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Lastly, is there a polynomial-time approximation scheme for the trp for trees
with general distributions? We conjecture that at least a pseudo-polynomial time
approximation scheme exists. If so, polyhedral separation and duality could imply
that the randomized search ratio problem is so approximable in trees.
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Let ¢1 be the total length of Fy; it can be shown that the total trp cost of the

smallest among 57 and 57 is bounded from above by ElT'” (each node is first visited
on the average with delay %1 or better in the two traversals). Next, let {3 be the

total length of Fs; it is easy to see that the total trp cost of 55 is bounded from
above by {3 -n — % + o(n?).

The key observation now is that the sum of ¢; and {; is at most (3 + ¢) - n,
because the shortest walk from r contains both a matching of the odd-degree nodes,
and a matching of the odd-degree nodes minus r. Hence, the performance of the
algorithm is bounded above by

min{élT'”,ﬁg ‘n— ”2—2}

ax
. 1 2Y. 2

£ +85<(346)n L .
252 s(L+62)-n

It turns out that this expression evaluates to % ~ 1.73

To improve this to 1.6615 ... we must argue that the total trp cost is bounded
from above by 2{9n — %E% —n? 4+ o(n?), instead of the more pessimistic £ -n — ”2—2
o(n?). The argument involves decomposing F; into a path and several Eulerian
graphs, and choosing for each Eulerian graph the better of two traversals. The
expression now becomes

min{flT'”, 20yn — 303 — n*}

max
. 1 2 2 ’
£14+£5<(3+6)n =(1+6%)-n
0<8<1 2( + )

and it evaluates to max,c g ~ 1.6615, which is maximized when

4r—a’—2
1+ (z2—5z+5)2
x =~ 1.4545 is the unique root between 1 and 2 of the equation 2% — 11z* 4 4423 —
75z? 4+ 44z + 2.0

4 Open Problems

Can we achieve in polynomial time better approximations than those in Theorem
2?7 Naturally, we can do better for graphs for which the TSP is solvable exactly,
or has a better approximation ratio than %, as in the case of TSP with distances
1 and 2 [PY93]. Also, our approximation of o(G,r) can be extended to weighted
graphs. Can our approximation of p(G,r) be also so extended?

Computing o(G, r) and p(G,r) when G is a tree is a surprisingly tough problem.
An NP-completeness proof for the tree case (not unlikely, in view of the many NP-
complete mean-flow scheduling problems with a similar flavor) would establish the
NP-hardness, via duality and polyhedral separation, of the trp for trees (a problem
long conjectured to be NP-complete).

Can we improve the approximation ratio for the uniform trp to 1.57 Further,

in the nonuniform (weighted) case the current ratio is still rather large.



Corollary 1 The search ratio problem and the randomized search ratio problem
can be solved exactly in polynomial time for trees with a bounded number of leaves.

The work of [PST91, Tar95] and [GLS88] suggest that any polynomial time
approzimation scheme for the trp can be transferred to the randomized search
ratio problem in the same class of graphs.

3.2 Approximation of the Uniform trp

We have a graph GG, with a fixed root r, and we wish to find a walk starting from r
that visits all nodes, and minimizes the sum of the arrival times at the nodes. It is
easy to see that an approximation ratio of 2 can be achieved by a simple spanning
tree heuristic that traverses a spanning tree in depth-first order. Formulating and
analysing the analogue of Christofides’ algorithm in this setting is nontrivial. Our
approximation algorithm is the following:

Find a spanning tree T of G in which r has odd degree.
Find a shortest matching M; of all odd-degree nodes of T.
Add M; to T, to obtain an Fulerian graph Fj.

Find a traversal of Fy, and its reverse, call them 57 and 57.

Find a shortest matching My of all odd-degree nodes of T except for r
and some other node.

Add M; to T to obtain an almost Fulerian graph Fy with two odd-
degree nodes.

Find a traversal of Fs, call it 55.

Select the best among Sy, 57, and 5.

The first line is impossible if r is an articulation point belonging to an even
number of components, to all as a leaf; in this case we add a new node 7’ adjacent
only to r, and call it the root; the performance is not affected.

Theorem 7 The algorithm above yields a solution to the trp which is at most 1.662
times the optimum.

4r—a?—2
1+(z2—5z+5)2
1.6615, which is maximized when 2 ~ 1.4545 is the (unique) root between 1 and 2
of the polynomial z° — 112* 4 4423 — 7522 + 44z + 2.
Proof. Suppose that the length of the shortest walk in G starting from r and
visiting all nodes is n(1 4+ 6) — 1, for some ¢ between 0 and 1. It can be shown
(proof omitted) that $n%(1+ 62) + o(n?) is a lower bound on the trp (otherwise, we
would be able to find a shorter walk from r).

