tkl TRE > Z
Thn+1 = Thnt+l T cn—1) ~ Thn+1 - Zn e
and for § = €? we finally obtain
, 1
Thnt1 2 -~ €
O
On the other hand, an optimal allocation z* for ¢’ is
1, j=1
. 0, 1=k,j=n+1
TiT) L, i kj=nt1
0, otherwise
providing optimal makespan ﬁ, while the mechanism gives player k a total load of at least
1 1 1 1 n+1
1—(n—-1)0 + 1 =- l—€¢)>——-+—-0- .
( (n ))n—l (n 6>( 2 n—1 n €< n )
. . . . . . 1
For arbitrary small ¢, this finally gives an approximation ratio of at least 2 — . U

4 The truthful mechanism

We describe a truthful mechanism, called SQUARE, for the fractional scheduling problem, with
approximation ratio 1 + ”T_l On two machines this ratio becomes 3/2, so in this case SQUARE
has the best possible worst case ratio w.r.t. truthful mechanisms. Furthermore, in Section 5 we
will show that for arbitrary number of machines, our mechanism is optimal among the so called
task-independent algorithms.

Next, we define the mechanism SQUARE= (a:Sq, qu)5. Recall that b;; is the reported value
for ¢;;, the actual execution time of task j on machine 7.

°In most of the section we will omit the superscripts °9.



Definition 2 (The mechanism SQUARE= (257, p57)).

Allocation algorithm: Let ' = (byj,ba;,...,bn;)T be the jth column-vector of the input
matrix. If ' has at least one zero coordinate, then SQUARE distributes the jth task
among machines having zero execution time arbitrarily. If b;; # 0 (i € [n]), then the
fraction of the jth task allocated to machine i is

Hk;éi sz
>l Hk;él b%j

Payment scheme: Let the constants ¢;; be defined as
Hk;éi bk

Cij = 7
v/ 2ot Loz i O%

then the payments p? = (p1,...,py) to the agents are

= czzj s bij
pi(b) = Z bij : m + Ci5 - E — ¢;; arctan — .

229(b) = zy5(b) = (1)

ij

ij T Cij Cij

The algorithm 2°? of SQUARE allocates the tasks individually (independently), and so that
the assigned fractions of a task are inversely proportional to the squares of (declared) execution
times w.r.t. each machine. For instance, for two machines (1) boils down to

b b

TR bg’ TR +b
J

For arbitrary n it is obvious that 0 < z;; < 1, and Z?:l x;; = 1. It is easy to see that SQUARE
is monotone: Let the input matrix b be changed only on the ith row, that is, for any fixed task
J, just the entry b;; may change. Assume first that in the column-vector b all execution times
are nonzero. Observe that the variable b;; appears only in the denominator of the expression

(1), namely as b7;, having a positive coefficient. Thus, x;; does not increase when b;; increases,

ij?
and vice versa. It is easy to see that the same holds if in &’ there are zero entries other than b;;,
and similarly, if b;; was, or just became the only zero entry. Thus, we obtained that for every
single one-parameter problem &/, the assignment is monotone, and this, in turn, implies weak
monotonicity (see Definition 1) for 259,

Now consider p%?. For two machines, the constant ci; is simply the bid of the other machine
for this job, that is, ¢1; = bgj and cp; = byj. For more machines, ¢;; would be the "bid’ of a
single other machine, if we replaced the machines [n]\{i} with one machine.

Let us fix a machine . The payment p;(b) is simply defined to be the sum of the payments
that agent ¢ would get for performing each (fractional) task independently, as determined for
truthful mechanisms for one-parameter agents by Theorem 2:

b;
pi(bia b,Z) = hl(bfl) + bll‘l(bl, b,Z) - / l‘i(u, b,Z) du
0

Here the h;(b_;) are arbitrary constants. If we want that the so called voluntary participation
[4] of the players is ensured (i.e., it is worth taking part in the game), then h; can be chosen to
be by = [y xi(u,b_;) du, so that eventually we get

o0
Pi(bi, b_;) = by (bs, b_;) +/ xi(u,b_;) du, (2)
b;

7



for the one-parameter case. We show that applying this formula for each task individually, leads
to the payments specified by Definition 2. Assume now that task j is fixed. For this task, the
reported execution time b; becomes b;;, whereas the assigned fraction of work x;, becomes x;;.
Now it is straightforward to check that for task j the formula (2) yields

o
pij(b) = bijzi +/ ij(u) du
ij
2 0o 2
cs. cs.
S L +/ _ Y g
372 2 2 1 2
bij + ¢ by WS+ G
c2. w 1°
7
= by - 27]2 + [cw arctan —]
2
cs. T bz
= by 4 — — ¢ arctan —2
J 72 2 i i

Theorem 4. The mechanism SQUARE is truthful.

