
A lower bound for scheduling mechanisms∗

George Christodoulou† Elias Koutsoupias‡ Angelina Vidali §

Abstract

We study the mechanism design problem of scheduling tasks on n unrelated ma-
chines in which the machines are the players of the mechanism. The problem was
proposed and studied in the seminal paper of Nisan and Ronen on algorithmic mecha-
nism design, where it was shown that the approximation ratio of mechanisms is between
2 and n. We improve the lower bound to 1 +

√
2 for 3 or more machines.

1 Introduction

The study of mechanisms in game-theoretic settings is an important area at the intersection
of Computer Science and Game Theory. A particular type of mechanisms, for which
auctions is a typical example, is the mechanism design problem. Mechanisms are a special
class of algorithms and the study of their computational properties was initiated by Nisan
and Ronen in their seminal paper [23]. The focus of their paper was on the task allocation
problem on unrelated machines. They showed that no mechanism can have approximation
ratio better than 2. They conjectured that this lower bound is not tight. In this paper1,
we confirm this and improve the lower bound of the approximation ratio to 1 +

√
2.

The scheduling problem we consider here is one of the most fundamental scheduling
problems [13, 20]. There are n machines and m tasks and each task may have different
execution times on the machines. Let tij be execution time of task j on machine i. The
objective is to schedule the tasks on the machines to minimize the makespan, that is, the
time by which all tasks are finished. In the mechanism design setting, each machine i
knows its own times (the tij ’s), but the algorithm does not know them. We consider direct
revelation mechanisms which first ask the machines to declare their times tij and then
proceed to allocate the tasks according to a policy known to machines in advance. The
machines are selfish players who are lazy and don’t want to execute the tasks, so they
may lie. To deal with this problem, the mechanism pays the machines according to their
declarations. Thus the mechanism design problem consists of two algorithms: an allocation

∗Supported in part by IST-15964 (AEOLUS) and the Greek GSRT.
†Max-Planck-Institut für Informatik, Saarbrücken, Germany Email: gchristo@mpi-inf.mpg.de
‡Department of Informatics, University of Athens Email: elias@di.uoa.gr
§Department of Informatics, University of Athens Email: avidali@di.uoa.gr
1A preliminary version of this paper appeared in [9].

1



algorithm and a payment algorithm. They both take as input the declaration of times by
the machines and produce an allocation and a set of payments, one for each machine.

The objective of each machine is to minimize the load of tasks allocated to it, minus its
payment. On the other hand, the objective of the mechanism is to minimize the makespan
of the allocation. Notice that the mechanism does not care how much it pays the machines.
The payments are given to machines as an incentive to tell the truth. A mechanism is called
truthful when telling the truth is a dominant strategy for each player, independently of the
declarations of the other players. A classical result in mechanism design, the Revelation
Principle, states that for every mechanism, in which each player has a dominant strategy,
there is a truthful mechanism which achieves the same objective. The reason is that given a
non-truthful mechanism, we can transform it to a truthful one by promising the players that
the mechanism itself will simulate their (lying) strategy. With the Revelation Principle,
we are free to concentrate on truthful mechanisms (at least for the class of centralized
mechanisms).

There are two major classes of problems in algorithmic mechanism design. For every
problem of the first class, there exists an optimal truthful mechanism but the problem is
NP-hard (i.e., the problem of computing the optimal allocation is NP-hard). For this kind
of problems, we are interested in truthful polynomial-time approximation algorithms. Two
typical problems in this class are the problem of combinatorial auctions and the problem of
scheduling related machines. The second class contains problems that need not be NP-hard,
but for which no optimal mechanism is truthful. The quintessential problem in this class is
the scheduling unrelated machines problem. For this kind of problems, we can ask either
about the optimal approximation ratio of all algorithms, or the optimal approximation
ratio of polynomial-time algorithms. In this paper, we deal with the approximation ratio
of all algorithms, not necessarily polynomial-time ones. In other words, the lower bound of
1 +

√
2 is based on the restrictions imposed only by truthfulness, not by the computational

hardness of the problem.

