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1 Introduction

Recently there has been a lot of interest in problems at the intersection of Game
Theory, Economics, and Computer Science. For example, there are interesting
developments concerning algorithms for equilibria and cost sharing, algorithmic
mechanism design, and the efficiency of systems with selfish users [25]. In this
note, I will focus on the last area and in particular on the price of anarchy of
task allocation, selfish routing, and congestion games. I will discuss the issues
of this area, mention the central results, and suggest some open problems, some
of them close in spirit to competitive analysis®.

This is definitely not a review paper: My aim is to stimulate, not to provide
complete coverage of the area. The presentation favors simplicity to preciseness,
examples to formal presentation, and intuition to rigor.

1.1 The price of anarchy

Consider a set of users that share the resources of a system. In an ideal situation
the users behave in a way that optimizes the objective of the system. However, if
the users are selfish, they will act in a way that optimizes their own individual
and usually conflicting objectives. Typical examples include the selfish task
allocation problem—in which users have tasks to schedule on machimes and
compete for the execution time—and the selfish routing problem—in which
selfish traffic competes for the bandwidth of a network. Both are variants of
congestion games [26, 18].

The task allocation problem will concern us in the first part of this note.
Ideally the tasks are allocated to machines so that the makespan (or some other
objective) is minimized. Selfish users however are only interested in minimizing
their own completion time. This behavior may result in suboptimal allocation.
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The price of anarchy, introduced in [15], tries to address in a simple way how
much is lost due to selfish behavior.

The first issue that arises in this approach is to characterize selfish behavior
[23]. The classical approach assumes that the strategies of the users form a
Nash equilibrium: At a Nash equilibrium no user can improve unilaterally its
objective by selecting another strategy. This is the most robust concept of
equilibrium and it has some nice properties; most notably that, in finite games,
there always exists a mixed Nash equilibrium [20]. It has however some serious
drawbacks. For example, it is not clear how the users are going to end up
at a Nash equilibrium. This issue can be split into two questions: How long
will it take for users to reach or converge to a Nash equilibrium? And, which
Nash equilibrium will they play when a game has more than one equilibria?
An obvious lower bound to convergence time is the computational complexity
of finding a Nash equilibrium. This appears to be the most outstanding open
problem at the intersection of Game Theory and Computational Complexity
[24, 30]. It is not known whether the problem is in P; my guess is that for
2 players it is indeed in P but for 3 or more players it is not. There is a
well-known natural pivot algorithm, the Lemke-Howson algorithm, to compute
a Nash equilibrium which is similar to Simplex. In the worst case, it takes
exponentially many steps (see, for example, a recent work [29] which employs
in a clever way cyclic polytopes).

The second issue is about how the players agree on a particular Nash equi-
librium and it is more relevant to the concept of the price of anarchy: The most
natural approach is to assume nothing so that the users may end up at any
Nash equilibrium. Therefore to bound the inefficiency due to selfish behavior,
we consider the worst-case Nash equilibrium.

Another issue that has yet to be explored in depth with respect to the price
of anarchy is how much information is available to the players. Here we assume
that the players have complete information.

2 Task allocation

Perhaps the easiest way to introduce the issues related to the price of anarchy
of task allocation is by an example: Consider three tasks of length 1, 2, and 3 to
be executed on two identical machines. Each task is controlled by a selfish user
who wants to select a machine to minimize the completion time of its own task.
The completion time for a task depends on the tasks allocated to its machine as
well as on the scheduling policy of that machine. For now we assume that the
scheduling policy executes the tasks in random order, but we will return to this
issue later. The situation faced by the users is essentially captured by a 3-player
game which happens to have 5 Nash equilibria. In one of the Nash equilibria
the first two tasks select the first machine and the third task selects the second
machine. In another, which is a mixed (randomized) equilibrium, the first task
goes to the first machine, the second task with probability 1/4 goes to the first
machine and with the remaining probability goes to the second machine, and



the third task goes to the first or second machine with probabilities 1/3 and 2/3,
respectively. It is easy to check that this is indeed a Nash equilibrium. It should
also be clear that the first of the two equilibria is better for the system —it has
optimal makespan 3, while the expected makespan of the second equilibrium
is 9/2 (= 36 + -+ + 325). The price of anarchy in this case is (at least)
(9/2)/3 =3/2.

