
2

Efficient Program Composition on Parix by the Ensemble Methodology

J.Y. Cotronis
Dept. of Informatics, Univ. of Athens, Panepistimiopolis, TYPA Buildings, 157 71 Athens, Greece.

e-mail: cotronis@di.uoa.gr Phone: +30 1 7291 885 Fax: +30 1 7219 561

Proceedings of 22nd EuroMicro Conference, edit. P. Milligan and Kuchcinski, IEEE Computer Society Press, pp 545-552

Abstract
A message passing program composition methodology,

called Ensemble, applied for Parix is presented. Ensemble
overcomes the implementation problems and complexities
in developing applications in message passing
environments. Parallel applications are virtually specified
by Process Communication Graphs (PCGs) annotated
with communication information for Parix processes.
Annotated PCGs are generated from application scripts by
supporting tools. Reusable Parix executable components
are defined from which all processes are created. A
universal Parix program loader interprets the annotated
PCGs creating the application processes from the
reusable components and establishing their
communication dependencies. Ensemble is applied to
compose variations of Parix applications using the same
reusable components. The methodology has been applied
for PVM.

Keywords: software engineering for parallel systems,
message passing program composition, reusable message
passing components, annotated process communication
graphs, message passing scripts, Parix.

1. Introduction
Message passing programming environments, such as

Parix [8] and PVM [5], influence the software architecture
of applications to such a degree that two programs
implementing the same design (e.g. a simple ring topology)
developed in two different environments, both
programmed in, say, C with library message passing
extensions, appear to be dramatically distinct. Typical
environment characteristics influencing the design of
applications are: 1) How is the application initiated, 2) The
structure of processes, 3) How and where processes are
created, 4) The process identification. Curiously, the
message passing routines themselves, that is, how
processes communicate, interact, synchronize, etc. in each
environment do not influence the architecture of the
applications but they have a rather more local influence.

Message passing environments allow for a general form
of MIMD parallel computation, as application programs
may possess arbitrary control and dependency structures.
At any point in the execution of a concurrent application,
the processes in existence may have arbitrary relationships
between each other and in addition, any process may

communicate and/or synchronize with any other. As in all
programming environments, however, there are application
types that are well suited to the characteristics of particular
environments making them easy to implement and
application types that are not so well suited and are thus
much more difficult to implement.

In this paper we present the Ensemble methodology for
implementing message passing program designs on Parix
by the efficient composition of reusable message passing
components. Ensemble has been applied for PVM [5] and
although, the methodology is in principle the same for all
message passing environments, the development of
supporting techniques and tools required for each, differs
significantly and demands specific treatment. It is our
intention to develop a methodology in which
implementations of the same program design in different
message passing environments look similar and are
implemented efficiently.

Let us examine the Parix characteristics which influence
the application architecture.

1.1 Parix overview

Parix runs on PARSYTEC architectures and views them
as a logical grid of processors. Throughout a program
execution a set of processors, a partition or a network of
processors, is exclusively reserved and managed as a
private resource of the application program.

Applications are initiated from a front-end computer by
loading the same initial main application program on all
processors of the partition. The main application program
is an executable residing in the file space of the front-end
machine. Thus, a Parix MIMD program appears as an
SPMD program. A set of global data kept at each
processor allows identification of the “own” processor
position within the network. Depending on this position it
is possible to execute different sections of the main code or
execute identical instructions on different data. A complete
application may well be the cooperating copies of this
main program.

A program may create light-weight processes, called
also threads, handling asynchronous services. Threads are
running concurrently in the same context, i.e. an
environment with its own code and data, and share all
global variables defined in the program. Variable
protection and synchronization between threads in the
same context may be achieved by using semaphore
operations. Contexts cannot migrate to another processor.
Thus an application which initially looks like an SPMD

george
 Euromicro Conference 96, Prague, 1996

application may, during run-time, become a true MIMD, as
local threads are created in contexts.

It is also possible to load and run an altogether different
code at any time on a processor by issuing an Execute call.
This call loads an executable Parix program on the
processor the calling thread runs on and creates a new
context completely distinct from the context of the calling
thread; the calling thread waits for termination of the new
context before it resumes execution. More than one
contexts may run on the same processor each being issued
by a different thread.

