Competitive Implementation of Parallel
Programs

Xiaotie Deng*
Department of Computer Science
York University

North York, Ontario M3J 1P3
deng@cs.yorku.ca

Elias Koutsoupias'
Computer Science Department
University of California, Los Angeles

Los Angeles, CA 90095
elias@cs.ucla.edu

Philip MacKenzie!
Department of Mathematics and Computer Science
Boise State University
Boise, Idaho 83725
philmac@cs.idbsu.edu

Abstract

We apply the methodology of competitive analysis of algorithms
to the implementation of programs on parallel machines. We con-
sider the problem of finding the best on-line distributed scheduling
strategy that executes in parallel an unknown directed acyclic graph

*Partially supported by an NSERC grant.
tPartially supported by NSF grant CCR-9521606.
tPartially supported by TARP grant 003658480.

1

(dag) which represents the data dependency relation graph of a par-
allel program and which is revealed as execution proceeds. We study
the competitive ratio of some important classes of dags assuming a
fixed communication delay ratio 7 that captures the average inter-
processor communication measured in instruction cycles. We provide
competitive algorithms for divide-and-conquer dags, trees, and gen-
eral dags, when the number of processors depends on the size of the
input dag and when the number of processors is fixed. Our major
result is a lower bound Q(7/log) of the competitive ratio for trees;
it shows that it is impossible to design compilers that produce almost
optimal execution code for all parallel programs. This fundamental
result holds for almost any reasonable distributed memory parallel
computation model, including the LogP and BSP model.

Keywords: Parallel computation, competitive analysis, communication de-
lay, scheduling, compiler.

1 Introduction

The execution profile of a program can generally be represented as a directed
acyclic graph (dag): Nodes represent instructions, or sets of instructions, and
edges represent dependencies between individual nodes. An edge (u,v) de-
notes that the results of node u are required for the execution of node v.
Usually, the dag of a program is not known at the compile time, since it
depends on the input data and the runtime conditions. This, however, is
no problem at all for a uniprocessor system because nodes can be executed
as they become available. Any scheduling which would not intentionally
idle achieves the optimal completion time. Even for the system performance
metric of mean response time, the Round-Robin scheduling strategy guar-
antees a mean response time at most twice the optimum, without using any
information about the actual executed dag [9].

The situation becomes more complicated when we deal with parallel pro-
grams, since one of the intricacies of parallel computation is that the optimum
algorithm may depend critically on the profile of the parallel machine. Nev-
ertheless, we may classify parallel models into two major categories: models
with shared memory, and models with distributed memory. Our work focuses
on a simplified distributed memory model, the communication delay model
introduced in [11]. We must stress, however, that our main negative result

applies to most models with distributed memory.

1.1 Distributed Memory Models

In this paper, we assume the Papadimitriou-Yannakakis communication de-
lay model [10, 11] to study the implementation problem of parallel programs
on general purpose multicomputer systems. In this model, a universal param-
eter 7, the communication delay between processors measured in instruction
cycles, is used to abstract communication in parallel machines. A processor
can execute a node of the dag if every predecessor node has been executed
either by the same processor or by some other processor T + 1 or more time
units before. Putting it differently, there is a delay of 7 steps for the result
of a node to become available to other processors.

Other models of parallel computation assume a communication delay
and usually have more parameters for the communication cost. The BSP
model, proposed as a bridge between software and hardware[14], and the
LogP model, developed by Culler et al. [2] are two such models. These
models are not limited to parallel computing but they try to capture the lo-
cality properties of a machine, a factor that is also important in distributed
systems, especially for clusters of workstations. Similar trends for unify-
ing parallel and distributed computing are observed in parallel architecture
and parallel programming [2, 13]. Even for shared memory machines, there
is a factor similar to communication delay: It is the ratio of the cost for
accessing the shared memory over the cost for accessing private caches of
individual processors (a widely used technology to improve performance of
parallel computers.)

1.2 Competitive Analysis

It was shown in [11] that there exists a polynomial time algorithm that ap-
proximates the optimum execution time of any dag within a factor of two
when the number of available processors is unbounded. The approach of
[10] and [11] assumes that the computation dag is known before the algo-
rithm actually runs, essentially at compile time (the algorithm in [11] can
be made on-line, but only by using a very high number of processors [5]).
This assumption may not be realistic for all the parallel programs, since
conditional statements and loops are important parts of any programming
language. First, crucial parameters such as the actual shape of the dag and

the size of its nodes are found out by processors executing various parts
of the program on-line. Second, runtime parameters such as the number of
available processors during execution may not be known beforehand and may
change dynamically. Because of communication delays, each processor has
to make its own decision on how to proceed based on incomplete informa-
tion. Thus, the situation naturally falls into a currently very active field:
Competitive analysis of on-line algorithms. More specifically, competitive
analysis requires that the compiler outputs not just code, but a distributed
on-line algorithm for the execution of the program in hand, hopefully one
that minimizes the worst case ratio of the completion time of the strategy on
a given source program, to the completion time of the optimal execution of
the program (with complete information concerning runtime conditions and
execution paths).

