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Abstract. We consider n selfish agents or players, each having a load,
who want to place their loads to one of two bins. The agents have an
incomplete picture of the world: They know some loads exactly and only
a probability distribution for the rest. We study Nash equilibria for this
model, we compute the Price of Anarchy for some cases and show that
sometimes extra information adversely affects the Divergence Ratio (a
kind of subjective Price of Anarchy).

1 Introduction

We consider a simple version of load balancing in which n agents or players,
each having a load, want to place their loads to one of two bins. We assume
that the players are selfish and each one wants to minimize their own expected
load of their own bin. This is a typical problem in the study of the Price of
Anarchy. What distinguishes our approach here is that we aim at studying how
the information regime affects the Price of Anarchy. We consider local strategies
for the players in which a player has exact knowledge about the loads only
of some players and statistical knowledge about the rest. Such a situation can
practically arise in distributed situations, especially when there is not sufficient
time for the n agents to communicate and coordinate.

There are n selfish players (agents) and m = 2 bins. Each player i has a load
wi and has to select a bin in {0, 1} to place her load. The cost ci of player i is the
total load of the bin she selects, i.e., ci =

∑

k : bk=bi
wk. The cost is apparently

influenced by the decision of the other players which suggests that game theory
is a proper framework to study this situation. However, before we are able to
analyze the situation, we need to specify what kind of information is available
to the players. What does player i know about the load of some other player j?
Among the many possibilities, we will concentrate on two extreme cases: Player
i knows either the exact value wj (a real number in [0, 1]) or a probability
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Fig. 1. Some information regime graph for 3 players.

distribution on wj (the uniform distribution in [0, 1]). We can represent the
information regimes by directed graphs which we will call information regime
graphs (example in Fig. 1). An edge (i, j) denotes that player i knows the value
wj , while its absence denotes that the player i knows only that the value wj is
a random variable uniformly distributed in [0, 1].

At the one extreme, when every player knows all wj ’s (which corresponds to
a complete graph), the problem has been studied before as selfish task allocation
[8]. At the other extreme, when each player knows only the distributions of the
other players but not their actual values, the situation is very similar to the model
studied by Papadimitriou and Yannakakis [11] for the purpose of quantifying the
value of information. There are two main differences between our consideration
and the model of [11]: First, we take the game-theoretic approach and assume
that the players are selfish and care only about their own objective, while in the
model of [11] the players want to optimize the global objective. Second, the cost
in [11] was the probability of overflow, but in this work, the cost of a player is
the total load of the bin she selects.

The main motivation of our work is to study the effects of information hiding
on selfish systems. What happens to the Price of Anarchy in the more general
case when players know only some values wi?

In this work, we consider only pure Nash equilibria. A trivial observation
is that when we allow mixed Nash equilibria, there is always the fully-mixed
equilibrium in which every player selects uniformly at random a bin. This Nash
equilibrium has been studied extensively. For example, it was shown in [8] that
the Price of Anarchy is 3/2 in this case even when there are only 2 players.

To be able to compute the Price of Anarchy, we need to decide about the
social cost and the optimal cost, that is the numerator and denominator of the
Price of Anarchy. We consider the social cost to be either the sum (equivalent
to the average) of the cost of all players or the maximum cost among players
(which is equal to the makespan). The definition of the optimal cost is clear for
the complete information regime, but in the case of incomplete information there
are at least two natural choices. Either the optimal algorithm is a centralized one
which knows all wi’s, or the optimal algorithm is a distributed algorithm which
knows exactly as much as the players of the game. In the latter case, each node
knows only the wi’s indicated by the information regime graph. The objective
of each node, unlike the selfish objective that contributes to the numerator of



the Price of Anarchy, is to minimize the global objective, the social cost. In
this work, we will compute the Price of Anarchy using a distributed optimal
algorithm.

Related work. The game of n non-cooperating agents and m parallel links (or
bins) was defined in [8] and has an extended literature e.g., [2–4, 7, 9, 10]. In
particular, the work of Monien et al [6] is closer in spirit to this work since they
consider Bayesian games. Their model though is very different than ours.

