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Abstract

We study several interesting variants of the k-server problem. In the cnn problem,
one server services requests in the Euclidean plane. The difference from the k-
server problem is that the server does not have to move to a request, but it has
only to move to a point that lies in the same horizontal or vertical line with the
request. This, for example, models the problem faced by a crew of a certain news
network trying to shoot scenes on the streets of Manhattan from a distance; for any
event at an intersection, the crew has only to be on a matching street or avenue.
The cnn problem contains as special cases two important problems: the bridge
problem, also known as the cow-path problem, and the weighted 2-server problem
in which the 2 servers may have different speeds. We show that any deterministic
online algorithm has competitive ratio at least 6 +

√
17. We also show that some

successful algorithms for the k-server problem fail to be competitive. In particular,
no memoryless randomized algorithm can be competitive.

We also consider another variant of the k-server problem, in which servers can
move simultaneously, and we wish to minimize the time spent waiting for service.
This is equivalent to the regular k-server problem under the L∞ norm for movement
costs. We give a 1

2k(k + 1) upper bound for the competitive ratio on trees.
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1 Introduction

Consider a cnn crew trying to shoot scenes on Manhattan. As long as they
are on a matching street or avenue, they can zoom in on a scene. If a scene
happens to be at an intersection, the crew has two choices: street or avenue.
Of course, the crew must make its choice online, without knowing where the
subsequent scenes will be.

This is an example of an interesting variant of the k-server problem. We can
formulate the cnn problem as follows: there is one server in the plane which
services a sequence of requests (points of the plane). To service a request
r = (r1, r2), the server must align itself with the request either horizontally or
vertically, i.e, it must move to a point of the vertical line x = r1 or a point of
the horizontal line y = r2. The goal is to minimize the total distance traveled
by the server. In the online version of the problem the requests are revealed
progressively.

A more general formulation of the cnn problem results by assuming that we
have 2 servers, each moving in a metric space independent of the other server.
Given two metric spaces M1 and M2, with one server in each, a request is a
pair of points (x1, x2) with xi ∈ Mi. To service the request, we have to move
only one server to the requested point of its space. We will call this problem
the sum of two 1-server problems. The cnn problem is the special case where
both metric spaces M1 and M2 are lines.

Let τ1, τ2, . . . , τn be task systems [7] (not necessarily distinct). These task
systems can be combined to get two new interesting online (task system)
problems: the sum and the product of τ1, τ2, . . .. Given a request for each
task system, to satisfy the sum of the requests, at least one of them must be
serviced. To satisfy the product of requests, all of them must be serviced. When
all task systems are identical, τi ≡ τ , the product is related to randomized
online algorithms for the task system τ . A deterministic algorithm for the
product of n copies of τ , with each request the same across all spaces, is
equivalent to a randomized algorithm against an oblivious adversary with
exactly n (equiprobable) random choices; these algorithms are called barely
random, or mixed strategies, in the literature [6].

The cnn problem belongs to the class of sum problems. It is a very simple sum
problem, which may act as a stepping stone towards building a robust (and
less ad hoc) theory of online computation. After quite a few years 2 of intense
interest by the research community, a recent breakthrough was achieved in [21]
where it was shown that there exists an online algorithm with a finite, albeit

2 The cnn problem was originally proposed by Mike Saks and William Burley, who
obtained some initial results. The name (cnn) was suggested by Gerhard Woeginger.

2



very high, competitive ratio. The cnn problem and more generally the sum of
online problems give flexibility to model problems which the k-server problem
cannot, without forcing one to the full task system model. For instance, while
the k-server problem has been used to model the behavior of multiple heads
on a disk, the cnn problem can be used to model retrieving information which
resides on multiple disks. This, for example, happens when we replicate data
to achieve higher performance or fault tolerance [1,5,20]. Each disk may have
information in completely different locations, leading to independent costs for
information retrieval. The goal is to minimize time spent looking for data;
which disk the information comes from is not important. In contrast, writing
must be performed to all disks; this is closer in spirit to the product online
problem mentioned above.