The concept of competitive analysis has been introduced recently by
Sleator and Tarjan in [12] (see also [6, 8]). For the scheduling problem,
however, Graham [4] recognized almost thirty years ago that, without know-
ing job lengths, a scheduler can achieve twice the optimum. To formally
define the competitive ratio for our problem, we first introduce some no-
tation. In general, the on-line problems we consider here depend on three
parameters: a family of dags F, the number & of available processors and
the communication delay ratio 7. Without loss of generality, we assume that
the execution time of each individual node is exactly one time step, since a
node with integer execution time m can be represented by a path of m unit
jobs. Many values for the three parameters F, k, and 7 result in interesting
special cases. For example, when the family F contains only one element,
the input dag is essentially known to the algorithm; all problems studied in
[11] are of this kind.

Consider an on-line scheduling strategy S that executes a dag from a
given family F with k£ processors and communication delay ratio 7. For a
dag G € F, let us denote by Ts(G) the execution time of G by the scheduling
strategy S and by opt(G) the execution time of G by an optimal off-line
algorithm, which has complete information of the dag G. The on-line strategy
S is called c-competitive if there exist constants ¢ > 1 and d such that for
all G € F:

Ts(G) < c- opt(G) + d.

The competitive ratio of the strategy S is the infimum of all such ¢’s. The
constant d is used to factor out insignificant factors and initial conditions.

We are interested in determining the competitive ratio of the best on-line
strategy for a given set of parameters F, k and 7.

In this paper we focus our attention to two important cases of families of
graphs:

o The dag is known qualitatively: The family F depends on some fixed
dag G and contains exactly the dags that result if we replace each node
of G with a path of one or more nodes. In other words, the input
dag (@) is known qualitatively, but the execution times of its nodes are
unknown. This is a typical high level view of a parallel source program.
Some interesting families of dags are of this type: A set of independent
tasks with unknown execution time, Fast Fourier Transform (FFT)
dags, pyramids, etc.

e Only the nature of the dag is known: The family F consists of dags
that result from all possible executions of some fixed program. Some
interesting examples are the family of all dags, the family of all trees,
the family of binary trees, and the family of divide-and-conquer dags
(a tree connected to its mirror image).

1.3 An Impossibility Result on Near Optimal Com-
piler

Informally, the competitive ratio represents a performance parameter mea-
suring the closeness of a solution to the optimum. A competitive ratio of one
represents the best situation for efficient parallel compiler design, because
it would imply that there is a way to automatically generate parallel code
which fully utilizes the inherent parallelism of a program. Unfortunately, our
result(Theorem 7) shows that this is far from possible for the communica-
tion delay model [10, 11]: No scheduler can guarantee a competitive ratio for
divide-&-conquer trees better than Q(logr)'

We also extend this result to the LogP model for a lower bound of Q(ﬁ),
where L is the communication latency in the LogP model. Though one may
argue that L is a constant in the LogP model, it is significantly larger com-
pared to the access time of private cache memories of individual processors.
A similar result applies also to the BSP model. This provides strong evi-
dence for the following thesis: In any reasonable parallel computation model
with distributed memories, it is impossible for a compiler to produce parallel

code that runs optimally or near optimally (up to a constant factor) for every
program. Though our results rule out the existence of near optimal compiler
for general parallel programs, they do not inhibit positive results for special
important classes of parallel programs. Using Valiant’s approach of pipeline
routing, one can prove that all PRAM algorithms can be optimally executed,
at least in theory, when a slackness in the number of processors is introduced.
The same approach may be applied to parallel algorithms specially designed
for coarse grained parallel computers. Some recent results [7, 16] are very
promising for special classes of parallel algorithms.

Prior to our work, there has already been some work by Wu and Kung
in [15] which acknowledges the on-line nature of the parallel implementation
of algorithms, in a different model of parallel computation. They consider
dynamic parallel implementations of divide-and-conquer algorithms, where
the divide-and-conquer tree is discovered on-line, but they consider only the
specific class of execution dags that are balanced, in the sense that a linear
speed-up is possible for these dags.

1.4 Outline of Presentation

In Section 2, we discuss the case when the dag is known qualitatively. We
show that a variant of the algorithm in [11] can be implemented on-line
with a competitive ratio 2 when the number of processors is at least equal to
the maximum width of the dag. When the number of processors is constant
(independent of the size of the input dag), we give a 2-competitive algorithm
for the dag consisting of independent paths. We also present a 3-competitive
algorithm for merging trees, where the execution starts at the leaves and
progresses towards the root.

In Section 3, we consider some problems when only the nature of the dag
is known. Of particular interest is the family of full binary trees. For the
simple case of two processors we give an optimal algorithm with competitive
ratio 3/2. For the general case of fixed number of processors k > 7 we show
that the competitive ratio is at least Q(7/(log7 logk)); this makes a trivial
algorithm with competitive ratio O(7) almost optimal. This lower bound ap-
plies also to the case of divide-and-conquer dags. Divide-and-conquer dags
combine both cases of the problems we consider here: During the first ex-
panding phase only the nature of the dag is known (a binary tree), but during
the second merging phase the dag is known qualitatively (a known tree with
unknown execution time of each node). The lower bound for the expanding

phase dominates the lower bound of the merging phase, and the overall com-
petitive ratio is ©(7/(logTlogk)). For general trees we show a lower bound
on the competitive ratio of €2(7/log7). This lower bound is a general result
that applies to many models of parallel computation. The Papadimitriou-
Yannakakis model [11] assumes that each processor broadcasts the results
of its computations to all other processors. The lower bound of O(7/logT)
holds for much weaker models of communication. All that is needed is that
each processor can communicate the result of its computation of one node to
some other processor at each step.