~
~

The precise ratio in the statement of the theorem is max,¢[ g



Theorem 3 If the distances in the metric d are polynomially small integers, and
the probabilities pr are rational numbers with small coefficients and common de-
nominators, then the two problems are polynomially equivalent.

Proof. In one direction we simulate distances by long paths whose intermediate
nodes have zero probabilities; in the other we simulate a node with probability %,
where B is the common denominator, by a cluster of A nodes with distance zero
from one another. O

We shall henceforth focus on the graph version of the trp.

Theorem 4 The trp with the uniform distribution is NP-complete (and MAXSNP-
hard).

Proof. Another easy reduction from Hamilton path, omitted. O

Can we solve the trp exactly on any interesting class of graphs? It follows from
the results of [ACP*86] that it can be solved on paths. We can generalize this a
little:

Theorem 5 On trees with L leaves, the trp can be solved in O(n") time.

Proof. Such a tree has O(nL) subtrees; furthermore, the optimum trp solution is
guaranteed to end up in a leaf, and thus dynamic programming is enabled. O

It is worth mentioning that the trp with the uniform distribution is solvable for
general trees; in fact, any depth-first traversal is optimal.

3.1 Polyhedral Separation

Suppose that we wish to solve the linear programming formulation LP of the ran-
domized search ratio problem. In fact, we should solve the dual, which has manage-
ably many dimensions:

min Z d(r,v)y, — 2

Z dr(r,v)y,—2z> 0 (all 7) (DLP)
Yo 2 0

Suppose then that we wish to solve DLP by the ellipsoid algorithm [GLS88]. We
are given a point (,z) € R"*1, and we are asking whether or not it lies within the
feasible region of DLP; if not, we need a violated inequality. It is easy to see that
this is precisely the trp problem. Hence we have:

Theorem 6 If the trp can be solved in polynomial time for a class of graphs and
any distribution, then the randomized search ratio problem can be solved exactly in
polynomial time for that class of graphs.



Christofides algorithm [Chr76]. Let xi be the length of the tour computed by
Christofides algorithm for exploring S%. Notice that the optimum tour that visits
all nodes in Sy is at most pg + k (the result of visiting all nodes using an optimal
path and then returning to the root). It follows that x; < 1.5(pr+k) < 1.5(r+1)k.
Hence, this simple modification of the doubling heuristic finds a ratio that is at most
6(o + 1) (notice the additive constant, whence the “asymptotic” in the statement
of the theorem).

For the randomized version, Christofides’ algorlthm gives an a?prommatlon
ratio of 6 + 2¢/10 &~ 12.35: The lower bound is now |Sk| (1 + (= (proof

3| Sk
2 —I_

omitted), whereas Christofides’ algorithm gives a path of length at most
pk_ka'; the worst-case ratio of the two is 6 + 24/10 =~ 12.35.

But we can do better by a rather novel kind of randomization. Qur approxi-
mation algorithm is still deterministic, but the solution it produces will in fact be
a distribution of walks on G. In particular, suppose that the tours produced by

Christofides’ algorithm in the various stages are Ty,T3,...,T,,. The distribution
we produce selects the tour (77',...,T5") with probability QLm, where the e;’s are

either 1 or —1, denoting possible reversal of the tour. In other words, at each phase
we try both the tour and its reverse, with equal probability. As a result, the target

node is expected to be encountered at the middle of the last tour. Hence the ratios

931+1‘2+“'+1'n—1+;_1'n
Tn—1

z, = (2r—1)z,—1 — 2rz,_2, which is feasible (the corresponding algebraic equation

has real roots) only when 472 —12r41> 0,0t 7 > %—I— /2. Hence the radius in the
“doubling heuristic” now is increased by factors of 1 + /2, and the approximation
ratio becomes @ . # ~ 8.98.0

. The recurrence for the z;’s is now

to be minimized now become

3 The Traveling Repairman Problem

The trp has been originally defined [ACP*86] on an arbitrary (non-graph) metric
d on n points, where we seek to

n 1—1

mm Z E Ar(j)m(i+1)s

=1 j=1

where m(1) = r. Here we define it on a graph G, with an arbitrary distribution pr
on the nodes, and a root r, where we must

mﬂin Z pr(v)d.(r,v),

where T now ranges over all walks of the graph. It is not hard to observe that,
under very mild restrictions (not affecting, for example, approximability) these two
versions are equivalent:



2.1 Approximation

Theorem 2 There are polynomial-time approximation algorithms for the search
ratio and randomized search ratio problems with asymptotic approxzimation ratio 6

and %@ . %Q ~ 8.98, respectively.
Proof. Consider the following family of heuristics:

for i := 0 to m do
Let G; be the graph G restricted to all nodes with distance z;
or less from r; (* comment: z,, is the radius of G *)
search G; depth-first, and return to r.