Communication between threads may be synchronous
(S) or asynchronous (A). Communication may be based on
virtual links (L) which build point-to-point connections
between threads. A set of virtual links can be combined to
build a virtual topology (T). Communication may also be
random (R), that is not requiring the definition of virtual
links or topologies. There are routines for sending and
receiving messages implementing the above
communication types, as shown in the following table:
 synchronous (S) asynchronous (A)
virtual links (L) SendLink, RecvLink
topology (T) Send, Recv ASend, ARecv
random (R) SendNode, RecvNode (PutMessage,

 GetMessage)
There are five communication possibilities, denoted

hereafter by SL, ST, SR, AT, AR from the corresponding
column (S or A) and row (L, T, R). Note that there is no
AL communication routines, that is asynchronous
communication over links is not supported. In Parix 1.9
running on CC machines AR are not supported either; for
this reason routines are placed in parentheses.

Communication types define, explicitly or implicitly,
communication channels between threads. All
programming notations based on message passing between
processes provide channels of some form and primitives
for sending to and receiving from them [1]. A channel is an
abstraction of the physical communication network in that
it provides a communication path between threads. When
virtual links are used the channels are explicitly defined by
point-to-point links between threads. A link between two
threads is established when each calls a connection routine
(e.g. ConnectLink) giving as parameters each other’s
Processor Identifier, ProcId, and a common Request
Identifier, ReqId. Topologies group links under a topology
name and give them unique symbolic names within a
topology, thus defining channels explicitly and abstractly.
In random communication the channels are implicitly
specified by referring directly to the processor identifiers
the two threads are running on and the unique ReqId.

Consequently, in all communication types between two
threads the primary communication information are the
ProcIds of the participating threads and the ReqIds tagging
the messages over the channel. As threads cannot migrate
the processor identifier specifies the processor position of
the thread and the request identifier uniquely specifies a
particular channel of communication, as there may be more
than one thread running on a processor, or two threads may
communicate by more than one channel. Random

communication directly uses the primary communication
information; communication over links needs it to define
the links; and topology communication uses links to define
topologies.

1.2 Applications in Parix

Applications of the SPMD paradigm are easy to
implement in PARIX. All processors are loaded with the
same main program and each, depending on its position,
operates on a different set of data. Also, well-structured
applications which consist of the same program component
loaded in all processors, each communicating with others
is some regular way (e.g. ring, grid, complete binary tree,
hypercube, etc.) is well suited to the Parix model. For these
cases library routines have been defined establishing
virtual topologies relieving the programmer from having to
built them. By regular we mean that there are functions
usually depending on ProcIds which determine the
communication dependencies.

However, programming arbitrarily structured
application programs is not, in general, an easy task in
PARIX. For example, when the communication
dependencies of program components does not form
complete binary trees. In this case the same program
component is loaded on all processors, as before, but as
the communication dependencies are not regular (there
cannot be general functions determining communication of
arbitrary tree nodes) the programmer has to program the
particular communication dependencies individually. It is
even more difficult when different types of program
components are required to be loaded and the
communication dependencies between them form arbitrary
graphs. Establishing arbitrary structured graph-like process
communication dependencies requires a substantial
programming effort. The effort is twofold:

(i) Programming the loading of the various program
components. The main program has to load the appropriate
program components, depending on the processor’s
position. The programmer has to write the “main”
application program as well as the programs to be loaded
later. Implementations burden the design of the distributed
application.

(ii) Programming of the communication dependencies
between program components directly in the source code.
The reusability of the program components is limited since
such components rely on the specific dependencies
(ProcId, ReqId) they are involved in and they cannot be
used without modification to establish a different
communication dependency structure.

1.3 Ensemble methodology overview

The Ensemble methodology comprises three facets:
1. The Process Communication Graphs (PCG), which

are used as a natural structure for specifying the processes
and their communication dependencies. PCGs are close to
the program design. Nodes on a PCG denote processes and
arcs the communication dependencies between them.
PCGs have been used in modeling [1], in dynamic analysis
and simulation [9,10], in mapping techniques [2,6], etc.