2 The dag is known qualitatively.

In this section we assume that the dag is known qualitatively, that is, the
dag is known but the execution time of each node is unknown. Equivalently,
the family F of input dags consists of all dags that result if we replace each
node of a fixed dag G’ with a path of one or more nodes.

2.1 Large number of processors.

We first consider the case of a large number of processors. It is an easy
observation that with an unlimited number of processors there exists an on-
line algorithm with competitive ratio 1. The reason is that we can use the
unlimited number of processors to follow any possible execution scenario.
One of these scenarios will turn out to be identical to the optimal execution
and therefore the on-line execution time is equal to the optimal execution
time. However, this is not a satisfactory algorithm since it places a heavy
burden on the computational resources. We want to rule out such extreme
possibilities and therefore we concentrate on the case when the number of
processors is polynomially related to the size of the dag.

An important parameter of a dag G is its width W(G) which is the
maximum number of pairwise disconnected vertices. By Dilworth’s theorem
[3], the width of a dag G, is equal to the size of a mimimum chain cover,
that is, a minimum size set of chains that covers all nodes of G. Notice
that since the graph is known qualitatively, the chain cover number w(G)
can be computed at the compile time. The following on-line algorithm is
an adaptation of the approximation algorithm in [11]. It uses only w(G)
processors by making effective use of a chain cover of a dag G; in contrast,

the algorithm in [11] needs a processor for each node of G.

Algorithm A: Let w = w(G) be the maximum width of G and let Cj,
Cs,...,Cy be a chain cover of G. The objective of processor p; is to exe-
cute all nodes of C;. In order to achieve this, processor p; may have to either
compute some predecessors of the nodes of C;, or get their results from some
other processor after delay 7. Let us call a node u awvailable to processor
p; when all immediate predecessors of v have been executed either by p; or
by some other processor 7 time units before. The strategy of processor p;
is straightforward: It executes nodes of C; one by one according to their
order in the dag. When a node v of C; is not available for execution, pro-
cessor p; executes available predecessors of v in any reasonable order until
v becomes eventually available. An order is reasonable when the processor
doesn’t waste its time executing a node which is already available (calculated
by some other processor 7 time units ago). Note that this strategy can be
implemented on-line. O
This natural algorithm has a small competitive ratio.

Theorem 1 For every dag G, when the number of processors is at least
w(@G), the competitive ratio of Algorithm A is 2.

Proof. Notice first that the chain cover number does not change when we
expand a node into a path of unit nodes with unspecified length, so we can
assume without loss of generality that all nodes of the dag have unit execution
time. Let us denote by g, the processor that is assigned to execute the chain
that contains node v. We adapt the proof used in [11] for showing that there
exists a 2-approximate algorithm:

Let e be an integer function defined inductively on the nodes of the dag G
as follows: For a node v with p < 7+ 1 predecessors, let e(v) = p; otherwise,
order the predecessors of v in decreasing order, according to their e value:
e(ur) > e(ug) > --- > e(up). Then e(v) = e(ur41) + 7+ 1.

It was shown in [11] that no algorithm, on-line or off-line one, can execute
a node v in less than e(v) + 1 steps. So, it suffices to show that Algorithm
A executes every node v by time 2e(v) + 1.

We use induction on the depth of v. For the basis case, observe that
every source node belongs to a different chain in any chain cover of G. Since
Algorithm A assigns initially at least one processor to each of them, the
claim holds for nodes at depth 0. Similarly, for a node v with at most

p < 7+ 1 predecessors, ¢, executes all predecessors of v and then v by time
p+1l=e(v)+1<2e(v)+ 1.

For the induction step assume that every predecessor u of v has been
executed by time 2e(u) + 1. Order all predecessors of v in decreasing e value:
e(u1) > e(ug) > -+ > e(u,). By the induction hypothesis, all predecessors of
v except the 7 first ones, uq, uo,. . .,u,, have been executed by some processor
by time 2e(u,41)+1 < 2e(v) —27—1. After 7 more steps, i.e., by time 2e(v)—
7—1, their results have reached all processors. Hence, from time 2e(v)—7 and
onwards ¢, will execute either v or some of its 7 first predecessors, uy, ug, - - -,
u,. As follows from the description of the algorithm, ¢, never executes a node
twice and never idles before the execution of v. Since any predecessor of u;,
is also a predecessor of v, by time 2e(v) — 7, g, can start executing u,, u,_1,
..., u1. Therefore, g, has enough time to execute the first 7 predecessors of
v and v itself, between time 2e(v) — 7 and 2e(v). Since 2e(v) is clearly less
than 2e(v) + 1 the induction step follows. Actually, this shows that we can
use the same proof to get a slightly tighter result: Any node v is executed in
at most (2 —1/(7+ 1))e(v) + 1 steps and therefore the competitive ratio of
Algorithm Ais 2 —1/(t+1). O

There is an immediate application to the important programming paradigm
of the Fast Fourier Transform (FFT). Since an FFT dag (butterfly dag) with
nlogn nodes has width n we obtain:

Corollary 1 When the number of processors is at least n, Algorithm A is
2-competitive for FFT dags of nlogn nodes.