Proof. To put it short, the theorem follows from the fact that SQUARE is the sum of m indepen-
dent truthful mechanisms for the one-parameter problem. However, for the sake of completeness
we provide an elementary proof:
We need to show that for any machine ¢, true time vector ¢; and bid vectors of the other
machines b_;, it holds that
ui(ti, b,Z) > ul(bl, b,Z)

Substituting the definition of utility u;, and then considering the payments for each job sepa-
rately, now our goal is to prove

tub Z t1]$z] tzab >pz bl7b Z tz]xm bnb )
[m] j€[m]

D itisbos) = tigasg(tibi)) = > (pig(biyboi) — tijwij(bi, b))
J€[m] J€[m]

We claim that the inequality holds for every task j € [m], that is,
Pij(ti, i) — tijwij(ti, b_i) > pij(bi, bi) — tijwij(bi, b_s).

Assume the contrary, i.e., that there exist 4, j, ¢;, and b_; so that

Dij (tza b_ ) ]xm (tza b—z) < ng(bm b—z) - jxij(biv b—z)

Plugging in the formulae for the payments p;; and the assigned work x;;,

2 T t; c? 2 T b; c?
t Y +Cij’§_cij arctan —~ ) —tii 5o Gij < bl] ﬁ‘i‘cz] B —¢;j arctan — i —tij %

/ARG ) C w2 20
tij+cij Cij t —i—c Cij b + ¢

which reduces to
arctan —~ — arctan —~ < (bs; — tij) - 52—
Cij Cij bij + ¢

Suppose that b;; > t;;. Applying the Mean-Value theorem, we obtain that for some #;; < 7 < b;},



_ i
- 2 2
y—n (bij — tij) bi; + ¢

b;; tii
! arctan =L — arctan =
y CZ] C’Lj
arctan —
Cij
And this solves to

1 1 Cij
n? e < b2 2
= +1 G i T Cij
ij

1 < 1
2, 2 2 2
N+ ¢ bij +ci;

a contradiction, since 7 < b;;. (Note that, actually our mechanism is strongly truthful, since
any bid b # t leads to strictly less utility, than truth telling.)
If b;; < t;5, then we obtain ﬁ > which contradicts b;; < n < t;;. O

2 2
b3 tei;

4.1 Approximation ratio

Let Squ(t) be the makespan of the schedule produced by SQUARE on input ¢, and Opt(t) denote
the optimum makespan. In what follows, we show that Squ(t)/Opt(t) < 1+ 252 for any matrix
t. The next lemma will largely simplify the upper-bound proof:

Lemma 1. If there exists an input instance t, such that Squ(t)/Opt(t) = «, then there also
exists an instance t*, for which Squ(t*)/Opt(t*) = a, moreover there is an optimal allocation
of t* that does not split any job.

Proof. Suppose that ¢ is an input matrix and there is a task (i.e., column-vector) t/ = 7 =
(11, 79,...,72)" in t that is distributed by some optimal allocation OPT according to v =
(v1,v,...,vn)" where v; < 1 Vi, and Yo vi = 1. We can assume that 7; > 0 for every
machine 7, otherwise it is trivial to assign the job to only one machine in an optimal allocation.
Now we construct the new instance t*, by introducing n new tasks in place of task 7, namely
tasks corresponding to the column-vectors vy -7, vo -7, ... ,Up - T.

We claim that Opt(t) = Opt(t*), and this optimum can be obtained without splitting the
new jobs. Notice first, that it yields the original optimum makespan Opt(t), if we allocate the
first task completely to the first machine, the second one completely to the second macine, and
so on. Indeed, the execution times on the machines due to the new jobs are then (v1 - 71, vy -
T2y .. yUn-Tn)L, which is the same as the execution times due to job 7 in the allocation OPT.