The load balancing problem studied in this work was originally introduced
by Papadimitriou and Yannakakis [11] in an effort to understand the crucial
economic value of information [1] as a computational resource in a distributed
system (e.g. in the context of Computational Complexity [12]). That work con-
sidered only n = 3 agents. In order to understand how the optimum solution
achieved by the agents varies as a function of the amount of information available
to them, Papadimitriou and Yannakakis [11] considered each possible commu-
nication pattern and discovered the corresponding optimal decision protocol to
be unexpectedly sophisticated. For the special case where no communication is
allowed, i.e. when each agent i is aware of only her own load wi, it was conjec-
tured that the simple decision rule: “if wi ≤ 1− 1√

7
then put wi on bin 0 else put

wi on bin 1” is optimal; the conjecture is still open. Georgiades et al. [7] studied
the extension of the load balancing problem to the case of n agents. Their work
was focused on the special cases of oblivious decision rules, for which agents do
not “look at” their inputs, and non-oblivious decision rules, for which they do.
In either case, optimality conditions were derived in the form of combinatorial
polynomial equations.

Our Results. We study the Nash equilibria of these games and give some results
about the Divergence Ratio and the Price of Anarchy. In particular since the
players have incomplete picture of the world, the cost that they compute may
differ from the actual cost. To capture this situation, we define the Divergence
Ratio, a kind of subjective Price of Anarchy. We show that for the regime of total
lack of information, the Divergence Ratio is (n+1)/n for even n and 1 for odd n.
For the regime of complete information the Divergence Ratio is 4/3. In contrast,
the Divergence Ratio is Θ(n) for some intermediate information regimes. We
also estimate the Price of Anarchy for the total lack of information regime.

2 The model

Consider a set N = {1, 2, . . . , n} of n selfish agents. Each agent i has a load
wi ∈ [0, 1]. Let w = (wi)i∈N denote a vector of input loads, one per agent. For
any pair of agents (i, j) ∈ N ×N , agent i knows either (a) the exact value of wj

or (b) that wj is uniformly distributed on [0, 1]. For each i ∈ N let Ii = {j ∈ N :
agent i knows the exact value of wj}, and thus for each j /∈ Ii, agent i knows
that wj is uniformly distributed on [0, 1]. Denote by I = (Ii)i∈N the collection
of Ii for all i ∈ N . Let’s also denote the cardinality of Ii by γi.



Each agent i ∈ N has to select one of two available bins (bin 0 and bin 1)
to put her load. The bin is selected based on the values of wi’s in Ii. Thus, a
strategy for agent i is a function si from [0, 1]γi to {0, 1}: si((wj)j∈Ii

).
Of particular interest are the single-threshold strategies where each agent i

places her load to the first bin iff wi is below a threshold value ti. This threshold
value depends on the known loads of the agents, i.e. ti is a function of (wj)j∈Ii

.
Here we study threshold strategies, but most of our results can be extended

easily to all strategies. The reason is simple: What matters in most of our con-
siderations is the expected load that a player places in one bin. In particular, for
a threshold ti, the expected load that player i places in bin 0 is

∫ ti

0 widwi = t2i /2

and in bin 1 it is
∫ 1

ti
widwi = 1/2 − t2i /2. From the point of view of the other

players that do not know the value wi, only the expected value t2i /2 matters.
But this, in general, can be achieved with many strategies (for example, by the
inverse threshold strategy that places the load wi in bin 0 when its value is

greater that ti where t
2
i /2 = 1/2 − t2i /2).

A strategy profile s = (s1, . . . , sn) is a collection of strategies, one for each
agent. Denote by (s′i, s−i) the strategy profile that is identical to s except for
agent i, who chooses strategy s′i instead of si. Since we will mainly consider
threshold strategies, we will denote such a strategy profile by t = (t1, . . . , tn) ∈
[0, 1]n.

For weights w and strategies s, we define two costs of each player i. The
subjective cost of a player is the expected cost that player computes based on
her knowledge of the weights in Ii and assuming that the other weights are
uniformly (and independently) distributed in [0, 1]. The (objective) cost is the
actual cost which can be computed from the full knowledge of w and s. The
social cost is the cost of the system for these weights and strategies and it is
either the sum of the cost of all agents or the maximum cost among agents; the
latter corresponds to the makespan. In analogy to the costs of the players, we
have the subjective social cost and the (objective) social cost. We will denote
the subjective cost by costi(s;w; Ii).