Similarly, we obtain the following corollary for a diamond dag (a mesh
turned 45° with the convention that edges are ordered from top to bottom)
and a pyramid dag (either the upper half or the lower half of a diamond dag):

Corollary 2 When the number of processors is at least \/n, Algorithm A is
2-competitive for diamond or pyramid dags of size n.

Even though the general result of Theorem 1 assumes the powerful com-
munication delay model, for many specific problems (in particular the prob-
lems we discussed above), it can be extended to other models of parallel com-
putation with weaker communication requirements, such as point-to-point
communication.

2.2 Constant number of processors.

We now turn our attention to the case where the number of processors k is
fixed, that is independent of the input dag. The simplest case to consider is
when the dag family consists of n disjoint paths. In the extreme case of no
communication delay (7 = 0), the obvious algorithm is that each processor
repeatedly chooses a path from the set of unexecuted paths and finishes it.
This algorithm is optimal with competitive ratio 2 — 1/k [4]. Unfortunately,
this algorithm can not be applied when 7 > 0, because after a processor
finishes a path, it does not instantly know the set of unexecuted paths; this
information becomes available with a delay of 7 time units.
A simple algorithm that avoids this problem is the following:

Algorithm B: The algorithm operates in rounds: In each round, the unexe-
cuted paths and the partially finished paths are partitioned (almost) evenly
among the k processors. If there are more than k remaining paths, each
processor executes its own set of paths for c¢7 time units, for some constant c,
and stops. After 7 more time units, processors know all outcomes and they
can start a new round. In total, each round takes c¢7 + 7 time units. Finally,
when the number of paths drops to k£ or less, each remaining path is assigned
to some processor and is executed till its completion. O

The parameter c of the algorithm allows us to balance the communication
time 7 and the actual execution time c7 of each phase: When c is large, some
processors will remain idle for a long time during a round if they finish all
their paths early in the round; on the other hand, the disadvantage of a small
c is that processors spend a large fraction of the time communicating instead
of executing.

As was mentioned above, the competitive ratio of any on-line algorithm
is at least 2 — 1/k. We now show that we can choose ¢ to achieve almost the
same competitive ratio.

Theorem 2 There is a choice of the parameter ¢ such that the competitive
ratio of Algorithm B is at most 2.

Proof. Assume that the initial number of paths is greater than k (otherwise
the competitive ratio is 1). Let 7 be the number of rounds before the number
of paths drops to k or below during the execution of algorithm B, and let ¢ be
the duration of the last round (if there is no such round when the number of
paths drops below k, we set ¢t = 0). Clearly, the time of the on-line algorithm
isr(c+1)T+1t.

10

We need to bound from below the optimal (off-line) time. There are
two commonly used lower bounds of the optimum makespan for scheduling
problems: the length of the longest path, and the average work (the total
length of all paths divided by k.) Clearly, the length of the longest path is
at least ¢. In order to estimate the average work, we consider two cases: a)
when the number of paths at the beginning of a round is at least kcr, each
processor gets at least ¢r paths and therefore remains busy during the first
cT time units of the round, and b) when the number of paths drops below
ker, the total number of rounds with some idle processor is at most kcr,
because every time a processor becomes idle the number of paths decreases.
It follows that for at least (r — kc7) rounds all processors are busy for at least
ct steps. Summing up the last ¢ steps when at least one processor is busy, we
get that the total work is at least (r — kcr)ker + t. In fact, this is an overly
conservative estimation, but it simplifies the analysis without affecting the
competitive ratio.

Therefore, the optimum execution time is at least

max{(r — ker)er +t/k,t} > AN(r — ker)er +t/k) + (1 — A\)t

for any real A € [0,1]. Let A = (¢/(c+ 1) 4+ (k — 1)/k)~! which is in the
interval [0, 1] for ¢ > 1/(k —1). For this A, the optimum execution time is at

least
c/(c+1)

c/(c+1)+ (k—1)/k
Since the on-line execution time is 7(c + 1)7 + ¢ and Akc*7? is a constant

(independent of the dag), the competitive ratio is at most 1 4+ %% For
sufficiently large ¢, ¢ > k — 1, this is less than 2. O

(r(c+ 1)1 +1t) — Mkc*r>.

2.3 Merging trees.

The algorithm for independent paths, algorithm B, can be adapted to work
for merging trees. In a merging tree the execution starts at the leaves and
proceeds towards the root. The execution of many algorithms is a merging
tree. For example, the standard greedy computation of Huffman code has
the structure of an unknown merging tree. Also, the second phase of a
divide-and-conquer algorithm is a (qualitatively known) merging tree.

In the same manner with the algorithm for independent paths the leaves
of a merging tree are partitioned evenly among the k£ processors. Every

11

processor executes the leaves assigned to it and, if possible, their successors
for ¢r time units. Processors then stop for 7 time units to communicate and
after pruning away the executed nodes they start a new round. When the
number of leaves drops to k or below, processors switch to algorithm A: The
remaining tree is partitioned into chains and each processor executes a chain.

Theorem 3 There is a 3-competitive algorithm for merging trees for any
fixed number of processors.

Proof. We remark that the strategy for assigning non-leaf nodes to proces-
sors in each round (except the last one) does not affect the competitive ratio.
In fact, the argument below is valid even when only leaves are executed in
each round with the exception of the last round.