2 Related Work

The scheduling problem on unrelated machines is one of the most fundamental scheduling
problems [13]. Lenstra, Shmoys, and Tardos [20] gave a 2-approximation polynomial-time
algorithm for the classical version of the problem. They also showed that the problem
cannot be approximated in polynomial time within a factor less than 3/2.

Here we study its mechanism design version and we improve the results of Nisan and
Ronen [23, 24], who introduced the problem and initiated the algorithmic theory of Mech-
anism Design. They gave a truthful n-approximate (polynomial-time) algorithm; they also
showed that no mechanism (polynomial-time or not) can achieve approximation ratio bet-
ter than 2. They conjectured that there is no deterministic mechanism with approximation
ratio less than n. On the other hand, they gave a randomized truthful mechanism for two

2



players, that achieves an approximation ratio of 7/4.
Recently, Mu’alem and Schapira [21] proved a lower bound of 2− 1

n
for any randomized

truthful mechanism for n machines and generalized the mechanism in [23] to give a 7n/8
upper bound. The lower bound result was generalized in [8], by showing that no fractional
truthful mechanism can achieve an approximation ratio better than 2 − 1/n. They also
showed that fractional algorithms that treat each task independently cannot do better than
(n + 1)/2 and this bound is tight.

Lavi and Swamy [19] aim at improving the upper bound instead of producing im-
proved lower bounds. They consider a special case of the same problem—namely when
the processing times have only two possible values low or high—and devise a deterministic
2-approximation truthful mechanism.

A simpler variant of the scheduling problem is the problem on related machines. In
this case, for each machine there is a single value (instead of a vector), its speed. Myerson
[22] gave a characterization of truthful algorithms for this kind of problems (one-parameter
problems), in terms of a monotonicity condition. Archer and Tardos [4] found a similar
characterization and using it obtained a variant of the optimal algorithm which is truthful
(albeit exponential-time). They also gave a polynomial-time randomized 3-approximation
mechanism, which was later improved to a 2-approximation, in [2]. This mechanism is
truthful in expectation. Andelman, Azar, and Sorani [1] gave a 5-approximation deter-
ministic truthful mechanism, in the same framework. Kovács improved the approximation
ratio to 3 [16] and to 2.8 [17].

Much more work has been done in the context of combinatorial auctions (see for example
[3, 6, 7, 10, 5, 11] and the references within).

Saks and Yu [25] proved that, for mechanism design problems with convex domains
which includes the scheduling problem, a simple necessary monotonicity property is also
sufficient for truthful mechanisms, generalizing results of [12, 18].

3 Problem definition

Definition 1 (The scheduling problem). The input to the scheduling problem is a non-
negative matrix t of n rows, one for each machine-player, and m columns, one for each
task. The entry tij (of the i-th row and j-th column) is the time it takes for machine i to
execute task j. Let ti denote the times for machine i, which is the vector of the i-th row.
The output is an allocation x = x(t), which partitions the tasks into the n machines and
a payment rule p(t).

Here we follow the usual notation of game theory literature where n denotes the num-
ber of players/machines. This is different from the standard notation of the scheduling
literature where n is the number of tasks and m the number of machines. We will also
use the standard game-theoretic convention a−i to denote what remains from a vector a
when we drop its i-th element; similarly, (a′i, a−i) denotes the vector that we get when we

3



replace ai by a′i.
We describe the partition of the allocation rule using indicator values xij ∈ {0, 1}:

xij = 1 iff task j is allocated to machine i. Of course, we should allocate each task to
exactly one machine, or more formally

∑m
j=1 xij = 1.

Let also pi(t) denote the payment which the mechanism pays to player i when the
players declare times t.

For truthful mechanisms, the payments do not depend directly on the declaration ti of
player i, but indirectly through the allocation xi = xi(t) and the times of the other players
as the following lemma [18] states. For completeness, we prove the lemma here.