Definition 1. The strategy profile s = (s1, . . . , sn) is a Nash equilibrium if and
only if, for all w, i ∈ N , and s′i, costi(s;w; Ii) ≤ costi ((s′i, s−i);w; Ii) .

3 The Structure of Nash Equilibria

Lemma 1. For any threshold strategy profile t ∈ [0, 1]n and for all i ∈ N ,

i /∈ Ii ⇒ costi(t;w; Ii) = ti





∑

j∈Ii:wj≤tj

wj −
∑

j∈Ii:wj>tj

wj +
∑

j /∈Ii,j 6=i

t2j −
n − γi − 1

2





+
1

2
+

∑

j∈Ii:wj>tj

wj +
n − γi − 1

2
−

1

2

∑

j /∈Ii,j 6=i

t2j (1)

i ∈ Ii ⇒ costi(t;w; Ii) =

{

∑

j∈Ii:wj≤tj
wj + 1

2

∑

j /∈Ii
t2j if wi ≤ ti

∑

j∈Ii:wj>tj
wj + n−γi

2
−

1

2

∑

j /∈Ii
t2j if wi > ti

. (2)



Proof. Fix a strategy profile t ∈ [0, 1]n and an agent i ∈ N . Assume that i /∈ Ii.
Then i does not know the exact value of her own load, so she expects that her
load will be put in bin 0 with probability ti and in bin 1 with probability 1− ti.

Therefore (i) with probability ti, the cost for agent i is her own expected
load, plus the sum of the loads of all j ∈ Ii such that wj ≤ tj , plus the expected
load that every other agent j /∈ Ii puts on bin 0 (that is, t2j/2), and (ii) with
probability 1− ti, the cost for agent i is her own expected load, plus the sum of
the loads of all j ∈ Ii such that wj > tj , plus the expected load that every other
agent j /∈ Ii puts on bin 1 (that is, 1/2 − t2j/2).

Agent’s i expected load is 1/2 (i.e.
∫ 1

0 widwi). Therefore, if i /∈ Ii, then the
cost of agent i ∈ N in the strategy profile t is

costi(t;w; Ii) =
1

2
+ ti





∑

j∈Ii :wj≤tj

wj +
∑

j /∈Ii,j 6=i

t2j
2





+(1 − ti)





∑

j∈Ii:wj>tj

wj +
∑

j /∈Ii,j 6=i

1 − t2j
2





= ti





∑

j∈Ii:wj≤tj

wj −
∑

j∈Ii :wj>tj

wj +
∑

j /∈Ii,j 6=i

t2j −
n − γi − 1

2





+
1

2
+

∑

j∈Ii:wj>tj

wj +
n − γi − 1

2
−

1

2

∑

j /∈Ii,j 6=i

t2j .

Now, if i ∈ Ii, i.e. i knows the exact value of her load, then

costi(t;w; Ii) =

{

∑

j∈Ii:wj≤tj
wj +

∑

j /∈Ii
t2j/2 if wi ≤ ti

∑

j∈Ii:wj>tj
wj +

∑

j /∈Ii
(1/2 − t2j/2) if wi > ti

=

{

∑

j∈Ii:wj≤tj
wj + 1

2

∑

j /∈Ii
t2j if wi ≤ ti

∑

j∈Ii:wj>tj
wj + n−γi

2 − 1
2

∑

j /∈Ii
t2j if wi > ti

.

ut

3.1 The total lack of information case, Ii = ∅

Assume Ii = ∅ for all i ∈ N . From Equation 1 of Lemma 1, the cost of any agent
i ∈ N for a strategy profile t = (t1, . . . , tn) ∈ [0, 1]n is

costi(t;w; Ii) = ti





∑

j 6=i

t2j −
n − 1

2



 +
n

2
−

1

2

∑

j 6=i

t2j . (3)



Proposition 1. Consider the case where Ii = ∅ for all i ∈ N . Then the strategy
profile t ∈ [0, 1]n is a Nash equilibrium if and only if, for all i ∈ N ,

ti = 0 ⇒
∑

j 6=i

t2j ≥
n − 1

2

ti = 1 ⇒
∑

j 6=i

t2j ≤
n − 1

2

ti ∈ (0, 1) ⇒
∑

j 6=i

t2j =
n − 1

2
.