We use competitive analysis [4,15,22] to evaluate the quality of online algo-
rithms; the competitive ratio is defined to be the worst-case performance of
the online algorithm, compared to the optimal cost for the same sequence of
requests. More precisely, algorithm alg is c-competitive if there is a constant
α such that over any finite input sequence ρ, alg(ρ) ≤ c · opt(ρ) + α, where
opt(ρ) is the optimal cost for ρ. The game-theoretic structure of the competi-
tive ratio suggests considering the online algorithm as a strategy that competes
against an optimal “adversary”, who selects the requests and services them
too.

In this work, we show some negative results (lower bounds and failed attempts
to “import” the k-server theory to this problem). There are several orders
of magnitude between our lower bound and the recently proven competitive
ratio of 105 [21]. Compare this with the k-server problem: although the k-
server conjecture has not been resolved yet, we now know the competitive
ratio within a factor of 2 [16]. In particular, the 2-server problem was settled
from the beginning [18]. The cnn problem seems very similar to the 2-server
problem, yet almost all known competitive algorithms for the k-server problem
fail for the cnn problem.

We start by proving a simple tight lower bound for the competitive ratio for
the sum of any k non-trivial spaces (spaces with at least 2 distinct points
each). Next, we observe that if we restrict the requests to a line, the problem
is equivalent to the weighted 2-server problem [13] in a line. The weighted
k-server problem is the variant of the standard k-server problem in which
each server has a weight, and the cost to move a server is its weight times the
distance moved. We show (Theorem 2) that any deterministic online algorithm
has competitive ratio at least 6 +

√
17 for the weighted 2-server problem in a

line (and thus for its generalization, the cnn problem). This lower bound holds
when one server is arbitrarily faster than the other. We also show that some
obvious candidate algorithms which are competitive (or even optimal) for the
2-server problem are not competitive for the cnn problem. For instance, there
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is no competitive memoryless randomized algorithm for the cnn problem, as
discussed in Section 4. Some of the results extend directly to the cnn problem
in higher dimensions (the sum of k 1-server problems), in which the lower
bound of kΩ(k) from [13] also applies.

Another way of formulating the weighted server problem is to consider the
servers to have different speeds, where cost is proportional to the time needed
to service a request. This motivates another interesting variant of the k-server
problem, in which we try to minimize the time spent waiting for service, in-
stead of trying to minimize the cost of moving servers. Here, we allow multiple
servers to move simultaneously, as in [12]. When a request is made, the online
algorithm specifies possible movement for each of the k-servers, and tries to
minimize the cost of their total movement, under the L∞ norm. (The cost to
move each server is determined by its metric space, but to combine server
movements, the L∞ norm is used.) For k-servers in a tree, we determine the
exact ratio 1

2
k(k + 1) of the dc-tree algorithm of [8,10]. In particular for

k = 2, we show that dc-tree is optimal with competitive ratio 3.

This paper expands upon a preliminary version in [17].

2 Lower Bounds for k Spaces

We begin with a simple lower bound for the sum of 1-server problems on k
spaces.

Theorem 1 In the sum of any k 1-server problems, in which each metric
space has at least 2 points, no online algorithm has a competitive ratio less
than 2k − 1. 3 There exist metric spaces for which this bound is tight.

PROOF. To show the lower bound proof we simply extend the proof in
[18] which shows that the k server problem has competitive ratio at least
k. Given k spaces with 2 points in each (with arbitrary, non-zero distances
between the points), we restrict attention to 2 fixed points on each metric
space —all requests will be on these points and we can assume that the online
servers will also remain on these points. There are 2k possible configurations
for the k servers on those points, of which the online algorithm will be in one

3 This lower bound applies differently than the kΩ(k) lower bound from [13], which
discusses the server problem when the servers have different speeds. In their ter-
minology, their proof requires different “speeds”, while our bound holds even if all
servers have the same speed. On the other hand, the sum problem allows for queries
not possible in their model. Server speeds will be further discussed in Section 3.
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configuration. This online algorithm will play against 2k − 1 adversaries, each
in one of the other possible configurations.