As in the proof of Theorem 2, let r denote the number of rounds during
the execution of the above algorithm while the number of leaves is more
than k£ and let ¢ be the duration of the last round (when there are at most k&
leaves). Clearly, the total on-line execution time is 7(c + 1)7 + ¢.

We again try to bound from below the optimal execution time with the
average work. Using an identical argument with that of the proof of The-
orem 2 and using leaves instead of paths, we see that the average work is
again at least (r — ker)er +t/k. However, we cannot now claim that the op-
timum execution time is at least ¢, as in the proof of Theorem 2. Instead, the
optimal execution time is now at least ¢/2. This follows from the fact that
in the last round we apply the algorithm A and because A is 2-competitive,
the optimum execution time of the last round is at least half the execution
time of A.

As in the proof of Theorem 2 we get the following lower bound on the
optimal execution time:

max{(r — ker)er +t/k,t/2} > AN(r — ker)er +t/k) + (1 — A\)t/2
for any real A € [0,1]. Choosing A = (2¢/(c+ 1) + (k — 2)/k)™", we get

that the competitive ratio is at most 2 + %% For sufficiently large c,
¢ > k/2 — 1, this is less than 3. O

12

3 The nature of the dag is known.

3.1 Executing a tree by 2 processors.

For two processors and general dags a lower bound 3/2 on the competitive
ratio holds even with no communication delay (7 = 0) [4]. Even for binary
trees (input at the root and outputs at leaves) when we allow nodes with one
child, the lower bound is still 3/2. For example, a full binary tree with very
long paths hung from the leaves behaves almost as a set of independent tasks
with unknown execution times. But this is precisely the class of graphs used
in proving a lower bound of 3/2 for general dags in [4].

However, this lower bound does not apply to full binary trees; a binary
tree is full if and only if every internal node has exactly two children. For
this case the communication delays become important. Here, we prove a
lower bound of ratio 3/2 for computing a full binary tree, when 7 > 1/2. In
particular, we have the following lemma:

Lemma 1 The competitive ratio of two processors executing an unknown full
binary tree is at least 3/2, when T > 1/2. For T less than 1/2, the competitive
ratio is at least 1 + 7.

Proof. For any given on-line algorithm, let us consider an adversary which
builds the tree as the execution proceeds. The tree that the adversary plans
to build is a very “thin” one, in that it has depth equal to the number of
leaves and the internal nodes form a path of length m starting from the root
(see Figure 1).

Each level of the tree, except the first and the last one, contains two nodes,
one of them internal and the other a leaf. The adversary decides which one
is the leaf during the execution. The adversary’s strategy is simple: The
node to be executed by the on-line algorithm first is the leaf (when they are
executed simultaneously, either can be the leaf). Notice that initially only the
root of the tree is available to processors and therefore the optimal strategy
is that both processors execute it. At the second level, the two nodes can be
computed by any processor. The first node to be computed (in fact both of
them will be computed by an optimal on-line algorithm) will turn out to be
a leaf, and the processor that executed it cannot proceed to the next level.
For 7 > 1, it is better for this processor to compute the other leaf rather
than wait for its result to be communicated by the other processor. This is
repeated in the next level, but with the role of processors reversed. Thus,

13

Figure 1: A “thin” tree.

in the third step we will be back where we started, with both processors
executing an internal node. It follows that all internal nodes are executed by
both processors. The total time for the processors to execute a tree of height
m is 3m/2.

However, the optimal time is bounded from above by m+7: One processor
moves down along the longest path, and the other finishes the leaves while
obtaining the value of the internal nodes via communication (after an initial
delay of 7 time units.) The lower bound follows.

For 7 < 1 the situation is more complicated. In order to analyze it,
consider the nodes at some level [> 1 and assume that their execution by
one processor starts at time ¢; and by the other processor at time #; + d,
d; > 0. The nodes of the next level become available to the first processor
either at time ¢, + 2, after computing both nodes at level [, or at time ¢; +
d; + 1 + 7, after getting the results of the internal node from the second
processor. Therefore, the first processor starts the execution of level [+ 1
at time min{t; + 2,¢; +d; + 1 4+ 7} or later. Similarly, the second processor
cannot start the execution of level [+ 1 before time ¢; + d; + 1. So, we have
that ¢;,1 = t; +d;+ 1 and d;,1 = min{7,1 — d;}. Initially, ¢;, = 1 and d; = 0.
Notice also that the sum of the times that the two processors spend in level
lismin{2,d;+1+7}+ 1.

When 1/2 < 7 < 1, the values of d; alternate between 7 and 1 — 7, i.e.,
dy=7,d3=1—7,dy =7,ds =1—7, etc. Consequently, the time that both

14

processors spend on each level is min{2, d;+1+47}+1 = 3. Since the average
optimum time for each level is 2, the competitive ratio is at least 3/2.

Finally, when 7 < 1/2, it follows that d; = 7, [> 2, and the sum of time
that both processors spend on each level is 2 4+ 27. The competitive ratio for
this case is at least 1 + 7. O

Now we show that this lower bound is tight. In fact, we show that there
exists a simple on-line algorithm for two processors that achieves a competi-
tive ratio 3/2 on any tree.