Proof. Fix a strategy profile t ∈ [0, 1]n. By Definition 1, t is a Nash equilibrium
if and only if, for all i ∈ N , costi(t;w; Ii) = mint′i∈[0,1] costi((t

′
i, t−i);w; Ii).

Now fix an agent i ∈ N . From Equation 3, costi(t;w; Ii) is an affine function of
ti. Therefore, it is minimized at ti = 0 only if it is non-decreasing, i.e. only if
∑

j 6=i t2j ≥ n−1
2 . It is minimized at ti = 1 only if it is non-increasing, i.e. only if

∑

j 6=i t2j ≤ n−1
2 . Finally, it is minimized at some ti ∈ (0, 1) only if it is a constant

function, i.e. only if
∑

j 6=i t2j = n−1
2 . ut

Observe that, in a Nash equilibrium, all i ∈ N such that ti ∈ (0, 1) must have
equal ti’s. This is because, for all i ∈ N such that ti ∈ (0, 1),

∑

j 6=i t2j = n−1
2

which implies that t2i =
∑

j∈N t2j −
n−1

2 .
With this, we can now characterize all the Nash equilibria of the total lack

of information case.

Theorem 1. Consider the case where Ii = ∅ for all i ∈ N . Then the strategy
profile t ∈ [0, 1]n is a Nash equilibrium if and only if κ agents choose threshold
1, λ agents choose threshold tA ∈ (0, 1), n− κ−λ agents choose threshold 0 and

(1) n−1
2 − λ ≤ κ ≤ n−1

2 , λ > 1, t2A = n−1
2(λ−1) −

κ
λ−1 or

(2) n is even, κ = n
2 , λ = 0 or

(3) n is odd, κ = n+1
2 , λ = 0 or

(4) n is odd, κ = n−1
2 , λ = 0 or

(5) n is odd, κ = n−1
2 , λ = 1.

Moreover, the maximum, over all Nash equilibria, Social Cost is n+1
4 .

Proof. In order to find all Nash equilibria we have to find all the possible parti-
tions of the set of agents into three sets A, B and C so that

– For all i ∈ A, ti = tA for some tA ∈ (0, 1) and
∑

j 6=i t2j = n−1
2 , or equivalently

(|A| − 1) · t2A + |B| · 0 + |C| · 1 =
n − 1

2

(|A| − 1)t2A + |C| =
n − 1

2
.



– For all i ∈ B, ti = 0 and
∑

j 6=i t2j ≥ n−1
2 , or equivalently

|A|t2A + |C| ≥
n − 1

2
.

– For all i ∈ C, ti = 1 and
∑

j 6=i t2j ≤ n−1
2 , or equivalently

|A|t2A + |C| − 1 ≤
n − 1

2
.

We consider the following cases.

1. |A| = 0. Then there is a Nash equilibrium if and only if n−1
2 ≤ |C| ≤ n+1

2 .
Since |B| = n−|C|, it must also hold that n−1

2 ≤ |B| ≤ n+1
2 . This is possible

if and only if (1) n is even and |B| = |C| = n/2, in which case the cost for
any agent is n/4, or (2) if n is odd, |B| = n+1

2 and |C| = n−1
2 , in which

case the cost for any agent that chooses threshold 0 is n+1
4 and the cost for

any agent that chooses threshold 1 is n−1
4 or if (3) n is odd, |B| = n−1

2 and
|C| = n+1

2 , in which case the cost for any agent that chooses threshold 0 is
n−1

4 and the cost for any agent that chooses threshold 1 is n+1
4 .

2. |A| = 1. Then there is a Nash equilibrium if and only if |C| = n−1
2 and

0 < tA < 1. Then |B| = n − 1 − n−1
2 = n−1

2 . So in this case we have a
Nash equilibrium if and only if n is odd, |B| = |C| = n−1

2 and 0 < tA < 1.