Let S; be the set of nodes in distance k£ or less from r. Then it is easy to see
that the search ratio o is at least |Sk]l_1. In phase 1, it takes 2(].5;,| — 1) steps to
explore all nodes and return to r. If the target node is found during the n-th phase,
the on-line cost is at most 2(|.S;,| — 1) + 2(|Se,| — 1)+ ...+ 2(|S¢,| — 1). Since the

optimum is at least z,,_1 the search ratio is at most

2(1S2, | = 1)+ 2(|9,] = D)+ ...+ 2(]5z,] — 1) < 2021 + 2029+ ... 20z,

Tp-1 Tn-1

The optimal strategy is to choose z; = 2¢. (Simple proof: We want to minimize
z1+...+xn
Tn—1
and the nth is decreasing; it follows that at minimax they are all equal. Call this

max,, . Notice that all fractions except for the nth are nondecreasing in z,,
value r. To solve for z,, we have z,, = r(2,-1 — Z,—2), which gives increasing z;’s
only if r > 4. Adopting this minimum value gives z;s that are powers of 2, up to
a constant. End of proof that powers of two are optimal.) The doubling heuristic,
with ratio at most 8¢, results.

For the randomized search ratio, let u be a random node in S;. Any determinis-
tic on-line algorithm will explore on the average (|S;|—1)/2 nodes before u. Since a
randomized algorithm is simply a distribution of deterministic algorithms the same
holds for randomized algorithms. Therefore, for any randomized algorithm there
exists a node u in Sy that is expected to be reached after (|.S%| — 1)/2 steps. This
gives a lower bound % of the randomized search ratio —half the lower bound
of the deterministic search ratio. It follows that the doubling heuristic produces a
search strategy which, seen as a distribution, has expected ratio at most 16 times
the optimum randomized search ratio.

The above lower bound % (or %) of the optimum search ratio is too
crude. A better lower bound results by improving the numerator: Any on-line
algorithm needs at least pp steps to explore all nodes in S, where py is the length
of the minimum TSP path. Therefore, the optimum search ratio r is at least Zk.
Hence, instead of exploring the nodes in 5, in a depth-first manner, we can use



three problems are polynomial-time solvable in this case). In fact, the techniques in
[PSTI1, Tar95] and [GLS88] suggest that a polynomial-time approximation scheme
for the trp may be transferable to the randomized search ratio problem (for the
same class of graphs).

The trp can be approximated within a constant factor: [BCCT94] gives an al-
gorithm with approximation ratio 144, and [GK96] improves this to 21.55. It is
possible to do better in the case of uniform distribution. A simple spanning tree
heuristic achieves ratio 2. We give an interesting variant of Christofides’ algorithm
[Chr76] for the trp with uniform distribution, and show that it achieves approxi-
mation ratio 1.662.

2 Computing the Search Ratio

Both versions of the search ratio problem have been defined in the introduction.

Theorem 1 Computing the search ratio and the randomized search ratio of a graph
G with respect to a root node r is NP-complete and MAXSNP-hard.

Proof. Both are easy reductions from the Hamilton path problem. Given a graph
H, we define G as H plus a new node r, and edges from r to all vertices of H. It is
easy to see that (G, r)is h or less and p(G,r)is h/2 or less, where h is the number
of nodes of H, if and only if there was a Hamilton path in H. MAXSNP-hardness
for the search ratio follows as well. MAXSNP-hardness for the randomized version
is a little trickier, because this reduction is not an L-reduction. However, it can be
shown that, if the smallest Hamilton walk of H is h(1 + ¢€), then the randomized
search ratio of G is at least (1 + ¢?), and this suffices.

It is a little more nontrivial to argue that the randomized search ratio problem
is in NP. It is not hard to verify that p(G,r) can be reformulated as follows:

min p

Za@wdw(r,v) < p-d(r,v) (all v) (LP)

Zﬂfr:l

zy, > 0

This is an (n + 1) x n! linear program. However, the optimum value will be a basic
feasible solution having at most n 4+ 1 walks with nonzero probability. Such a solu-
tion can be guessed, computed, and compared with any given bound, establishing
that the problem is in NP. O



Figure 1: A graph G with o(G,r) = I and p(G,r) = 2.

optimize the expected cost. That is, we would be trying to

min Z pr(v)d.(r,v).

veG

Interestingly, this is an equivalent formulation of a rather well-studied and no-
toriously hard problem, the ¢raveling repairman problem (trp)® [ACPT86, Wes95,
Wil93]: Given a metric and a starting point, find the route that minimizes the sum
of the arrival times at the points. It is known only how to solve on paths [ACP*86]
—even the case of trees, even that of caterpillars (paths with edges sticking out),
is conjectured to be hard [Wes95]. We observe that the problem can be solved in
polynomial time (for any distribution) for a class of graphs slightly more general
than paths: trees with a bounded number of leaves.