On the other hand, suppose that splitting the new jobs according to the distributions

11 12 €in

§21 §22 Eon
: ’ : ’ ’ : ’ (3)

§n1 £n2 gnn
yields a better makespan. However, in this case splitting 7 in instance ¢ according to the
distribution (30 1 &1sVs, Donrq EosVss -y D onry Enstis)T would yield a lower makespan as well.

Observe that this distribution is valid, since
n n n n n
DD Sksvs =D vsr (D Gke) =) v 1= L
k=1 s=1 s=1 k=1 s=1

Moreover, it would result in the same execution times as implied by the vectors of (3) for the
set of new jobs in t*.



Finally, a straightforward calculation shows that Squ(t) = Squ(t*) also holds. Given the
input t*, let us consider the fraction of the sth new job on machine ¢ as determined by the
formula (1) for 9. We get

Hk;;éi(VSTk‘)Q _ Hk;éi 7'13
2l Hz¢k(VsTk)2 i [Ttk i

Therefore, the execution time of this (fractional) task on machine i is

Hk;éi Tl?
>l Hl;«ék 713

and the execution times of all new tasks on this machine total to
2
zn: Hk;éi Tk v Hk;éz Tk; o Z y Hk;éz Tk 1
7 1T o S Z 3 S — —™n 171 9 .
S >iet Hl;ék Ti El 1 Hl;ék i —1 Zz 1 Hl;ék Tk

This is the same as the running time of the fraction of task 7 on machine 7 given the original
input ¢. U

* VsTy;

Theorem 5. For the approximation ratio of SQUARE, ‘gzﬁgt)) < 14 2L holds, where n denotes
the number of machines, and t is an arbitrary set of input tasks.

Proof. Consider the input ¢. Due to the previous lemma, we can assume that the (indices of)
tasks are partitioned into the sets Ji, Jo, ..., Jn, so that there is an optimal allocation OpPT
where job ¢/ is allocated completely to machine i, if and only if j € J;. We can also assume
that ¢;; > 0 for all 4 and j. Otherwise we would have a job that adds zero execution time to the
makespan in both the allocation of SQUARE, and of OPT, and removing this job from the input
would not affect the approximation ratio. For the optimum makespan it holds that

Opt(t) max Z tij. (4)

For the running time of an arbitrary machine ¢ in SQUARE, we have

Squz Z Z sz] 7,]7

r=1jeJ,

where the z;;(t) are defined by (1). We decompose the above expression as follows:

Squz Z Zijtij + Z Z Zijtsj.

Jj€J; r#i j€Jy

We can upper bound the first sum using (4), and the fact that x;; <1:

Z xijtij S Z 1- tij S Opt(t).

JjeJ; JjE€J;

Next we upper bound every sum of the form ZjeJr xijti;  (r # 1), by % - Opt(t). Since there
are n — 1 such sums, this will prove that

1 -1
Squi(t) < Opt(t) + (n—1) - 3 Opt(t) = (1+ nT) - Opt(t).
Since ¢ was an arbitrary machine, eventually this implies

Squ(t) = max Squ;(t) < (1 + nT—l) - Opt(t).

1€[n]

10



The bound Y., xi;tij < 3 - Opt(t) can be proven as follows:

Jje€Jr

2
Sty = Y ety

n 2 ()
i i >t e b5

2
tijtrg [l ir Uy ;
= )~ Tt
= 2 eaty

- Z tijtTj “lrj
= j
tzzj + t?«j + D iti t2t? /tle

jedr 1Ty
= 2 42
icr tij + trj
1
< D gt (5)
VISDLS
1
= 32t
JjEJr
1
< —-Opt(t).
2
The inequality (5) follows from af‘—fﬁ? < %, which holds for any two positive real numbers.
The last inequality is implied by (4). O

Corollary 1. For two machines the truthful mechanism SQUARE has approzimation ratio 3/2,
which is the best worst case ratio we can expect from any truthful mechanism for the fractional
scheduling problem.

5 Lower bound for independent algorithms

In this section we prove a lower bound of 1 + ”Tfl for the worst case ratio of independent
fractional algorithms. An algorithm is independent, if it allocates the tasks independently of
each-other, or formally:

Definition 3. An allocation algorithm x is called task-independent, or simply independent,
if the following holds: If ¢t and ¢ are two n X m input matrices, such that for the jth task
tij = t;; (Vi € [n]), then for this task it also holds that x;; = z7; (Vi € [n]).