Moreover, the cost for any agent that chooses threshold 0 is n+1
4 − t2A

2 , the

cost for any agent that chooses threshold 1 is n−1
4 +

t2A
2 , and the cost for the

agent that chooses tA ∈ (0, 1) is n+1
4 .

3. |A| > 1. Then there is a Nash equilibrium if and only if

(|A| − 1)t2A + |C| =
n − 1

2
and

|A|t2A + |C| ≥
n − 1

2
and

|A|t2A + |C| − 1 ≤
n − 1

2
.

Simple calculations yield that the above are equivalent to |C| ≤ n−1
2 and

|C| ≥ n+1
2 − |A| and t2A = n−1

2(|A|−1) −
|C|

|A|−1 . Furthermore, the cost for any

agent i ∈ N such that ti = 0 is

costi(t;w; Ii) =
n

2
−

1

2
(λt2A + κ) <

n + 1

4
,

the cost for any agent i ∈ N such that ti = 1 is

costi(t;w; Ii) = κ − 1 + λt2A −
n − 1

2
+

n

2
−

1

2
(κ − 1 + λt2A) <

n + 1

4
,

and the cost for any agent i ∈ N such that ti = tA is

costi(t;w; Ii) =
n

2
−

1

2

(

(λ − 1)t2A + κ
)

=
n + 1

4
.

ut



4 The Divergence Ratio

In order to study the impact that the information regime plays on the perfor-
mance of the system, we first consider the Divergence Ratio. This is essentially
the subjective Price of Anarchy and it is the worst-case ratio of the system cost
at a Nash equilibrium over the minimum system cost.

We first define the social cost SC(t, I) to be the maximum subjective selfish
cost over all agents, i.e. SC(t, I) = maxi∈N costi(t;w; Ii). Notice that here con-
sider the social cost as the maximum among the costs of all players. We could
define it also as the sum of the costs of all players. All results in this section ex-
tend easily to this social cost as well, although we omit them from this abstract
for lack of space.

The Players’ Optimum PO(I) is the minimum, over all possible strategy
profiles t ∈ [0, 1]n, Social Cost: PO(I) = mint∈[0,1]n SC(t, I). That is, the Players’
Optimum corresponds to a strategy profile that minimizes the maximum cost
seen by the agents.

The Divergence Ratio DR(I) is the worst-case, over all weights w and Nash

equilibria t, of the ratio SC(t,I)
PO(I) :

DR(I) = max
w

max
t:t N.E.

SC(t, I)

PO(I)
.

4.1 The case of Ii = ∅

We will now show that the Divergence Ratio for the total lack of information
regime is small. Recall from Theorem 1 that the Social Cost for this information
regime is (n + 1)/4. We now need to compute the Players’ Optimum for this
regime.

Lemma 2. Consider the case where Ii = ∅ for all i ∈ N . Then PO(I) = n
4 if n

is even and PO(I) = n+1
4 if n is odd.

Proof (Sketch). Let t∗ denote the strategy profile that corresponds to the Play-
ers’ Optimum. We consider the following cases:

– Case 1: t∗i ∈ {0, 1} for all i ∈ N . In this case, the set of agents N is partitioned
into 2 subsets N0 and N1 such that t∗i = 0 for all i ∈ N0 and t∗i = 1 for
all i ∈ N1, |N0| + |N1| = n and the Social Cost is minimized, i.e. PO(I) =

minN0⊆N max
{

|N0|
2 , n−|N0|

2

}

. If n is even, then |N0| = n/2 and PO(I) = n
4 .

If n is odd, then |N0| = (n − 1)/2 or |N0| = (n + 1)/2 and PO(I) = n+1
4 .

– Case 2: There exists some i ∈ N such that t∗i ∈ (0, 1). By contradiction,
it can be shown that in this case there must be some agent j such that
costj(t

∗;w; I) ≥ n+1
4 if n is odd or some agent j such that costj(t

∗;w; I) ≥ n
4

if n is even.
ut

Theorem 1 and Lemma 2 immediately yield:



Theorem 2. Consider the case where Ii = ∅ for all i ∈ N . Then DR(I) = 1+ 1
n

if n is even and DR(I) = 1 if n is odd.