Lemma 1 ([18]). The price pi(t) of a truthful mechanism does not depend on the declara-
tion ti of player i, but only on its allocation xi(t) and the declarations of the other players,
that is pi(t) = pi(xi(t), t−i).

Proof. Suppose towards a contradiction that there exist ti, t
′
i such that xi(ti, t−i) = xi(t

′
i, t−i),

but pi(ti, t−i) < pi(t
′
i, t−i). Then the player whose true processing times are ti has incentive

to declare falsely that its processing times are t′i in order to increase his utility, as we have
pi(ti, t−i) −

∑m
j=1 tixij < pi(t

′
i, t−i) −

∑m
j=1 tixij ; this contradicts the assumption that the

mechanism is truthful.

A mechanism consists of two algorithms, an allocation mechanism and a payment al-
gorithm. However, we are interested only in the approximation ratio of the allocation
algorithm. We can then ask which allocation algorithms admit some payment algorithm
so that the resulting mechanism is truthful. It turns out that there is a very simple and
appealing property that these allocation mechanisms satisfy, monotonicity. More precisely:

Definition 2 (Monotonicity Property). An allocation algorithm is called monotone if it
satisfies the following property: for every two sets of tasks t and t′ which differ only on
machine i (i.e., on the i-the row) the associated allocations x and x′ satisfy

(xi − x′
i) · (ti − t′i) ≤ 0,

where · denotes the dot product of the vectors, that is,
∑m

j=1(xij − x′
ij)(tij − t′ij) ≤ 0.

The property, which sometimes in the literature is called weak monotonicity, essentially
states that when we increase the times of the tasks for machine i, the allocation for the
machine can only become smaller. Notice that the monotonicity property involves only the
allocation of one player (the i-th player). The following proposition was shown in [24].

Proposition 1. Every truthful mechanism satisfies the Monotonicity Property.

Proof. When player i gets ti, he has no incentive to declare t′i when

tixi − pi(xi, t−i) ≤ tix
′
i − pi(x

′
i, t−i)

4



Similarly, when we inverse the roles of t and t′, we have

t′ix
′
i − pi(x

′
i, t

′
−i) ≤ t′ixi − pi(xi, t

′
−i)

Now if we add the above inequalities and take into account that the instances differ only
on the i-th player, that is, t−i = t′−i, we get the lemma.

The Monotonicity Property states that (xi − x′
i) · (ti − t′i) ≤ 0 is a necessary condition

for truthfulness. It turns out that it is also sufficient condition [25], but we will not use this
fact here. The implications are that we don’t have to consider at all the payment algorithm.
This transforms the problem from the realm of Game Theory to the realm of Algorithms.
To design a good mechanism, we can completely forget about mechanisms, payments,
truthfulness etc, and simply focus on the subclass of monotone allocation algorithms.

Monotonicity, which is not specific to the scheduling task problem but it has much
wider applicability [25], poses a new challenging framework for designing algorithms. In
the traditional theory of algorithms, the algorithm designer could concentrate on how to
solve every instance of the problem by itself. With monotone algorithms, this is no longer
the case. The solutions for one instance must be consistent with the solutions of the
remaining instances—they must satisfy the Monotonicity Property. Putting it in another
way, monotone algorithms are holistic algorithms: they must consider the whole space of
inputs together.

4 The tools for the proof

In our proof of the lower bound, we will exploit the Monotonicity Property of truthful
mechanisms. In this section, we present three important lemmas that follow from the
Monotonicity Property and will be the tools for our proof.

The first lemma will be used repeatedly and is due to Nisan and Ronen [24]. They have
used it to obtain their lower bounds in their original paper. It is a specific and direct way
to take advantage of the Monotonicity Property. It states that if a machine gets a set of
tasks when it declares ti, it will get exactly the same set of tasks if we lower the execution
time of the tasks allocated to the machine and increase the execution time of the remaining
tasks.