The online configuration defines exactly one request (one point on each metric
space) that forces the online algorithm to move and consists exactly of the
points not occupied by online servers. When the online algorithm moves a
server for the request, exactly one of the adversaries —the one in the new
online configuration— matches its movement in reverse. The total cost of all
2k − 1 adversaries is equal to the cost of the online algorithm which shows
that the algorithm has competitive ratio at least 2k − 1.

To show that this bound is tight for some spaces, consider the simplest non-
trivial metrics: each of the k spaces has 2 points, one unit apart. In this metric,
there exists a 2k−1-competitive online algorithm. Again, at any point in time,
we can assume that the adversary requests the unique request which does not
intersect the online configuration; otherwise the online algorithm incurs no
cost. The online algorithm can use any strategy which will progress through
each of the 2k possible configurations in turn, with only one server moving
at each step —any Gray code will do. Any offline algorithm must move once
within any block of 2k − 1 movements by the online servers. �

3 Server Problems with Different Speeds

We now turn our attention to the restricted cnn problem where all requests
are from a line (the server is still allowed to move anywhere in the plane).
A lower bound for the restricted problem is naturally a lower bound for the
unrestricted one. Without loss of generality, we assume that the line is of the
form y = mx, for some constant m. For m = 1, the problem is equivalent
to the standard 2-server problem in a line, where moving in the x dimension
corresponds to moving one of the servers, and the y dimension the other.
Changing m gives a more interesting problem: if all requests are restricted
to the form (x, mx), it corresponds to a request in a line at x for a 2-server
problem, but this time the servers have different costs for movement. Loosely,
this can be interpreted as having servers with different speeds 4 and we wish

4 To make this interpretation strict, we consider that each request is revealed at the
instant when the previous one is serviced, and we allow only one server to be moved
at a time. This latter restriction is natural for our problem motivation (we can only
move along streets or avenues). It is also worth considering this question without
this restriction, which corresponds to using the L∞ norm instead of L1 to calculate
the cost of combined server movements. The k-server variant of this problem, where
servers are allowed to move simultaneously, was introduced in [12] as the min-time
server problem. We study this in Section 5.
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to minimize the total delay, i.e., the time requests wait for service.

In general, the restriction of the multidimensional cnn problem where all
requests are from a line is equivalent to the weighted k-server problem in a
line. The general weighted server problem was studied in [13]. This work gives
a lower bound of kΩ(k) for any metric space with at least k + 1 points (and
arbitrary weights or speeds). No upper bound is known for arbitrary metric

spaces, but [13] gives a doubly exponential upper bound (22O(k)
) for uniform

metric spaces; this is reduced to exponential (kO(k)) when the servers have at
most 2 different speeds.

For the restricted version of the cnn problem, the weighted 2-server problem
in a line, we show a deterministic lower bound of 6 +

√
17. The surprising

fact exploited in the proof is that the adversary can force the slower server to
“simulate” the bridge (or cow-path) problem [2,19]. Thus, the cnn problem
contains as a subproblem another fundamental online problem. Interestingly,
we know of two different ways to view the bridge problem as a special case
of the cnn problem.

The bridge problem is a simple online problem, in which an explorer comes
to a river. There is a bridge across the river, but it is not known how far away
it is, or if it is upstream or downstream. The explorer must try to find the
bridge while minimizing movement. The optimal solution involves alternating
between the upstream and downstream directions, exploring 1 distance unit
downstream, then 2 units (from the original starting position) upstream, then
4 downstream, and continuing in powers of 2 until the bridge is found. This
strategy results in total movement no more than 9 times the distance from
the original position to the bridge (plus a constant if the bridge starts out
very close to the origin in the opposite direction from the first guess). This
competitive ratio is optimal.

Theorem 2 For the weighted 2-server problem in a line, when moving one
server costs m times as much as the other, for sufficiently large m, the deter-
ministic competitive ratio is at least 6 +

√
17.

PROOF. We will show that as m grows large, the bound can be forced
arbitrarily close to 6 +

√
17 in stages. We first show a weaker lower bound of

9 to exhibit the relation between the cnn problem and the bridge problem.
The role of the explorer will be played by the slow server.