The PCGs are annotated with appropriate information
Parix needs for the creation and communication of its
processes. PCGs are interpreted by a universal Parix
Loader which initializes the applications specified by the
PCGs. The annotated PCGs are produced from Ensemble
scripts by two tools, the PCG-builder and the PCG-
annotator.

2. The universal Loader acts as the “main” program for
all Parix applications, which reads an annotated PCG and
loads the appropriate processes on processors passing to
them their communication and command line parameters.
The programmer does not have to write a “main” program
at all, only reusable components giving a result or
providing a service.

3. The Loader requires that the program components
from which processes are instantiated are reusable as
library components. Program components do not assume
any specific communication structure in which the
processes instantiated from them are involved, but only
generally specify the type of their communication
channels. A reusable program component may have many
process instantiations in the same application, each with its
own communication dependencies. A reusable program
component may also be used without modification in other
applications, where its process instantiations communicate
with altogether different processes, which are themselves
instantiations of other reusable library components.

The structure of the paper is as follows: in section 2 we
present the Process Communication Graphs, their
annotation and their generation from Ensemble scripts; in
section 3 we present the Parix Loader which interprets
annotated PCGs; in section 4 we present the design of
reusable program components in Parix; in section 5 we
demonstrate the methodology by composing variations of
Parix programs using the same reusable components and in
section 6 we present our conclusions.

2. The PCGs and their annotation
Before we define the PCGs and their annotation let us

describe a distributed application which we shall use as a
demonstrating example.

2.1 A distributed application: Get Maximum

Processes instantiated from a terminal component
possess a value; all terminal processes, or simply
terminals, need to get the maximum value possessed by
any of them. To limit the number of messages the terminals
do not broadcast their values to all others; instead, there
are processes, instantiated from a relay component, to
which groups of terminals send their values. The relay
processes, or simply relays, cooperate to find the
maximum of the values, which they then send to their
groups of terminals. The terminals have one
communication dependency, that with their associated
relay, which we call S (Server) type. The relays have two
types of communication dependencies, one with their
groups of terminals, which we call C (Client) type, and one
with the relays, which we call P (Propagation) type. A
relay may have any non negative number of C

dependencies and P dependencies. The main actions and
the communication dependencies of terminals and relays
are:

The actions of a terminal
send local value to relay (to S type)
receive maximum value from relay (from S type)

The actions of a relay
receive values from the client terminals (from C type)
find the local maximum (LM) of values
send LM to all other relays (to P type)
receive LMs from all other relays (from P type)
find the global maximum GM
send GM to its client terminals (to C type)

The implementation should be easily configurable, that
is, to be possible to add or remove terminal and/or relay
processes, without any modification of the program
components, i.e. the terminal and relay executables.

2.2 The elements of the PCG and their annotation

Processes will be depicted on PCGs by nodes
comprised of two concentric circles depicted in Figure 1:

terminal process relay process

(a) (b)

1
2

n

1
2

m

P

S
1

...
...

C

F
igure 1: Graphical depiction of processes.

On the inner circle the type of dependencies are
indicated. The inner circle depicts the general interface
type of the program components. The arcs leaving the
nodes indicate communication dependencies (of a specific
type) with other processes. The points where the arcs cut
the outer circle depict the actual interface of processes to
other processes. Each point of intersection is called a port
and is indexed by a unique positive integer within a port
type. The arcs of the PCG connect ports of nodes. Let us
assume, for example, that we have a configuration of eight
terminals connected to four relays depicted in Figure 2.

3

8

9

12

2

1

S

T[8]

1

8

T[4]
T[5]

S S
1 1

4 5

4
5

T[2]

T[1]

T[3]

S

S

S

1

1

1

1

2

3

1

R[4] C

P

1

0

1

R[2]
C

P

1 2

10

10

R[1]

C

P 1
2

3

9

T[6]

T[7]

S

S

1

1

6

7

6

7

R[3]

C

P 1

2
11

11

14

132

1 1

3
2

2

2

3

3
3

Figure 2: The PCG for application Get Maximum

The three C type ports of relay R[1] are connected with
the S type ports of three terminals T[1], T[2] and T[3]; the
two C type ports of relay R[2] are connected with the S

type ports of two terminals T[4] and T[5]; the two C type
ports of relay R[3] are connected with the S type ports of
two terminals T[6] and T[7]; and finally the single C type
port of R[4] is connected with the S type port of T[8]. All
relays are connected to each other via their P ports. The
elements of the PCG described so far specify a general
PCG independent of any message passing environment.