It is convenient to allow instances with times tij = ∞. When only finite times are
allowed, all the statements are still true; in this case ∞ will simply denote an appropriate
arbitrarily high value.

Lemma 2. a) Let t be a matrix of processing times and let x = x(t) be the allocation
produced by a truthful mechanism. Suppose that we change only the processing times of
machine i and in such a way that t′ij > tij when xij = 0, and t′ij < tij when xij = 1. The
mechanism does not change the allocation to machine i, i.e., xi(t

′) = xi(t). (However, it
may change the allocation of other machines).

5



b) We can strengthen the lemma for mechanisms of bounded approximation ratio when
all times ti′j of some task j are ∞ except of the value tij = 0. When we change the values
as in the first part of the lemma and we now set t′ij = 1 (or any other bounded value), the
mechanism again does not change the allocation to machine i.

Proof. By the Monotonicity Property, we have

m
∑

j=1

(tij − t′ij)(xij(t) − xij(t
′)) ≤ 0.

For the first property, observe that all terms of the sum are nonnegative (by the premises
of the lemma). The only way to satisfy the inequality is to have all terms equal to 0, that
is, xij(t) = xij(t

′).
The second property has very similar proof. Simply observe that task j can only

be processed by machine i for mechanisms of bounded approximation ratio. Therefore
xij(t) = xij(t

′) = 1. The remaining terms of the Monotonicity Property sum must be
nonnegative and the lemma follows.

To simplify the presentation, when we apply Lemma 2, we will increase or decrease
only some values of a machine, not all its values. The understanding will be that the rest
of the values increase or decrease appropriately by a tiny amount which we omit to keep
the expressions simple.

The second lemma is a useful 2-dimensional property of truthful mechanisms. Fix all
values of tasks t except for the values tij and tik. A truthful mechanism partitions the two
dimensional orthant of (tij , tik) ∈ R

2
+ into 4 regions

Rab = {(tij , tik) : the mechanism allocation has x1j(t) = a and x1k(t) = b}.

The following lemma says that the regions have a particular shape:

Lemma 3. Every region Rab is bounded by a convex polygon and is separated from region
Ra′b′ by the line

(a − a′)tij + (b − b′)tik = kab:a′b′ ,

where kab:a′b′ is constant (it may however depend on the other values of t except t1j and
t1k).

Proof. By the Monotonicity Property, for every (tij , tik) ∈ Rab and (t′ij, t
′
ik) ∈ Ra′b′ we must

have (a−a′)(tij−t′ij)+(b−b′)(tik−t′ik) ≤ 0. Equivalently we can write (a−a′)tij+(b−b′)tik ≤
(a − a′)t′ij + (b − b′)t′ik. Let now

kab:a′b′ = inf
(t′ij ,t′

ik
)∈Ra′b′

{(a − a′)t′ij + (b − b′)t′ik}

and the lemma follows.

6



tij

tik

R11 R01

R10 R00

tij

tik

R11 R01

R10 R00

Figure 1: The two possible ways to partition the positive orthant.

tij

tik

1

1

a

a

R11 R01

R10 R00

tij

tik

1

1

a

a

R11 R01

R10 R00

Figure 2: Lemma 4.

Figure 1 depicts the two possibilities of how the positive orthant is partitioned into the
four regions (the slope of the inclined parts is ±45%). Notice that the lemma does not
specify what happens exactly at the boundaries between regions, but this is inconsequential.
A useful property that we can extract from the above lemma, and which is going to play
an important role in the proof of our main result, is the following:

Lemma 4. Fix all values of m tasks except of the values tij and tik. Assume that a
truthful mechanism assigns both tasks to machine i when (tij , tik) = (1, 0) and when
(tij , tik) = (0, 1). Assume also that the mechanism assigns exactly one of the 2 tasks to
machine i when (tij, tik) = (a, a) for some a > 1. Then the mechanism assigns both tasks
to machine i when (tij , tik) = (1, 1).

The proof is a simple case analysis and it is essentially shown in Figure 2.