We also point out something rather unexpected: The trp is the polyhedral sep-
aration problem of the dual of the randomized search ratio problem. That is to say,
if we can solve the trp for some metric, and for arbitrary distribution, then we
would be able to solve the dual of the randomized search ratio problem (and thus
the randomized search problem itself) for the same metric by using the ellipsoid
algorithm [GLS88]; unfortunately, as we mentioned above we can only solve it in
the fairly restricted case of trees with bounded number of leaves (it follows that all

®This problem has been studied also under the names delivery man [FLM93, Min89] and mini-
mum latency [BCCT94, GK96]. [Wil93] calls this the school-bus driver problem, with this amusing
explanation: A bus driver tries to deliver the children in his/her bus so as to minimize not travel
time, but time weighted by the number of children (and ensuing havoc) in the bus. ..



is an on-line problem of a rather familiar genre: exzploration and navigation [PY91,
DP90, DKP91]. However, unlike previous formulations of such on-line problems,
here we know the terrain' being explored. In other words, for each graph G and
start (root) node r of G there is an optimal competitive ratio,

o(G,r) = min max M
T weG d(r,v)

Here 7 ranges over all walks of G, starting from r, and visiting all nodes of GG, while
d,(r,v)is the distance traversed in walk 7 until we first visit node v. We call ¢(G, )
the search ratio of the graph with respect to the root. It is an interesting graph-
theoretic parameter of a rather novel kind. Unfortunately, we point out (Theorem
1) that it is NP-complete to compute —in fact, our proof establishes that it is
MAXSNP-complete.

We may of course want to introduce the randomized version of the search ratio:

R Enldx(r,v)]
p(G,T)_mmrgleaé( o)

where A ranges over distributions of walks. We call this parameter the randomized
search ratio. For example, for the graph and root shown in Figure 1, the search
ratio is %, while the randomized search ratio is 2. Computing p(G, ) is also NP-
complete; in fact, the surprising part here is that it is in NP at all —we establish
this in Theorem 1 via a linear programming formulation of the problem. It is also
MAXSNP-hard, although this too is somewhat tricky to establish.

We present polynomial-time algorithms for approximating these parameters
within a fixed factor. A simple doubling heuristic (repeatedly double the radius,
explore the resulting graph depth-first) achieves an approximation ratio of 8 for
the deterministic ratio, 16 for the randomized version.? We improve on this basic
algorithm in several directions: By using Christofides algorithm for traversing the
graph we improve the guarantees to 6 and 12.35, respectively. By using a novel
kind of randomization (and an expansion factor other than two) we improve the
latter to 8.98.

Competitive analysis is supposed to be a novel alternative to the classical ap-
proach to decision-making under uncertainty: ezpectation minimization. In ex-

pectation minimization we would assume a distribution for the node sought, and

! An example of previous work on searching a known terrain is the bridge problem, sometimes
called the cow path problem, [BCR88]; our work can be seen as a generalization of this problem
from infinite paths to general graphs.

?Incidentally, notice the novelty of the situation: We approximate within a bounded ratio a
parameter which is itself a ratio of a feasible solution divided by an ideal solution! That is, we mix
two well-studied compromises: one in the face of uncertainty, the other in the face of computational
complexity. Complexity issues are traditionally ignored in the context of competitive analysis.
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Abstract

We study three combinatorial optimization problems related to searching a
graph that is known in advance, for an item that resides at an unknown node.
The search ratio of a graph is the optimum competitive ratio (the worst-case
ratio of the distance traveled before the unknown node is visited, over the
distance between the node and a fixed root, minimized over all Hamiltonian
walks of the graph). We also define the randomized search ratio (we mini-
mize over all distributions of permutations). Finally, the {raveling repairman
problem seeks to minimize the expected time of visit to the unknown node,
given some distribution on the nodes. All three of these novel graph-theoretic
parameters are NP-complete —and MAXSNP-hard— to compute exactly; we
present interesting approximation algorithms for each. We also show that the
randomized search ratio and the traveling repairman problem are related via
duality and polyhedral separation.

1 Introduction

Imagine that you know that an information item you need resides at some node of
a fixed graph (say, a large network of hypertext documents), but you do not know
where. You can only navigate the graph by following its edges, at unit cost (that is,
we assume that there is no random access of pages). You will see the item once you
arrive at the right node —and only then. What are good strategies for performing
this task efficiently?

This is obviously a situation of decision-making under uncertainty, and therefore
an invitation for applying the techniques of competitive analysis [ST85]. In fact, this
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