4.2 The case of Ii = N

Assume that Ii = N for all i ∈ N . From Equation 2 of Lemma 1, the cost of any
agent i ∈ N for a strategy profile t = (t1, . . . , tn) ∈ [0, 1]n is

costi(t;w; Ii) =

{

∑

j∈N :wj≤tj
wj if wi ≤ ti

∑

j∈N :wj>tj
wj if wi > ti

.

An important observation in this case is that, since each agent knows the exact
values of the loads of all other agents, it suffices to consider single-threshold
strategies of the form ti = 0 or ti = 1, for all i ∈ N . For example, consider
a Nash equilibrium t such that 0 < tk < 1 for some k ∈ N . Assume that
wk ≤ tk. All agents know that wk ≤ tk, so all agents know that wk goes on
bin 0. Therefore, all strategy profiles (t′k, t−k) such that wk ≤ t′k ≤ 1 are Nash
equilibria, which are equivalent (as regards the selfish costs of the agents) to the
Nash equilibrium t. Similar arguments apply for the case wk > tk. Therefore
the Nash equilibria in this case correspond to the pure Nash equilibria of the
KP model [8] with n agents and 2 links. So in this case the Divergence Ratio
is identical to the pure Price of Anarchy in the KP model with n agents and 2
links. In [5] (Theorem 7.1), it is shown that the pure Price of Anarchy in this
setting is at most 4

3 and this bound is tight. We give an alternative proof of this
bound:

Theorem 3. Consider the case where Ii = N for all i ∈ N . Then DR(I) = 4
3 .

Proof. Consider an arbitrary Nash equilibrium t∗. Then there is an equivalent,
with respect to the costs and the Divergence Ratio, Nash equilibrium t such that
for all i ∈ N , ti = 0 or ti = 1. The total load on bin 0 is B0(t) =

∑

i:ti=1 wi and
the total load on bin 1 is B1(t) =

∑

i:ti=1 wi. Therefore the cost for agent i ∈ N
is

costi(t;w; Ii) =

{

B0(t) if ti = 1
B1(t) if ti = 0

.

Without loss of generality, assume that B0(t) ≥ B1(t). Thus SC(t, I) = B0(t).

Moreover, PO(I) ≥
∑

i∈N wi

2 = B0(t)+B1(t)
2 . Now if only one agent, say agent i,

places her load on bin 0 (i.e. ti = 1 and tj = 0 for all j 6= i) then PO(I) = B0(t)
and DR(I) = 1.

Otherwise, there are at least two loads on bin 0. Thus there exists an agent

i that chooses bin 0 (i.e. with ti = 1) such that wi ≤ B0(t)
2 . Since t is a Nash

equilibrium, it holds that B0(t) ≤ B1(t) + wi, implying that B0(t) ≤ B1(t) +
B0(t)

2 and that B1(t) ≥ B0(t)
2 . Therefore, PO(I) ≥ B0(t)+B1(t)

2 ≥ 3B0(t)
4 and

DR(I) = maxt:t N.E.
SC(t,I)
PO(I) ≤ 4

3 .



Now consider the case where n is even and n > 2, w1 = w2 = (n − 2)α

and wi = α for all i 6= 1, 2, for some α ∈
(

0, 1
n−2

]

. Then the strategy profile t

where t1 = t2 = 1 and ti = 0 for all i 6= 1, 2 is a Nash equilibrium which gives
a Social Cost equal to 2(n − 2)α. In this case however PO(I) = 3

2 (n − 2)α and

thus DR(I) ≥ 2(n−2)α
3

2
(n−2)α

= 4
3 . ut

4.3 The case of arbitrary Ii

We have shown that, in the case where the agents have no information about
the exact value of their weights, then the Divergence Ratio is very close to 1.
The same holds when the agents have complete information. In contrast, we will
next show that if i ∈ Ii and the cardinality of Ii is sufficiently small, then the
Divergence Ratio grows significantly.

Theorem 4. If γi = γ ≤ n−2
3 and i ∈ Ii for all i ∈ N , then DR(I) ≥ n+γ+2

4γ+4 .