5 The proof of the main result

We will employ instances with 3 machines and 5 tasks. We will assume throughout that the
allocation algorithm does not allocate these values (otherwise the mechanism has arbitrarily
high approximation ratio).

7



The general idea of the proof is the following: We start with the set of tasks

t =





0 ∞ ∞ a a
∞ 0 ∞ a a
∞ ∞ 0 a a





where a > 1 is a parameter which will be fixed later. This set of tasks has enough
symmetries so that it essentially admits two distinct allocations (up to symmetry). For
each allocation, we increase or decrease some values appropriately. With the help of the
lemmas of the previous section, we show (in Lemma 6 below) that in order to keep the
approximation ratio low, the following set of tasks must have the allocation indicated by
the stars (in which the first machine gets both tasks 4 and 5):

t =





0∗ ∞ ∞ 1∗ 1∗

∞ 0∗ ∞ a a
∞ ∞ 0∗ a a



 .

This is sufficient to obtain the lower bound as we will see later.

Lemma 5. For the instance




0 ∞ ∞ 0 1
∞ 0 ∞ a a
∞ ∞ 0 a a





if the first machine does not get both tasks 4 and 5, then the approximation ratio of the
algorithm is at least 1 + a.

Proof. Suppose that the premises of the lemma hold. As a result, one of machines 2 and 3
will get one of tasks 4 and 5. Suppose without loss of generality that machine 2 gets one
of tasks 4 and 5. We raise the 0 of the second player and make it 1 and by Lemma 2 its
allocation does not change.

That is, if machine 2 gets task 5, we have





0∗ ∞ ∞ 0 1
∞ 0∗ ∞ a a∗

∞ ∞ 0∗ a a



 →





0∗ ∞ ∞ 0 1
∞ 1∗ ∞ a a∗

∞ ∞ 0∗ a a



 ,

whichever the allocation of the 4th task is (that’s what is meant by the absence of a star
in the 4th column). Similarly, if machine 2 gets task 4, we have





0∗ ∞ ∞ 0 1
∞ 0∗ ∞ a∗ a
∞ ∞ 0∗ a a



 →





0∗ ∞ ∞ 0 1
∞ 1∗ ∞ a∗ a
∞ ∞ 0∗ a a





8



whichever the allocation of the 5th task is. In either case the cost is at least 1 + a, while
the optimal cost is 1 and is achieved by the allocation





0∗ ∞ ∞ 0∗ 1∗

∞ 1∗ ∞ a a
∞ ∞ 0∗ a a



 .

By symmetry, the previous lemma holds also for the case when the processing times of
the first player is (0,∞,∞, 1, 0) instead of (0,∞,∞, 0, 1).

Lemma 6. If a truthful mechanism has approximation ratio less than 1 + a then the first
machine should get both tasks 4 and 5 of the matrix of processing times

t =





0 ∞ ∞ 1 1
∞ 0 ∞ a a
∞ ∞ 0 a a



 .

Proof. Consider the matrix of processing times

t =





0 ∞ ∞ a a
∞ 0 ∞ a a
∞ ∞ 0 a a



 .

Without loss of generality, the third machine gets none of the tasks 4 and 5. We
essentially have two cases.

Case 1: One of machines 1 and 2, suppose without loss of generaloty that this is
machine 1, gets both tasks 4 and 5.





0∗ ∞ ∞ a∗ a∗

∞ 0∗ ∞ a a
∞ ∞ 0∗ a a





Using Lemma 2, we can lower the values of t14 and t15 to 1 without changing the allocation.
So we have the indicated allocation for the instance





0∗ ∞ ∞ 1∗ 1∗

∞ 0∗ ∞ a a
∞ ∞ 0∗ a a



 .