It is straightforward to generalize this example to the general case of n
players/tasks with lengths wy, ..., w, and m machines. The price of anarchy
for m machines is defined as the worst-case ratio of the makespan of a Nash
equilibrium over the optimal makespan opt(ws, ..., wy,):

makespan(F
PA,, = max max —()
W1,...,wn  Nash eq. E opt(wl, ce ,wn)

What is the price of anarchy of the general case?

Theorem 1 The price of anarchy PA,, for m identical machines which execute
their tasks in random order is ©(log m/loglogm). In particular, for m = 2 the
price of anarchy is 3/2.

Let me give a rough sketch of the proof [15, 5, 14]. The lower bound is easy:
Consider m tasks of size 1. The optimal allocation is to assign each task on a
separate machine. On the other hand, there is a Nash equilibrium at which each
user selects randomly (and uniformly) among the m machines. The expected
makespan is equal to the maximum number of tasks on a machine. This is the
classical bins-and-balls problem [17] and the expected maximum turns out to
be O(logm/loglogm) and the lower bound follows.

To show the upper bound, we need to bound the expected makespan of
the Nash equilibria and the optimal makespan. An obvious lower bound for the
latter is max{w;, >, w;/m} (the maximum task and the average load). The first
quantity, the expected makespan, which is the expected maximum load, can be
bounded indirectly. First we bound the maximum expected load: Intuitively,
the expected load of a given machine cannot be much greater than the optimum,
otherwise some player will have incentive to switch machines. By making this
precise, we get that for each machine, its expected load at a Nash equilibrium is
at most twice the optimum [15]. This is the only property of Nash equilibria that
we need. To summarize: At a Nash equilibrium each player selects with some
probability distribution a machine so that the expected load on each machine is
at most 2 max{wj, ), w;/m} and the question is what is the expected maximum
load. This is a bins-and-balls situation with balls of arbitrary sizes and arbitrary
probability distributions. But since the expected load on each machine is low
we can use a Hoeffding bound [11, 5] to get that the expected maximum is
at most O(logm/loglogm) times the maximum expectation. The latter as we
mentioned is in turn at most twice the optimum and the upper bound follows.

Czumaj and Vécking [5] extended Theorem 1 to machines of different speeds:
The price of anarchy for this case is at most O(logm/ logloglogm).



It is disheartening that this proof makes so little use of the properties of
Nash equilibria. Mavronikolas and Spirakis [19], proposed an interesting con-
jecture which strengthens the result of Theorem 1 and has potentially more
game-theoretic nature. To describe the conjecture we need the notion of fully-
mixed Nash equilibrium: A Nash equilibrium is fully-mized when it assigns
nonzero probability to every strategy. The fully-mixed equilibrium for identical
machines, is when each player selects randomly and uniformly a machine. For
non-identical machines the fully-mixed Nash equilibrium may not exist.

Open Problem 1 (Fully-mixed Nash equilibrium conjecture) The fully-
mized equilibrium, when it exists, has the maximum makespan among all Nash
equilibria.

If the conjecture is true, then we can combine it with a result in [19] that bounds
the price of anarchy of the fully-mixed Nash equilibrium to obtain Theorem 1.
There is some progress on settling the conjecture [8, 16].