Proof. For the proof, we focus on the instance where wi = 1 for all i ∈ N . Our
goal is to find (a) a Nash equilibrium t of low Social Cost, so as to upper bound
the Players’ Optimum, and (b) a Nash equilibrium t′ of high Social Cost, so as
to lower bound the worst possible Social Cost:

(a) Consider the strategy profile t such that ti = 1 − 1
n−γ for all i ∈ N . Then

the cost for any agent i ∈ N is

costi(t;w; Ii) = γ +
n − γ

2
−

n − γ

2

(

1 −
1

n − γ

)2

= γ + 1 −
1

2(n − γ)
.

The profile t is a Nash equilibrium, since the cost for i if she chose bin 0
would be

1 +
n − γ

2

(

1 −
1

n − γ

)2

≥ γ + 1 +
1

2(n − γ)
> costi(t;w; Ii) .

The Social Cost of t is SC(t, I) = maxi∈N costi(t;w; I) ≤ γ + 1.

(b) Now consider the profile t′ where t′i =
√

1
2 + γ−1

n−γ for all i ∈ N (since γ ≤
n−2

3 , t′i ∈ (0, 1)). Then the cost for any agent i ∈ N is

costi(t
′;w; Ii) = γ +

n − γ

2
−

n − γ

2
(t′i)

2 =
n + γ + 2

4
.

The profile t′ is also a Nash equilibrium, since the cost for i if she chose bin
0 would be

1 +
n − γ

2
(t′i)

2 =
n + γ + 2

4
= costi(t

′;w; Ii) .

The Social Cost of t′ is SC(t′, I) = maxi∈N costi(t
′;w; I) = n+γ+2

4 .



Thus the Divergence Ratio is

DR(I) = max
t̂:̂t N.E.

SC(̂t, I)

PO(I)
≥

SC(t′, I)

SC(t, I)
≥

n+γ+2
4

γ + 1
=

n + γ + 2

4γ + 4
.

ut

Corollary 1. If γi = γ = o(n) and i ∈ Ii for all i ∈ N , then limn→∞ DR(I) =
∞.

Interestingly, the above observations hold also for the case of the social cost
which is the sum of the costs of all players and it is an easy consequence of the
symmetry of the Nash equilibria in this section.

5 The Price of Anarchy

We now consider the objective cost and the Price of Anarchy for the total lack of
information regime. In particular, for a given strategy profile t (or more general
strategy profile s), we define the objective cost of player i to be the expected load
of the bin selected by i. The expectation is over uniformly distributed w ∈ [0, 1]n.
Accordingly, we define the social cost as the sum of the costs of all players. Notice
that the social cost here is the sum of the cost of all players. The case of max
social cost is more complicated and we leave it as an interesting open problem.

The Price of Anarchy is the worst-case ratio of the social cost at a Nash
equilibrium over the expected optimum. To compute the optimum, we assume
that the optimal algorithm is distributed and has the same information as the
agents. In the total lack of information regime, this is easy to define when we
consider only pure strategies: dn/2e of the agents select bin 0 and the rest select
bin 1. The expected optimal cost of each agent is either 1

2dn/2e or 1
2bn/2c. The

sum of the costs of all agents is

OPT =

{

n2

4 for even n
n2+1

4 for odd n
.

Theorem 5. The Price of Anarchy for the total lack of information regime is

PA =

{

n+1
n for even n

n(n+1)
n2+1 for odd n

.

Proof. From the characterization of the Nash equilibria in Theorem 1, we can
compute the cost for each agent. For the non-deterministic agents, i.e., the agents
that have a threshold in (0, 1), the cost is exactly (n + 1)/4. This follows either
by computing the cost explicitly: 1/2, which is the expected cost of her own load,
plus the expected cost of bin 0 due to other agents κ/2+ t2A/(λ− 1) = (n+1)/4
(the notation is from Theorem 1). A more direct way follows from the definition
of the Nash equilibrium: The expected load on the bins due to other agents



should be the same which happens when the load is (n − 1)/4. Adding the
expected load 1/2 of her own, the cost of agent i is (n + 1)/4.

By similar considerations, for the deterministic agents the cost is at most
(n + 1)/4. The worst case happens when all agents are non-deterministic. The
total cost of all players is n(n + 1)/4. The Price of Anarchy follows by dividing
by the optimal OPT.

ut
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