Without loss of generality, we can assume that the online algorithm is lazy
(moves a server only to service requests). Let [l, r] be the interval of the line
explored (visited so far) by the slow server. Initially, it is safe to assume that
the slow server is at r = 0 and the fast server is at l = −1. When the online
slow server is at point r the adversary’s strategy distinguishes two cases: if
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Fig. 1. Bridge problem simulation phase: while the slow server is at its rightmost
point, the adversary chooses its next request depending on the location of the fast
server. For these requests, a lazy online algorithm will always be in one of these two
positions, or one of two symmetric cases.

the fast server is to the right of r, the next request is at l; if the fast server
is to the left of r, the next request is at r + δ, where δ is an arbitrarily small
positive distance (Figure 1). The adversary’s strategy when the slow server is
at l is symmetric.

This adversary’s strategy forces the slow server to explore a larger and larger
portion of the line. The fast server cannot endlessly service requests, as this
would lead to an unbounded ratio. Thus, some of the requests must be an-
swered by the slow server. However, the slow server at r cannot move ex-
clusively to the right, as this would result in a competitive ratio of m when
compared to the offline strategy of simply moving the fast server to the right,
while the slow server sits at position l. To achieve ratio less than m, the slow
server must eventually service a request at point l. The adversary can continue
to force the slow server to “zig-zag”, exploring larger and larger segments of
the line; thus the slow server mimics the explorer in the bridge problem.

At the end of the game, the define the interval explored by the slow server
to be [−z, y]. Consider the that the slow server has just moved from −z to
y. Since the competitive ratio of the bridge problem is 9, the total distance
moved by the slow server must be at least 9y (minus an insignificant term).
On the other hand, the adversary can service all requests by moving its slow
server to y and its fast server to −z. Its total cost is y + z/m, which for large
m is approximately y. (Strictly speaking, m should be fixed before the online
algorithm is forced to choose z values. Here, we can assume that z < 4y,
otherwise a ratio of greater than 11 can be achieved in the bridge problem.)

Thus, the competitive ratio is at least 9− ε, where ε tends to 0 as m tends to
∞.

By accounting for the cost of the fast online server, we can improve the bound
to 10 − ε. Let x0 be the cost of the fast online server. Besides the strategy
above of moving its fast and slow servers in opposite directions to service all
requests, the adversary has an alternative strategy: service all requests with
the fast server. Let r ≥ 9 be the ratio from just the slow server in the bridge
portion of the simulation above. The total cost of the offline algorithm is no
more than x0 + ry/m: for these requests, it can mimic the movement of both
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online servers with this cost or less. Thus, the competitive ratio is at least

max
x0,y

(
ry + x0

y + z/m
,

ry + x0

x0 + ry/m
).

(The first term comes from the preceding proof of the 9 lower bound. The
second term comes from the alternate adversary strategy.) As above, z < 4y,
or else a ratio greater than 11 can be achieved in just the bridge phase.
As m grows, z/m and ry/m become insignificant when compared to y, for
all r ≤ 6 +

√
17. (If r > 6 +

√
17, the adversary can halt after the bridge

phase.) With this given, we can eliminate the z/m and ry/m terms from
the denominators, at which point it becomes clear that to minimize the ratio
above, the smallest possible value for r is best, that is, r = 9. (The optimal
online algorithm may not follow the optimal bridge strategy above, but for the
sequence of requests given here, the best possible online strategy will be one
which optimizes the bridge phase. Such an algorithm must have a competitive
ratio of 6 +

√
17 on the requests here.)

The simplified equation is

max
x0,y

(
9y + x0

y
,
9y + x0

x0

).

To minimize the above term, x0 should be chosen to make the the two values
equal, which happens at x0 = y, giving a ratio of 10. In the original equation,
the ratio approaches 10 from below as the value of m increases, that is, it gives
10 − ε for ε = Θ(1/m). Henceforth, to simplify equations, we will eliminate
terms which vanish as m →∞, and thus eliminate the ε terms.