2.1 Coordination mechanisms

At this point the reader may wonder whether this topic is appropriate for an
algorithmic column since I didn’t mention any algorithmic issues. But such
issues exist. To introduce them, let’s recall the assumption that each machine
executes its tasks in random order, and let’s ask the question: Are there schedul-
ing policies that result in improved price of anarchy? It is natural to consider
local scheduling policies in which the schedule on each link depends only on the
loads of the link. Otherwise, an obvious solution would be to force an optimal
allocation to each link. It is also natural to allow each link to give priorities
to the loads and perhaps introduce delays. A set of scheduling policies will be
called a coordination mechanism [4].

I now define the problem more precisely: There is a finite set of players
N ={1,...,n} and m identical machines. Machine j has a scheduling policy
¢ which receives tasks from a subset of the players and decides how to execute
them. The input is the vector (w1, ..., w,) of the length of tasks that allocated
to machine j. Naturally w; = 0 when task ¢ is not allocated to machine j. Notice
that the input is a vector, not a set of tasks. This is equivalent to saying that
the machines can order the tasks consistently; this is definitely true for tasks
of distinct lengths but for tasks of equal length, the machines need some id to
lexicographically order them. Without this assumption, when machines cannot
distinguish between players of equal-length tasks, the bins-and-balls argument
shows that the price of anarchy is still O(logm/loglogm).

The scheduling policy of a machine is essentially determined by the com-
pletion times of its tasks. Let ¢! (wy,...,w,) denote the completion time of w;
which should satisfy the following natural constraint:

For every subset S of players, the maximum completion time of the
players in S must be at least equal to the total length of the tasks
in S: maxijes ¢} (wi,...,wn) > > ,cgwi. As an example, a machine



could schedule two tasks wy and wy so that the first task finishes at
time wy + w2 /2 and the second task at time 2w; + wo.

Fix a coordination mechanism ¢ = (c!,...,c™), aset of tasks w = (wy, ..., w,).
This defines a game between the tasks (players). Let E be a Nash equilibrium of
this game and let makespan(w;c; E') denote its makespan. We define the price
of anarchy of the coordination mechanism ¢ as the maximum over all sets of
tasks w and all Nash equilibria F of its makespan over the optimum makespan.

makespan(w; ¢; E)

PA(c) = max max
w Nash eq. E opt(w)
To illustrate the issues, we discuss first a simple coordination mechanism for
two machines:

The tasks are ordered by length. If two or more tasks have the
same length, their order is the lexicographic order of the associated
players. The first machine schedules its tasks in order of increas-
ing length while the second facility schedules its tasks in order of
decreasing length.

The mechanism aims to break the symmetry of tasks. With this mechanism,
it is easy to see that the player with the minimum task goes always to the
first machine. Similarly, the agent with the maximum task goes to the second
machine.

The following is not hard to show:

Proposition 1 The above increasing-decreasing coordination mechanism has
price of anarchy 4/3. In particular, for n = 3 players, it has price of anarchy
1.

To show for example that the price of anarchy of the mechanism is no better than
4/3, consider 4 tasks with lengths 1,1,2,2. Then there is a Nash equilibrium in
which the first two tasks go to the first machine while the other two tasks go to
the second machine (this happens to be a pure Nash equilibrium). Its price of
anarchy is 4/3.

Is there a coordination mechanism with smaller price of anarchy? Notice
that the situation resembles the framework of competitive analysis of online
algorithms:

We, the designers, select a coordination mechanism ¢ = (c, ..., ™),
essentially a distributed scheduling algorithm. Then the adversary
selects tasks w = (wy,...,w,) (some of them 0 indicating that the
associated player does not participate). We then compute the worst-
case expected makespan among Nash equilibria and divide by the
optimum to get the price of anarchy.

Surprisingly, there are coordination mechanisms that have price of anar-
chy less than 4/3. Compare this to ©(logm/loglogm) —the price of anar-
chy of the mechanism that executes the tasks in random order. In fact, any



mechanism that has the same policy on each machine has price of anarchy
O©(log m/loglogm) (the balls-and-bins lower bound applies in this case too).
The following mechanism breaks the symmetry in a simple way:

e Each machine schedules the tasks in order of decreasing length (using the
lexicographic order to break any potential ties).

e Every task of machine j is delayed enough so that it finishes only at times
t with t = j (mod m).