Algorithm C: The first processor executes the nodes of the unknown tree
in a depth-first-search manner from left to right while the second processor
executes the nodes in a depth-first-search manner from right to left. Notice
that the algorithm is based on the assumption that a fixed left-to-right order
is known to both processors; or equivalently, when a node is executed its
children are revealed to both processors with the same order. o

Lemma 2 Algorithm C achieves a competitive ratio 3/2 on any tree.

Proof. Let p be the length of the longest path in the tree, and let b be
the number of nodes that are computed by both processors. The crucial
observation is that the nodes that are computed by both processors, except
for the last 7 nodes, belong to a path P (see Figure 2), and thus p > b — 7.
Since neither processor becomes idle, the time needed for the algorithm C
to complete the execution of the tree is (n + b)/2, where n is the total
number of nodes. The optimal execution time, however, is bounded from
below by both the average work, n/2, and the length of the longest path p:
max{n/2,p}. Therefore, for any A € [0, 1], the optimum execution time is at
least A\(n/2) + (1 — A\)p. For A = 2/3, we have that the optimal execution
time is at least (n+p)/3 > (n+b)/3 —7/3. Since the on-line execution time
is (n 4+ b)/2, the competitive ratio of algorithm C is at most 3/2. O
Combining Lemmata 1 and 2 we have:

Theorem 4 For T > 1/2, the competitive ratio for two processors executing
an unknown tree is asymptotically equal to 3/2.

3.2 The case of k processors.

Even for general dags, it is not difficult to obtain an algorithm achieving a
competitive ratio O(7). We can start by assigning processors to available

15

Figure 2: The execution of a tree.

nodes. After executing these nodes the processors wait for 7 time units so
that each processor knows all the outcomes. The competitive ratio of this
algorithm is (2 — 1/k)(7 + 1). The reason is that if we ignore the commu-
nication delays, the competitive ratio is 2 — 1/k [4], and the communication
multiplies the on-line execution time by 7 4+ 1. On the other hand, a com-
petitive ratio of & is also trivially achievable when only one processor is used
by the on-line algorithm. In fact, by using two processors as in Algorithm C
a competitive ratio (k + 1)/2 is achievable. The proof is very similar to that
of Lemma 2 (the average work of the optimum in this case is n/k instead of
n/2).

The positive results for two processors in Section 3.1 may suggest that
the competitive ratio O(7) is pessimistic. Unfortunately this is not the case,
and we next give a lower bound which is almost linear in 7. The reason is
that with & > 3 processors the simple structure in 2-processor case breaks
down, for the same reason that implementing k& > 2 stacks is hard: We can
no longer divide the nodes into k& almost equal portions, because there is no
way for k processors to “start from opposite ends”.

3.3 Lower bound for trees.

We start with the simplest case of binary trees. Our construction is a chain
of complete binary trees of size 2a — 1. The trees are chained in tandem, so

16

Figure 3: A chain of trees.

that one leaf of the first tree is the root of the second one, one leaf of the
second tree is the root of the third one, and so on (see Figure 3).

For simplicity, we will charge the on-line algorithm only for the execution
of leaves of each tree. Furthermore, in order to simplify the way the on-line
processors communicate, we assume that the on-line execution operates in
rounds: In each round the processors execute a sequence of 3 = 7/« trees.
Since there are only 7 leaves in total for the first 3 trees, the processors get
no information by communication during their execution. The processors
may coordinate their efforts beforehand, but they have to find the leaf of
the i-th tree which is the root of the (i + 1)-st tree in isolation. When the
first processor discovers the root of the (3 4+ 1)-st tree, the adversary reveals
the roots of all §# trees to all processors, and a new round begins with all
processors executing the root of the (5 + 1)-st tree. It is clear that this can
only help the on-line algorithm.

The adversary has the power to decide which leaf of the i-th tree to choose
as root of the (i+1)-st tree. We will show that no matter how the processors
coordinate their strategies the adversary can choose the roots of the trees in
such a way that the processors of an on-line algorithm execute a lot of nodes
in each tree.

Theorem 5 The competitive ratio for parallel execution of binary trees with

17

k processors is Q(min{ %, k}) and O(min{r, k}).

Proof. As it has already been mentioned, the upper bound holds for all dags.
In order to obtain the lower bound we will use the probabilistic method [1].
Consider a random adversary for a chain of binary trees: Each leaf of a
complete tree is chosen as the root of the next tree with equal probability.

Denote by X;; the number of leaves of the j-th binary tree executed
by the processor i before reaching the root of the next tree. Thus, Xj; is
an integer random variable uniformly distributed in {1,2,...,«a}. By the
definition of X;;, processor ¢ discovers the root of the (3 + 1)-st tree after
executing Zle Xi; leaves. A crucial observation is that for a fixed ¢ the
random variables X;;, j = 1,2,..., are independent. Notice that the first
processor discovers the root of the (3+1)-st tree after executing min; Ele Xij
leaves. Therefore, when

P

1€{1,2,....k

min ZXU <l] <1

the adversary has a strategy to force the on-line algorithm to execute at least
[leaves of the first § trees. Since we have that

B
min ZXU <l

1€{1,2,....k} =1

B

ZY<Z

P < kP

we may concentrate on the probability P [E?:l Y; < l], where Y; are inde-

pendent random variables uniformly distributed in {1,2,... a}. We will
need the following Chernoff bound (see [1] for a proof of the case o = 2):

i a+1 a+1
Y < B AT /B

_ 2
o 322

Choosing A = /21Ink/3 and 3 = 16A? = 321nk/3, we have

(a+1)8

,e{%{n,k}ZXw 1

<1

So, for any on-line algorithm the adversary has a strategy to force every
processor to execute at least (« + 1)3/4 leaves of the first 3 trees. More

18

generally, the adversary can force the on-line algorithm to execute at least
m(a + 1)5/4 leaves of a sequence of mf3 trees.