Let ρ be the sequence of requests described above (which completes the
“bridge simulation”). After the ρ requests, the online server has its slow
server at y, and its fast server at −z, and these positions match the positions
of one of the adversary strategies above. However, the alternative adversary
strategy finishes with its slow server at 0 and the fast server at y. If requests
now alternate between 0 and −z, all such requests can be serviced by the
offline algorithm by moving its fast server from y to −z. After a sufficiently
large number of requests at 0 and −z (say j1 such pairs of requests) the online
slow server must move to 0, or else the online algorithm will incur unbounded
costs. (Moving it to −z passes through 0, so the equations below still hold.)
Let x1 be the cost paid by the online fast server shuttling between 0 and −z
before this occurs. With this possibility for the adversary, the ratio is:

max
x0,x1,y

(
9y + x0

y
,
10y + x0 + x1

x0

).

Clearly, x1 cannot be less than 0. Setting the terms equal for the remaining
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two parameters, the only positive root occurs at x0 = y(−4 +
√

26), which
results in a ratio of 5 +

√
26.

To prove a lower bound of 6 +
√

17, we extend this idea of adding extra
requests to the end of the bridge sequence. Consider the request sequence
ρ((0,−z)ji(y,−z)ki)n where i varies from 1 to n, and ji (ki) refers to the
number of times the first (second) pair are repeated during the ith repetition
of the whole phrase. Let ji and ki, be determined as follows: after servicing ρ,

x1

−z 0 y

x2

Fig. 2. After the Bridge Simulation: following the initial bridge phase, a series of
requests at 0 and −z force the slow server to return to the origin. After it returns
to the origin, another sequence of requests at −z and y eventually force it to return
back out to y. The total cost of the fast server in each phase is xi.

the online slow server is at y. To service (0,−z)j1 , it may use the fast server
for a while, but eventually, it must move its slow server to 0. (If the slow
server ever moves to z, it will incur a worse ratio than the lower bound proven
here. We can assume that z > 4

3
y, otherwise a ratio of greater than 11 can

be achieved in just the bridge phase. Should the online server ever choose
to move from 0 to −z (or y to −z), the adversary can immediately stop the
sequence. In this case, one of the two adversary strategies 5 already already
seen will achieve a higher ratio than the one proven here.)

Let ji be the number of repetitions of (0,−z) needed to make the online slow
server move to 0 for the ith time, and ki be the number of repetitions of (y,−z)
needed to make the online slow server move back to y for the ith time. Let
x2i−1 = jiz/m, the movement of the online fast server before the slow server’s

5 In fact, for large n, the offline servers have a third main strategy to consider:
moving the slow server to point z and servicing the rest of the queries with the
fast server. Given this possibility, the online server must in fact occasionally move
its slow server to the point −z. Thus, we do not expect that the bound we prove
here is tight. Preliminary calculations show that allowing this third option with the
same adversary request sequence will not increase the lower bound by more than
a small constant, no larger than 0.22. Solving the resulting equations precisely is
complicated by the fact that with this option, it is no longer safe to assume that the
optimal bridge solution for ρ will give the best solution to the global equations.
We prove our bound for the case when the adversary, at the completion of the
bridge phase, guarantees the online algorithm that its slow server is not at, and
never will be at, −z. Thus the online algorithm need not minimize its ratio against
this possible offline strategy.
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ith move to 0, and x2i = ki(z + y)/m, the movement of the online fast server
before the slow server’s ith move back to position y. (For the 5 +

√
26 bound

above, we have only 1/2 of one phase, that is, we have a j1 term but no k1

term.)

The adversary might end the game after any of the slow server moves. The
first few terms of the ratio R are:

max
xi,y

(
9y + x0

y
,
10y + x0 + x1

x0

,
11y + x0 + x1 + x2

y + x1

,
12y +

∑3
i=0 xi

x0 + x2

, . . .),

and in general:

R ≥ max
xi,y

(
(9 + 2j)y +

∑2j
i=0 xi

y +
∑j

i=1 x2i−1

,
(10 + 2j)y +

∑2j+1
i=0 xi∑j

i=0 x2i

).