For tasks of very large size, the delay introduced by the second rule is insignifi-
cant. But for tasks of small size, the delay may be significant; fortunately, there
are ways to rectify the rule to make the delay arbitrarily small.

The above coordination mechanism has the nice property that there ex-
ists exactly one Nash equilibrium (with dominant strategies): The largest task
knows that independently of the choices of the other players, it will be first on
every machine. Furthermore, the completion times on the m machines are dis-
tinct and therefore there exists a unique optimal choice. This optimal choice is
also known to the second largest task which with similar considerations selects
a particular machine and so forth. This leads to greedy scheduling of the tasks
in order of decreasing size [4]:

Theorem 2 The above coordination mechanism for n players and m facilities
has price of anarchy 4/3 —1/3m.

Is there a coordination mechanism with better price of anarchy? It is an
interesting open problem to determine the best price of anarchy achievable by
coordination mechanisms. No lower bound is known. The following intuitive
non-rigorous argument shows how to establish non-trivial lower bounds: Con-
sider m = 2 machines and n = 5 players with tasks of lengths (3, 3,2, 2,2). After
we fix the coordination mechanism the adversary selects either this input or an
input of which one of the tasks of length 2 is missing, i.e., one of (3,3,0,2,2),
(3,3,2,0,2), and (3,3,2,2,0). Notice that the optimal allocations assign the
3’s to the same or different machines depending on whether there are 3 2’s or
not. The local policies of a coordination mechanism cannot always distinguish
between the two cases and therefore cannot always achieve optimal allocation.
Turning this intuitive argument into a concrete lower bound doesn’t appear to
be easy—especially for mechanisms that may have no pure Nash equilibrium—
and it remains an open problem. To summarize, the best known upper bound
is given by Theorem 2 and the best known lower bound is 1.

Open Problem 2 Does the coordination mechanism of Theorem 2 have opti-
mal price of anarchy among all coordination mechanisms? If not, show better
upper and lower bounds.

As T mentioned above, Czumaj and Vicking [5] showed that the price of an-
archy when the machines have different speeds is O(logm/logloglogm) (when
each machine schedules its tasks in random order).



Open Problem 3 How much can coordination mechanisms improve the price
of anarchy for machines of different speeds? A coordination mechanism similar
to the one of Theorem 2 can reduce the price of anarchy to a constant 2—2/(m+
1). Is there a better one?

2.2 Truthful coordination mechanisms

In traditional Game Theory there is a parallel of coordination mechanisms,
Mechanism Design [21, 22]. A central concept in Mechanism Design is the
notion of truthfulness. Similar issues arise for coordination mechanisms. In
particular, the coordination mechanism of Theorem 2 has the property that it
favors (schedules first) large tasks. This is undesirable since it gives incentive to
players to lie and pretend to have larger tasks. For example, a selfish agent will
pad its task to increase its length if this will guarantee a better completion time.
Are there coordination mechanisms that avoid this problem? More precisely,
let’s call a coordination mechanism truthful when no player can unilaterally
improve its completion time by increasing the length of its task.

As an example of a truthful coordination mechanism consider the mechanism
of Theorem 2, but change the first rule so that the tasks in each machine are
scheduled in order of increasing length. Now a similar argument establishes that
starting from the task of minimum length, each task has a dominant strategy and
ends up at a unique machine. One can show that this coordination mechanism
has price of anarchy 2 — 1/m [10]. Although this is greater than 4/3 — 1/3m,
the mechanism is very robust in that the players have no incentive to lie.

Open Problem 4 Are there truthful coordination mechanisms with better price
of anarchy? If there are, prove better upper and lower bounds.