Case 2: Tasks 4 and 5 are allocated to different machines. Without loss of generality,
machine 1 gets task 4 (as shown in the first of the three sets of tasks and allocations
below). Recall that in the previous lemma (Lemma 5) we showed that the middle matrix of
processing times below must have the allocation shown in order to keep the approximation

9



ratio lower than 1 + a. By symmetry, the same is true for the third matrix of processing
times below





0∗ ∞ ∞ a∗ a
∞ 0∗ ∞ a a∗

∞ ∞ 0∗ a a



 ,





0∗ ∞ ∞ 0∗ 1∗

∞ 0∗ ∞ a a
∞ ∞ 0∗ a a



 ,





0∗ ∞ ∞ 1∗ 0∗

∞ 0∗ ∞ a a
∞ ∞ 0∗ a a



 .

This is the point in our proof where we consider the geometry of the mechanism. We use
Lemma 4 for i = 1, j = 4, and k = 5. The lemma implies that the following set of tasks
have the indicated allocation





0∗ ∞ ∞ 1∗ 1∗

∞ 0∗ ∞ a a
∞ ∞ 0∗ a a



 ,

which proves the lemma.

We now have all the necessary ingredients to prove our main theorem.

Theorem 1. There is no deterministic mechanism for the scheduling problem with 3 or
more machines with approximation ratio less than 1 +

√
2.

Proof. We will prove that the approximation ratio of any truthful algorithm is at least
min{1 + a, 1 + 2/a}; for a =

√
2, we have 1 + a = 1 + 2/a and the approximation ratio is

at least min{1 + a, 1 + 2/a} = 1 +
√

2.
By Lemma 6, in order to have approximation ratio lower than 1 + a, the allocation of

the following matrix of processing times should be as indicated by the stars

t =





0∗ ∞ ∞ 1∗ 1∗

∞ 0∗ ∞ a a
∞ ∞ 0∗ a a



 .

We can now increase t11 to a. By Lemma 2, this does not change the allocation of the first
machine. But then for the matrix of processing times and the indicated allocation below





a∗ ∞ ∞ 1∗ 1∗

∞ 0∗ ∞ a a
∞ ∞ 0∗ a a





the cost is 2 + a, while the optimum cost is a. The approximation ratio is 1 + 2/a.
Consequently any truthful algorithm has approximation ratio at least min{1 + a, 1 + 2/a}.

Of course, if the number of machines is more than 3, the approximation ratio cannot
be lower (by setting, for example, all times of the additional machines to ∞).

10



6 Conclusions

Our result improves the existing lower bound of a fundamental problem in the area of
mechanisms. The improvement from 2 to 1+

√
2 may not be large if one takes into account

that the upper bound is still n, but the real importance of our result lies in the fact that it
is the only improvement on this important question since the original paper of Nisan and
Ronen.

The question is whether the approach of the paper can give better results. In our
opinion, it is possible to improve the lower bound to a better constant. But in order to close
the huge gap between 1 +

√
2 and n in a substantial way, we need to find more structural

properties of truthful mechanisms, or even better, to obtain a useful characterization. The
Monotonicity Property may define the class of truthful mechanisms but it is not a very
useful characterization. Our work, and especially Lemma 3, may be a starting point in this
direction.

References

[1] Nir Andelman, Yossi Azar, and Motti Sorani. Truthful approximation mechanisms
for scheduling selfish related machines. In 22nd Annual Symposium on Theoretical
Aspects of Computer Science (STACS), pages 69–82, 2005.

[2] Aaron Archer. Mechanisms for Discrete Optimization with Rational Agents. PhD
thesis, Cornell University, January 2004.

[3] Aaron Archer, Christos H. Papadimitriou, Kunal Talwar, and Éva Tardos. An approx-
imate truthful mechanism for combinatorial auctions with single parameter agents. In
Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 205–214, 2003.

[4] Aaron Archer and Éva Tardos. Truthful mechanisms for one-parameter agents. In
42nd Annual Symposium on Foundations of Computer Science (FOCS), pages 482–
491, 2001.