The different denominator types are from the two offline strategies we have
already seen for the ρ (bridge phase) requests: moving both servers, or just
the fast one.

The expression above is minimized when all values are equal, and the equations
simplify to:

x0 + x1 + 10y

x0

=
x0 + 9y

y
,

∀i ≥ 2,
xi−1 + xi + 2y

xi−1

=
x0 + 9y

y
.

Scaling y to be 1, and solving, we get:

x1 = x2
0 + 8x0 − 10

∀i ≥ 2, xi = (x0 + 8)i−1x1 − 2
i−2∑
j=0

(x0 + 8)j.

Simplifying the geometric series and substituting in x1, this final equation
gives

∀i ≥ 2, xi = (x0 + 8)i−1(x2
0 + 8x0 − 10− 2

x0 + 7
) +

2

x0 + 7
.

All xi values must be positive, so the smallest possible value for the equations
is when x2

0 + 8x0 − 10 − 2
x0+7

= 0. The only positive root is x0 =
√

17 − 3,

which gives the stated bound of 6 +
√

17. �

Leaving our 2-servers in a line interpretation behind, this 6+
√

17 lower bound
for the cnn problem can also be achieved by considering requests which lie
in the two lines y = 0 and y = 1. For this special case of the cnn problem,
a slightly weaker lower bound was obtained by William Burley and the first
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author (unpublished). Here, any request can be satisfied at a cost of 1 by
moving from one line to the other. We use a strategy similar to the previous
one. Suppose the leftmost and rightmost positions of our server so far have
been [l, r]. If the server is on y = 0, place a request at (l − 1, 1), and if the
server is on y = 1, place a request at (0, r +1). These requests again make the
server move away from the origin simulating the bridge explorer as before.
The vertical movement here corresponds to the movement of the fast server in
the previous argument. As before, after the simulation of the bridge problem,
at the end the adversary can force the server to alternate between the origin
and the shorter “arm” of exploration. All equations are the same. (There does
not seem to be a natural third strategy for the adversary as in Footnote 5.)

To see just how difficult it is to find a competitive ratio for the cnn problem,
we notice that some simple algorithms which are competitive for the 2-server
problem are not competitive for the case when the servers have different move-
ment costs. The “Double Coverage” (dc) algorithm in a line is the following
simple algorithm: if the request is between the two servers, move both towards
it until the request is served. Otherwise, move the closer server (ties broken
arbitrarily.) The “Balance”, or bal algorithm is also simple: to answer any
query, move the server which will have the minimum cumulative cost if it
moves to the request. More general balance algorithms base their decision to
move a server to a request on two parameters: the cumulative cost of a server
and the distance to the request.

For two servers in a line, one with speed 1 and the other m ≥ 1, neither algo-
rithm has a constant competitive ratio bounded independently of m. We ex-
pect that this statement holds even allowing for obvious modifications needed
to the algorithms to account for the different speeds of the servers: for instance,
in dc it must be possible for the fast server to “pass” the slow server for re-
quests outside of their convex hull, or else it is trivial to achieve competitive
ratio at least equal to m.

We give a a simple example as an intuitive justification for the failure of dc.
For a fixed m, consider an online configuration (0, x), where the fast server is
at 0, and x is large enough that the slow server can reach a request at x − 1
before the fast one ((x− 1) > m will do for the most natural generalization of
dc.) By repeating the sequence of requests 0, x, 0, x−1, the online servers will
pay cost 2 for every 4 requests, while an adversary could satisfy them with
just cost 2/m, by having its server positions reversed. By making m large, we
can get an arbitrarily large competitive ratio. This is in stark contrast to dc
for the regular k-server problem, in which it is k-competitive, for any k, and
can be extended to work optimally even in trees. A similar example can be
used for bal. In this case, the fast server will occasionally be used to answer
a request at x or x + 1, but will then return to answer the request at 0.
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4 Memoryless Randomized Algorithms

In contrast to the natural memoryless algorithm harmonic for the k-server
problem [3,14]), we proved in [17] that no competitive memoryless online al-
gorithms exist for the cnn problem. Independently, [11] proved that no such
algorithms exist for the weighted 2-server problem in a line, which is a sub-
problem of the cnn problem as shown in Section 3, by limiting requests to
the line y = mx. Rather than repeat the proof from [17], we refer the reader
to [11], due to the brevity and simplicity of their proof.