On the other hand, the optimal execution time of a chain of mf trees
is at most m (3 max{loga, 2a/k} + 7. This is achieved by assigning one pro-
cessor to execute the longest path and to communicate the results to other
processors that finish up the remaining nodes; thus, the optimal execution
time is dominated either by the length of the longest path, mloga, or by
the average work, m(2a — 1)/k (there is also an additive term of 7 steps for
transmitting the first result).

Combining the bounds on the on-line and the optimal execution time, we
get that the competitive ratio of any on-line algorithm is at least

) a k
mm{4loga’ g}

Since f = 32Ink/3 = O(logk), and a = 7/ = O(7/log k) we get that the
competitive ratio is

T

Q(min{ k}).

We note here that it is assumed that o and [are integers. This may
not be always the case for § = 32Ink/3. However, for 7 = Q(logk) we can
approximate « and 8 and carry out the above computations without affecting
the order of the competitive ratio. For 7 = O(logk) the theorem trivially
holds, since o = O(1). o

By replacing the mg full binary trees with trees of height one and «
leaves in the proof of the above theorem, the lower bound of the on-line
execution time remains unaffected, but the optimal execution time drops

from mp max{log o, 2a/k} + 7 to mfB max{1,2a/k} + 7. So, we have:

logTlogk’

Corollary 3 The competitive ratio for executing general trees by k processors
is O(min{r, k}) and Q(min{ =, k}).

logk’

The above corollary provides a very weak lower bound for small 7’s. How-
ever, we can strengthen the above result, when 7 = O(k):

Theorem 6 The competitive ratio for executing general trees by k processors
is Q(min{ 7, k}).

Proof. When £ is at most 72, the theorem follows directly from Corollary 3.
So, without loss of generality, we can assume that k is at least 72.

19

Asin the proof of Theorem 5 the adversary constructs a tree. The building
block, a (-chain, is a chain of § = logT trees, each of height one and a =
7/logT leaves. It was argued in the proof of Theorem 5 that when 7 =
Q(logk), for any on-line algorithm that uses k processors, there is a chain
of ©(log k) trees each of & = O(7/logk) leaves that requires ©(7) steps. In
particular, for any on-line algorithm that uses 72 processors, there is 3-chain
of log 7 trees that requires ©(7) steps. On the other hand, this §-chain can
be executed optimally by an off-line algorithm that uses only a processors.
This means that if there are k/a (-chains in parallel, the off-line execution
time for all chains is equal to the execution time of just one chain.

This observation leads to the following construction: The adversary builds
a tree in stages, each stage consisting of k/7 (-chains with a common root.
The common root of the 3-chains of the (i+ 1)-st stage is a leaf of the tree of
the i-th stage. The choices of the roots depend on the on-line algorithm. In
particular, consider the on-line execution of some stage. In the first 7 steps
of the execution, the total number of nodes (including re-computation) that
can be executed by the on-line algorithm with k processors is k7. Among
the k/7 (-chains, there exists at least one 3-chain with at most 72 executed
nodes (again including re-computation). Therefore, there exists a (-chain
whose nodes are executed by at most 72 processors. The adversary then
makes a leaf of this S-chain the root of the tree of the next stage.

Consider now a tree with vy stages. At each stage the on-line algorithm
executes a (3-chain using at most 72 processors. It was argued above that
this takes time ©(7) per stage and consequently the on-line execution time
is ©(y7). The optimal algorithm instead will assign one processor to execute
the longest path in 73 = ~ylog 7 steps. The results of these nodes are trans-
mitted to other processors after a delay of 7 time units. Observe that the
number of nodes in each stage is (k/7)Ba = k, so that the optimal execution
of the whole tree needs 7 + O(ylog7) steps. Thus, the competitive ratio is
Q(r/logT). O

3.4 Lower bound for other models.

Notice that Theorems 5 and 6 hold for much weaker models of communi-
cation. The Papadimitriou-Yannakakis model assumes that all processors
broadcast their results to everybody else in 7 time units. However, in the
proof of Theorems 5 and 6, only one processor of the optimal algorithm, the
one that moves down the longest path, communicates its results to other

20

processors; no other processor communicates its results. We use these weak
communication requirements to extend Theorem 6 to other models of parallel
computation.

The requirement that a single processor broadcasts its results puts a heavy
load on this processor, and the lower bound proof does not apply to other
distributed memory parallel models that measure the communication cost
more accurately. To derive a general lower bound, we assume a very weak
protocol of point to point communication, which is adopted in many parallel
computation models [2, 14]: At each step, exactly one processor can send
the result of a single node to only one processor; the result arrives at that
processor after a delay of 7 steps.