It is remarkable, that the currently known best mechanisms (in fact, any 'reasonable’ mech-
anism we know of) are all independent, in the integral, the randomized, and the fractional case.
It is not difficult to come up with independent (suboptimal) algorithms, which are also weakly
monotone. However it seems to be an intriguing question, whether there exist non-inependent,
and still monotone algorithms having better approximation ratio than the best independent
ones. We note that in the integral case it is easy to construct an instance with n machines and
n? tasks, that proves a lower bound of n (i.e., tight bound) for independent algorithms.

Theorem 6. If x is an independent fractional allocation algorithm for the unrelated machines
problem, then it has approrimation ratio of at least 1 + ”Tfl, where n denotes the number of
machines.

Proof. In order to obtain the lower bound, consider the following input matrix with n > 2
machines and m = 1 + (g) tasks. The first task has execution time 0 on every machine;
furthermore, for all (Z) possible pairs of machines (i1,72) there is a task j with ¢;,; = t;,; = 1
and tij = A for ¢ g {’il,ig} :

11



0 1 1 1 A A
0o 1 A A 1 A
0 A 1 A 1 A
t=1 . .
o A A --- A A 1
0o A A --- 1 A 1

Obviously, by setting A large enough, we can make it sure — like in the proof of Theorem 3
— that the corresponding share of a player of a certain task is arbitrarily small, otherwise the
approximation ratio gets too large. That is, we can assume that the bulk of any job is allocated
to the machines having execution time 1 for this job.

Let us consider an arbitrary independent algorithm z. Observe that no matter how x allo-
cates the above tasks, the total running time of all the jobs cannot be less than (g) Thus, there
exists a machine, say the first one, with running time at least (Z) /n = ”T_l Now we modify the
instance t to t’ : we keep the original execution times of tasks that had running time 1 on the
first machine, and zero out all other ¢;;; furthermore, the very first task will now have execution

time 1 on the first machine, and A on other machines.

1 1 1 -+ 1 0 0 0
A 1 A - A 0 0 0
A A 1 -« A 0 0 0
t =
A A A -« A 0 0 0
A A A .- 1 0 0 0

As noted above, on instance t at least ”T_l — € running time on the first machine was due to

jobs that have execution time 1 on this machine, i.e., to the jobs 2, ..., n. Since z is independent,
on instance ¢’ the machine gets the same allocation over jobs 2,...,n, and also gets a (1 — ¢)
fraction of job 0, achieving a running time of at least 1 + (n — 1)/2 — 2¢, for any € > 0. On the
other hand, it is clear that the optimal allocation has makespan 1. O

Corollary 2. The mechanism SQUARE has optimal approximation ratio among all independent
mechanisms.

One can show that among all allocations where the distribution of task j is inversely pro-
portional to ( ?j, g‘j, e ,tgj) for some « > 0, the above optimal approximation ratio is obtained
if and only if a = 2.

6 Conclusion

In this paper, we discuss the application of mechanism design for the fractional scheduling
problem on unrelated machines. We give a lower bound on the approximation ratio of truthful
mechanisms, and we come up with a matching upper bound for 2 machines. The generalization
of our mechanism gives us an upper bound that is linear in the number of the machines.
After that, we focus on an interesting class of mechanisms with appealing properties, i.e. task-
independent mechanisms. We obtain a lower bound on the approximation ratio of any algorithm
in this class. This bound shows that our mechanism is optimal w.r.t. this class.

In all the versions of the scheduling on unrelated machines (i.e. fractional, randomized, in-
tegral), we have a constant lower bound and an upper bound that is linear in the number of the
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machines. Nisan and Ronen [23], conjectured that for the integral case, there is no determinis-
tic mechanism that can achieve a better approximation ratio. For special cases, we know that
fractional and randomized mechanisms can attain a better preformance. But is this asymptot-
ically true? Can we hope to construct sublinear fractional and randomized mechanisms, even
in exponential running time? Owur lower bound for task-independent algorithms, shows that
in order to improve the performance, we need to consider more sophisticated mechanisms that
exploit the input information in a more absolute way. Thus, we also need to come up with new
techniques that overcome the monotonicity constraints imposed by truthfulness.
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