We note that while the proof from [17] uses a stronger definition of “memory-
less” than that from [11], it does prove something something slightly stronger
than the fact that there is no finite competitive ratio: it proves that with a
single fixed cost move, an adversary can force an expected unbounded cost for
any memoryless online algorithm.

5 The k-Server Problem under the L∞ Norm

In this section, we consider the k-server problem, where servers have the same
speed, but can be moved simultaneously, and the objective is to minimize the
time of service. Once a request is served, the next request is revealed. It is
simple to achieve a competitive ratio which is k times larger than the ratio
of the regular k-server problem —the online algorithm can simply move one
server at a time, forfeiting its choice to move multiple servers simultaneously.
Using the best known bound of [16], this gives a 2k2 − k ratio upper bound,
but we expect that this can be improved. In the uniform metric space, simply
moving the servers in order will achieve the (optimal) ratio of k.

We show that in a tree, the competitive ratio is no worse than 1
2
k(k + 1).

We employ the dc-tree algorithm of [10], generalized from dc of [8]. The
algorithm is defined as follows: move each of the servers with an unblocked
(by other servers) path to the request towards the request at a constant speed.
Note that servers may begin moving, and later stop moving as they become
blocked by other servers which move onto their path.

Theorem 3 For k servers in a tree under the L∞ norm, dc-tree has com-
petitive ratio 1

2
k(k + 1).

PROOF. The analysis is as in [10], with only a slight change in the potential
function. Let Mmin be the distance for the best matching between the online
and offline servers, and Σdc-tree be the distance between all unordered pairs
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of online servers. The argument uses the following potential function:

Φ =
(k + 1)Mmin

2
+

1

2
Σdc-tree.

With an offline move of cost d, offline server can increase Mmin by kd, thus
increasing the potential by k(k+1)d

2
.

Next, consider a time in which x online servers move distance d: at most
x − 1 of them move away from their matched offline server, while one moves
towards its match, so Mmin increases by at most d(x− 2). The moving servers
all move towards each other, a distance of 2d each pair. At most one server
moves away from each stationary online server, and x−1 servers move towards
each stationary online server, a distance of of d each. So, Σdc-tree decreases
by 2dx(x − 1)/2 + d(k − x)(x − 2), and the total change in Φ is at least
d(x− 2)(k + 1)/2− dx(x− 1)/2− d(k− x)(x− 2)/2 = −d, while d is the cost
to the online algorithm.

To show this ratio is tight for dc-tree, consider servers (online and offline)
at position (2, 4, . . . , 2k) of a line. For a cost of 1, the offline algorithm can
move all of its servers to (1, 3, . . . , 2k − 1). The adversary is lazy, and will
at each time request its uncovered server which is at the lowest value (i.e.,
the sequence request will be 1, 3, 1, 5, 3, 1, 7, 5, 3, 1, . . .). Each request will cost
dc-tree 1 to serve, and it will take 1

2
k(k + 1) total requests to converge to

the offline position, at which time we are at a position similar to the original
one. �

Unfortunately, under the L∞ norm, the dc-tree algorithm for k = 2 can
not be extended to arbitrary metric spaces as it is in [9] under the L1 norm.
There, “virtual” movements can be remembered and performed later, without
additional costs. Here, free (non-maximum) movements (real or virtual) must
be made immediately or else they are no longer free.

For the case of k = 2, dc-tree is optimal, as the following lemma shows.

Lemma 4 For the 2-server problem, where the L∞ norm is used for each
movement cost, no online algorithm has competitive ratio less than 3 for two
servers in a line.