Consider the proof of Theorem 6, when k = Q(7?), and let the number
of stages be v = m(k — 1). The proof of Theorem 6 shows that the on-line
algorithm needs at least Q(m(k —1)7) steps to complete the execution of the
whole tree.

To find an upper bound on the optimal execution time, we analyze the
following off-line algorithm: Again one processor, called the principal pro-
cessor, executes the nodes of the longest path. It communicates its results to
other processors, but this time it does not broadcast the results but it sends
them to a single processor. As in the proof of Theorem 6, the remaining
nodes are assigned to other processors, but this time a processor is assigned
a complete stage. More precisely, after the principal processor executes the
root of the i-th stage, it communicates the results to the (i mod k—1)-st pro-
cessor which executes all nodes of the i-th stage. It takes O(m(k — 1) logT)
steps for the principal processor to complete the execution of the longest
path and to pass the results to the remaining processors. Furthermore, each
of the remaining processors can execute a stage in k steps, because there are
k nodes per stage, and it is ready to start the execution of the next stage
assigned to it. This is repeated every (k — 1)log steps, which is the time
that the principal processor will execute the root of the next stage assigned
to the same processor. It is easy to see that the total execution time is at
most m(k — 1) logT + k + 7.

Combining the lower bound Q(m(k — 1)7) for the on-line execution time
and the upper bound m(k — 1) log7 + k + 7 for the optimal execution time,
we can conclude that the competitive ratio is Q(7/log 7).

Thus, we have established this general theorem:

21

Theorem 7 For general trees, the competitive ratio of on-line execution by k
Processors is Q(min{@, k}) for any parallel model with point-to-point com-
munication which requires a delay of T time units in transmitting a message
from one processor to another.

4 Remarks.

Theorem 7 shows that no compiler can produce an almost optimal (up to a
factor of 7/log 7) scheduling strategy for executing a parallel program. Since
this is based on very weak premises, it applies to many distributed memory
parallel computation models. In particular, when it applies to the LogP
model, it holds for any value of L when o = g = 1. Notice however that
for the off-line optimal algorithm, each processor other than the principal
processor is busy only for a fraction 1/log7 of the time. Therefore the
optimal off-line algorithm can assign more processors to execute the longest
path when o and g are larger than one. Thus, it is possible that similar
results hold for a wider range of L, 0, g values. The theorem, however, leaves
open the possibility of positive results for special classes of programs (dags).
Further research is needed in this direction. It would also be very interesting
to study the competitive ratio for the LogP model for the values of the
parameters that our theorem does not apply.

Acknowledgments. We would like to thank Christos Papadimitriou for his
help.

References

[1] N. Alon, J. H. Spencer, and P. Erdés. The probabilistic method. Wiley
& Sons, Inc., New York, 1992.

[2] D. E. Culler, R. M. Karp, D. Patterson, A. Sahay, E. E. Santos, K. E.
Schauser, R. Subramonian, and T. von Eicken. LogP: A practical model
of parallel computation. Communications of the ACM, 39(11):78-85,
November 1996.

[3] R. P. Dilworth. A decomposition theorem for partially ordered sets.
Annals of Mathematics, 51(1):161-166, 1950.

22

[4] R. L. Graham. Bounds for certain multiprocessor timing anomalies. Bell
System Technical Journal, 45:1563—-1581, 1966.

[6] H. Jung, L. M. Kirousis, and P. Spirakis. Lower bounds and efficient
algorithms for multiprocessor scheduling of directed acyclic graphs with

communication delays. Information and Computation, 105(1):94-104,
July 1993.

[6] A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator. Competi-
tive snoopy caching. Algorithmica, 3(1):79-119, 1988.

[7] W. Loewe and W. Zimmermann. Upper time bounds for executing
pram-programs on the logp-machine. In Proceedings of the 9th ACM
International Conference on Supercomputing, pages 41-50, 1995.

[8] M. Manasse, L. A. McGeoch, and D. Sleator. Competitive algorithms
for server problems. Journal of Algorithms, 11:208-230, 1990.

[9] R. Motwani, S. Phillips, and E. Torng. Nonclairvoyant scheduling. The-
oretical Computer Science, 130(1):17-47, 1994.

[10] C. H. Papadimitriou and J. D. Ullman. A communication-time tradeoff.
SIAM Journal on Computing, 16(4):639-646, August 1987.

[11] C. H. Papadimitriou and M. Yannakakis. Towards an architecture-
independent analysis of parallel algorithms. SIAM Journal on Com-
puting, 19(2):322-328, 1990.

[12] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and
paging rules. Communications of the ACM, 28(2):202-208, February
1985.

[13] A.S. Tanenbaum, M. F. Kaashoek, and H. E. Bal. Parallel programming
using shared objects and broadcasting. Computers, 25(8):10-20, August
1990.

[14] L. G. Valiant. A bridging model for parallel computation. Communica-
tions of the ACM, 33(8):103-111, August 1990.

[15] I-Chen Wu and H. T. Kung. Communication complexity for paral-
lel divide-and-conquer. In 32nd Annual Symposium on Foundations of
Computer Science, pages 151-162, 1991.

23

[16] W. Zimmermann and W. Loewe. An approach to machine-independent
parallel programming. In Parallel Programming: CONPAR 94-VAPP
VI, volume 854 of Lecture Notes in Computer Science, pages 277-288.
Springer-Verlag, 1994.

24