A related issue is the notion of randomized coordination mechanisms. Are they
better than their deterministic counterparts?

3 Coordination mechanisms for selfish routing

The above ideas can be naturally extended to the selfish routing problem whose
price of anarchy study was initiated by Roughgarden and Tardos [28]. This
problem together with the task allocation problem are the two major problems
studied so far with respect to the price of anarchy.

An instance (G, £, r) of the (single-commodity) selfish routing problem, is
defined by a network G with latency functions ¢, on each edge e, an origin s, a
destination ¢, and rate r. In the more general multi-commodity selfish routing
problem there are more than one pairs of source and destination, but in this
note we will deal mainly with single-commodity networks. Intuitively, a flow
can be thought as consisting of (infinitely) many players, each one controlling
an infinitesimal amount of flow, in the same way that a driver in a large city
drives a single car and his decisions do not really affect the traffic experienced
by the others.



The two typical examples of selfish routing are shown in Figure 1. Consider
for example, the network on the right, the well-known Braess’ paradox network,
where a flow of rate 1 must travel from A to D and experiences delay on each
edge given by the latency functions on the edges. At the unique Nash equilib-

C
O(f) =1 lac(f) =1 lep(f)=f
A D A lpe(f) =0 D
fZ(f):f ZAB<f>:f 5 gBD<f>:1

Figure 1: Two parallel links and the Braess’ network

rium all the flow follows the path ABCD with latency 2. On the other hand,
the optimal solution (which minimizes the average or the maximum latency) is
to split the flow evenly on the paths ABD and ACD with latency 3/2. The
price of anarchy in this case is 4/3. A similar situation occurs on the example
with the two parallel links. A celebrated theorem by Roughgarden and Tardos
[28] asserts that 4/3 is the maximum price of anarchy for linear networks, that
is, networks with linear latency functions.

The natural question is what can we do to improve the price of anarchy in
this situation. One proposal [27], inspired by the Braess’ paradox, is to remove
some edges. For example, in the Braess’ network, when we remove the edge
BC, the price of anarchy drops to 1 (hence the paradox). But this approach is
very restricted; it does not even improve the price of anarchy on the two parallel
links network.

3.1 Taxes

A more general proposal is to try to improve the price of anarchy by adding
taxes (tolls) to edges. More precisely, a tax 7. on an edge e raises the cost from
Le(f) to Le(f) + Te. Note that the tax on an edge is a constant, independent of
the flow on the edge.

Can taxes improve the price of anarchy? The answer depends on whether
we are interested on £.(f) or l.(f) + Te. From now on we will refer to the first
as latency and to the later as cost (cost is equal to latency plus taxes). If we
are interested on the latency only, then there is a nice characterization of taxes
that improve the price of anarchy to 1. This is achieved by the marginal cost
tax which is based on the principle that a user pays on each edge a tax equal
to the additional delay his presence causes to the other users of the edge. If
the derivatives ¢, of the latency functions exist, then the marginal cost tax is
Te = f&-LL(fF), where f* is the flow on edge e in the optimal solution. As
an example, the marginal cost tax on the Braess’ network (when the rate is
1) changes the cost on the edges AB and CD from f to f + 1/2 and leaves
everything else unchanged. An old theorem [1] asserts that:



Proposition 2 The marginal cost tax achieves optimal latency for every net-
work (even non-linear ones).

Even for heterogeneous networks in which players may differ in their sensi-
tivity to taxes, there is always a set of taxes that achieve optimal latency. For
single-commodity networks, this was shown in [2]; it was recently extended to
multi-commodity networks in [7, 12].

If we however are interested in minimizing the cost, which is latency plus
tax, the situation is more complicated. This is the case that we will consider
from now on. When we compute the price of anarchy, taxes affect only the cost
of the Nash equilibrium, so we still divide by the original optimal cost. Note
first that the marginal cost tax fails to improve the situation. In particular,
Cole, Dodis, and Roughgarden [3] showed that for every linear network, the
marginal cost tax can only increase the cost. But for other tax policies, the
situation may be much better. For example, in the Braess’ network, when we
add a large tax to the edge BC, the price of anarchy drops to 1.