PROOF. Consider requests in a line, with initial configuration (online and
offline) (0, 2). If there is a request at 1, by symmetry, the online algorithm can
service it by moving the server at 2, and it can move the other server to any
point in the interval [−1, 1] at no extra cost. Next the adversary requests point
3, and can reveal its configuration (1, 3). The online algorithm must pay at
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least 2 to service the second request, and can be forced by repeated requests
to 1 and 3 to move to configuration (1, 3). The total online cost is at least 3,
but the offline cost is 1 (move the 2 servers together from (0, 2) to (1, 3)). This
configuration is similar to the initial one, and the situation can be repeated
indefinitely. Therefore, no online algorithm has ratio less than 3. �

6 Conclusions and Future Work

We have introduced several interesting variants of the k-server problem, with
the power to model new problems. There are numerous open problems left.
We mention only a few of them here.

In [21], a finite competitive ratio of 105 has been proven for the general 2-
server problem (the sum of any two 1-server problems), which includes the
cnn problem, confirming our original conjecture that it has a finite competitive
ratio. Clearly the gap can be narrowed. We believe that the actual ratio for cnn
is a small constant —less than 20. In fact, we conjecture that the generalized
Work Function Algorithm (which moves the server which minimizes λw(A′)+
d(A, A′)) has a constant competitive ratio for the cnn problem for any λ > 1
(λ = 3 seems a good candidate); we also conjecture that the generalized Work
Function Algorithm is competitive for the general 2-server problem.

The offline cnn problem seems interesting both in its own right and as a
stepping stone for the online problem. More precisely, we want to find simple
and fast memory-limited algorithms (exact or approximation) for the offline
cnn problem. While a simple dynamic programming algorithm can be used
to calculate optimal offline solutions, its state required grows with the length
of the request sequence, and its time grows with the length squared.

For the Euclidean (planar) 2-server problem under the L∞ norm, the intuition
behind dc-tree suggests that there is an algorithm with ratio better than 4
(which follows from the fact that 2 servers are 2 competitive), though it must
be at least 3 (by Lemma 4). Any ratio under 4 would be interesting, especially
by a simple algorithm.

We believe that for all three problems (sum of server problems, weighted
k-server, L∞ variant of the k-server problem), a generalized Work Function
Algorithm has a competitive ratio at most a constant multiple larger than the
optimal ratio.

We thank the anonymous referees for their helpful, in-depth comments.
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[11] Marek Chrobak and Jǐŕı Sgall. The weighted 2-server problem. In 17th Annual
Symposium on Theoretical Aspects of Computer Science, volume 1770 of Lecture
Notes in Computer Science, pages 593–604. Springer-Verlag, 2000.

[12] Amos Fiat, Yuval Rabani, and Yiftach Ravid. Competitive k-server algorithms.
Journal Computer Systems Science, 48:410–428, 1994.

[13] Amos Fiat and Moty Ricklin. Competitive algorithms for the weighted server
problem. Theoretical Computer Science, 130(1):85–99, 1994.

[14] Edward F. Grove. The harmonic k-server algorithm is competitive. In Proc.
23rd Symposium on Theory of Computing, pages 260–266, 1991.

[15] Anna Karlin, Mark Manasse, Larry Rudolph, and Daniel Sleator. Competitive
snoopy caching. Algorithmica, 3:79–119, 1988.

15



[16] Elias Koutsoupias and Christos Papadimitriou. On the k-server conjecture. In
Proc. 26th Symposium on Theory of Computing, pages 507–511, 1994.

[17] Elias Koutsoupias and David Scot Taylor. The cnn problem and other k-
server variants. In 17th Annual Symposium on Theoretical Aspects of Computer
Science, volume 1770 of Lecture Notes in Computer Science, pages 581–592.
Springer-Verlag, 2000.

[18] Mark Manasse, Lyle A. McGeoch, and Daniel Sleator. Competitive algorithms
for server problems. Journal of Algorithms, 11:208–230, 1990.

[19] Christos H. Papadimitriou and Mihalis Yannakakis. Shortest paths without a
map. Theoretical Computer Science, 84:127–150, 1991.

[20] David A. Patterson, Garth A. Gibson, and Randy H. Katz. A case for redundant
arrays of inexpensive disks (RAID). In Proc. of the 1988 ACM SIGMOD
International Conference on Management of Data, pages 109–116. ACM Press,
1988.
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