[5] Moshe Babaioff, Ron Lavi, and Elan Pavlov. Mechanism design for single-value
domains. In Proceedings, The Twentieth National Conference on Artificial Intelli-
gence and the Seventeenth Innovative Applications of Artificial Intelligence Conference
(AAAI), pages 241–247, 2005.

[6] Yair Bartal, Rica Gonen, and Noam Nisan. Incentive compatible multi unit com-
binatorial auctions. In Proceedings of the 9th Conference on Theoretical Aspects of
Rationality and Knowledge (TARK), pages 72–87, 2003.

11



[7] Patrick Briest, Piotr Krysta, and Berthold Vöcking. Approximation techniques for
utilitarian mechanism design. In Proceedings of the 37th Annual ACM Symposium on
Theory of Computing (STOC), pages 39–48, 2005.

[8] George Christodoulou, Elias Koutsoupias, and Annamária Kovács. Mechanism design
for fractional scheduling on unrelated machines. In ICALP, page (to appear), 2007.

[9] George Christodoulou, Elias Koutsoupias, and Angelina Vidali. A lower bound for
scheduling mechanisms. In Proceedings of the Eighteenth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pages 1163–1169, 2007.

[10] Shahar Dobzinski, Noam Nisan, and Michael Schapira. Approximation algorithms
for combinatorial auctions with complement-free bidders. In Proceedings of the 37th
Annual ACM Symposium on Theory of Computing (STOC), pages 610–618, 2005.

[11] Shahar Dobzinski, Noam Nisan, and Michael Schapira. Truthful randomized mecha-
nisms for combinatorial auctions. In Proceedings of the 38th Annual ACM Symposium
on Theory of Computing (STOC), pages 644–652, 2006.

[12] Hongwei Gui, Rudolf Müller, and Rakesh V. Vohra. Dominant strategy mechanisms
with multidimensional types. In Computing and Markets, 2005.

[13] D.S. Hochbaum. Approximation algorithms for NP-hard problems. PWS Publishing
Co. Boston, MA, USA, 1996.

[14] Ellis Horowitz and Sartaj Sahni. Exact and approximate algorithms for scheduling
nonidentical processors. J. ACM, 23(2):317–327, 1976.

[15] Roberts Kevin. The characterization of implementable choice rules. Aggregation and
Revelation of Preferences, pages 321–348, 1979.

[16] Annamária Kovács. Fast monotone 3-approximation algorithm for scheduling related
machines. In Algorithms - ESA 2005: 13th Annual European Symposium, pages 616–
627, 2005.

[17] Annamária Kovács. Fast Algorithms for Two Scheduling Problems. PhD thesis, Uni-
versität des Saarlandes, 2007.

[18] Ron Lavi, Ahuva Mu’alem, and Noam Nisan. Towards a characterization of truthful
combinatorial auctions. In 44th Symposium on Foundations of Computer Science
(FOCS), pages 574–583, 2003.

[19] Ron Lavi and Chaitanya Swamy. Truthful mechanism design for multi-dimensional
scheduling via cycle-monotonicity. In Proceedings 8th ACM Conference on Electronic
Commerce (EC), 2007.

12



[20] J.K. Lenstra, D.B. Shmoys, and É. Tardos. Approximation algorithms for scheduling
unrelated parallel machines. Mathematical Programming, 46(1):259–271, 1990.

[21] Ah’uva Mu’alem and Michael Schapira. Setting lower bounds on truthfulness. In
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1143–1152, 2007.

[22] Roger B. Myerson. Optimal auction design. Mathematics of Operations Research,
6(1):58–73, 1981.

[23] Noam Nisan and Amir Ronen. Algorithmic mechanism design (extended abstract).
In Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing
(STOC), pages 129–140, 1999.

[24] Noam Nisan and Amir Ronen. Algorithmic mechanism design. Games and Economic
Behavior, 35:166–196, 2001.

[25] Michael E. Saks and Lan Yu. Weak monotonicity suffices for truthfulness on convex
domains. In Proceedings 6th ACM Conference on Electronic Commerce (EC), pages
286–293, 2005.

13