A natural algorithmic problem is to compute, for a given network and rate,
optimal taxes—taxes for which the worst-case Nash equilibrium has minimum
cost. For networks with linear delays, a theorem in [3] asserts that there are
optimal taxes that are either 0 or co on each edge. Essentially this shows that
for linear networks, taxes are not really more powerful than edge removals. It is
known that the problem of computing the optimal edge removals is an NP-hard
problem [27]. Another immediate implication is that taxes fail to improve the
worst-case price of anarchy for linear networks; in particular, for the two parallel
links network of Figure 1, taxes cannot improve the price of anarchy below 4/3.
To summarize:

Proposition 3 With constant taxes the worst-case price of anarchy for linear
networks remains 4/3.

3.2 Beyond taxes and fixed rates

In the framework of the price of anarchy, the restriction in which the rates are
fixed seems in some cases unnatural. Are we, for example, interested in the
price of anarchy of a transportation network at the rush hour or in the middle
of the night? What if we want to find the worst-case price of anarchy of a given
network when an adversary selects the rates? It should be clear however that
in the framework of Roughgarden and Tardos nothing changes essentially; the
reason is that in this framework, we simply observe or measure the inefficiency
of the system. The situation however changes drastically when we act in order
to improve the efficiency of a network. By employing the competitive analysis
setting, we first design our mechanism and then an adversary selects the rate
that maximizes the price of anarchy.

In another direction, taxes were so far assumed to be constant, independent
of the flow. For practical reasons, in transportation networks for example, it may
be hard to implement taxes that depend on the traffic. Furthermore, for fixed
rates this makes no difference mathematically. But when we allow an adversary



to select the rate, constant and varying taxes are completely different. The
way the marginal cost tax is defined (as the value of the function f - ¢'(f) for a
particular value f) also shows that it may be more natural to consider taxes that
depend on the flow. The tax on edge e can depend on the rates (a global policy)
or the flow of the edge e (a local, distributed policy). The natural approach,
especially in vast networks, is to consider only the later case.

So, from now on we will consider variable taxes 7.(f.) which are functions
of the flow that crosses an edge. The following therefore is a natural question:

Given a network, find taxes 7.(f.) that minimize the worst case price
of anarchy over all rates.

This problem is close in spirit to online algorithms: we select the
taxes, the adversary selects the rates, we compute the cost (latency
plus taxes) of the worst Nash equilibrium, and divide by the optimal
latency.

For example, recall that constant taxes fail to improve the situation on the
network with two parallel edges of Figure 1. But with varying taxes, the price
of anarchy drops to 1, as follows: add a tax to the lower edge

_Jo if f<1/2
m(f) = {1/2 otherwise

Notice that this is not continuous function. This is unavoidable, as it is not
hard to see that every continuous tax for this network fails to lower the cost.

The example of the Braess’ network with rate 1 is more illuminating. Recall
that when we remove the edge BC (or equivalently add tax t7pc = o0), the
price of anarchy drops to 1. For other rates however, the removal of the edge
has devastating effects. In particular for small rates » < 1/2, for which the
optimal uses the edge BC, it is easy to calculate that the price of anarchy
becomes unbounded (when 7 tends to 0, each player has cost 1+ r/2, while the
optimum uses the edge BC and has cost at most 2r2). So, while the removal
of the edge is an optimal solution for fixed rate 1, it is a bad solution for other
rates. Can we find a better solution with varying taxes? Yes, albeit there is no
way to improve the price of anarchy to 1. For example, with the tax

TBC(f):{O if f<2/3

1 otherwise

the price of anarchy becomes 16/15. Notice again that we employed a non-
continuous function, although in this case, there exists continuous taxes that
improve the price of anarchy below 4/3. The above examples suggest the fol-
lowing problem:

Open Problem 5 Which is the worst-case price of anarchy for linear networks
when we employ varying taxes Te(fe).

Since optimal taxes may turn out to be complicated functions, a natural restric-
tion is to consider piecewise linear taxes.
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4 Congestion games and coordination mecha-
nisms

The task allocation problem and the selfish routing problem share common
characteristics. This is because they are both variants of congestion games
[26, 18]. A congestion game is a tuple (N, M, (Z;)ien, (¢?)jer) where N =
{1,...,n} is the set of players, M is a set of facilities (machines or edges), %; is
a collection of strategies for player i: a strategy A; € X; is a subset of facilities,
and finally ¢/ is the cost functions of facility j: when k players use facility j,
the cost for each player is ¢/ (k) which depends only on the number of players,
not their identities. An important special case is when the cost functions ¢/ are
linear.

There are essentially two differences between congestion games and the self-
ish task allocation problem. First, congestion games are more general than the
task allocation problem in that each job wants service from a subset of machines
instead from a single machine. Second, congestion games is more restricted, in
that the jobs (players) are identical. In other words, the task allocation problem
is the special case of weighted congestion games on a network of parallel edges.
In a weighted congestion game, each player ¢ has a weight w; and the cost of
a facility is a function of the total weight assigned to this facility. The selfish
routing problem, on the other hand, is a variant of (unweighted) congestion
games with infinitely many players (it is called non-atomic).

As an example of an (unweighted) congestion game, consider the network of
Figure 2 and two players. Player 1 wants to use a path from node A to node E
and player 2 wants to use a path from node B to node E. The cost on each edge is
equal to the number of players using it. The strategies ABDE and BACE are at a
Nash equilibrium with price of anarchy 2. A nice theorem by Rosenthal [26], who
first proposed congestion games, asserts that every unweighted congestion game
has at least one pure Nash equilibrium. This is not true however for weighted
congestion games (not even single-commodity network congestion games [9]).

A

B

Figure 2: A simple congestion game.
Coordination mechanisms can be naturally extended to weighted congestion
games:

We, the designers, select delays (or taxes) and priorities on the fa-
cilities, the adversary selects the weights of the players, and then we
compute the price of anarchy of the worst case Nash equilibrium.

There are symmetric (when we are allowed to select only delays) and asymmetric
mechanisms (when we can also select priorities). In the discussion above, we
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considered asymmetric mechanisms for the task allocation and symmetric ones
for the selfish routing problem.

Another issue that we have to deal with is the notion of social (system)
cost. The price of anarchy depends not only on the game itself but also on
the social cost. For example, in the task allocation problem above, we were
interested in the makespan, and in the selfish routing problem in the average
latency. From the system designers point of view there are two natural notions
of social cost: The maximum or the average cost, among the players; suitably,
the first was used for the task allocation problem and the second for the selfish
routing problem.

5 Conclusions

The study of selfish task allocation has motivated the new area of price anarchy.
Another central problem in the area turned out to be the selfish routing problem.
The initial questions concerning the price of anarchy have been successfully
answered but many more problems remain open. I mentioned some of them
above but there are many more.

With many interesting cases of congestion games (weighted or unweighted,
single-commodity or multi-commodity or general, atomic or non-atomic, split-
table or unsplittable flow, etc), with more than one notions of social cost, and
with different types of coordination mechanisms (symmetric or asymmetric), it
is clear that there are a lot of open questions about coordination mechanisms for
congestion games. Which ones of them are tractable or even interesting remains
to be seen.

For a more expanded treatment of the issues of this note please see the
original publications. Most of the early results are surveyed by Czumaj in [6].
For taxes a good source is [2, 3]. Finally, coordination mechanisms for the task
allocation problem are discussed in [4].
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