For a PCG to specify a complete application it needs to
be annotated. We need to specify on which processor each
process will be loaded. Essentially, this is the mapping of
the application as code is assigned to processors. The
nodes are annotated by consecutive integers starting from
zero, which are the processor identifiers in a Parix
partition. In the PCG representation of Figure 2 the
ProcIds appear at the centers of the circles.

Arcs on the PCGs represent communication channels.
For a complete communication channel specification
request identifiers are used by both sending and receiving
threads. The request identifiers annotate the arcs of the
PCG. Finally, nodes are annotated by the full path name of
the executable component from which the process will be
instantiated and possibly by command line parameters. For
reasons of simplicity executable path names and
parameters are not depicted on Figure 2.

The annotated PCG may be produced by a graphical
tool or by a textual description. We have developed an
Ensemble script language and script processing programs
which read Ensemble scripts and produce annotated PCGs.
A program script has three parts: the first describes the
general PCG, the second the annotation of the PCG
specific to a parallel environment (in this case Parix) and
the third the annotation specific to the sequential
components. Each of the three parts is further subdivided
into sections.

The script generating the annotated PCG of Figure 2, is
presented in Figure 3. The first part, headed by PCG,
specifies the components of the application and their types
of dependencies; then it defines the processes,
instantiations of components, and their number of ports for
each type. All T nodes have one port of type S, all R nodes
have three ports of type P; node R[1] has three ports of
type C, nodes R[2] and R[3] two ports of type C and R[4]
one port of type C. This part also defines the channels
between the ports. A script processing program, called
PCG-builder, parses this first part of the script and
produces the PCG of the application. It is the only tool
common for all message passing environments.

The second part, headed by Parallel System defines the
specific PCG annotation for Parix. The compulsory
annotation of nodes by Process Identifiers, and of arcs by
Request Identifiers is specified; here the default specifies
the annotation of the nodes and arcs by unique non-
negative integers, but other generating algorithms or direct
annotations may be defined.

The third part, headed by Sequential System, annotates
the nodes of the PCG with the file locations of the
component executables from which processes are to be
instantiated, as well as any command line parameters
required by the processes. All T processes are passed an

integer parameter which is the value they possess. The
maximum is 999, the parameter of T[8]. A second script
processing program, called PCG-annotator, parses the
second and third parts of the script and produces the Parix
annotated PCG of the application.

Application Get_Maximum;
PCG
Components
 T port-types:S;
 R port-types:C, P;
Processes
/* specify for each process the number of
ports of each type*/
 T[1], T[2], T[3], T[4],
 T[5], T[6], T[7], T[8] #ports =S:1;
 R[1] #ports = C:3, P:3;
 R[2], R[3] #ports = C:2, P:3;
 R[4] #ports = C:1, P:3;
Channels
/* Connect process ports */
 T[1].S[1] <-> R[1].C[1];
 T[2].S[1] <-> R[1].C[2];
 T[3].S[1] <-> R[1].C[3];
 T[4].S[1] <-> R[2].C[1];
 T[5].S[1] <-> R[2].C[2];
 T[6].S[1] <-> R[3].C[1];
 T[7].S[1] <-> R[3].C[2];
 T[8].S[1] <-> R[4].C[1];
 R[1].P[1] <-> R[3].P[1];
 R[1].P[2] <-> R[4].P[2];
 R[1].P[3] <-> R[2].P[1];
 R[2].P[2] <-> R[3].P[2];
 R[2].P[3] <-> R[4].P[3];
 R[3].P[3] <-> R[4].P[1];
PARALLEL SYSTEM
Environment Parix;
 Parix_annotation
 ReqId: default; /* unique request Ids */
 ProcId: default; /* Processor Ids 0-N */
SEQUENTIAL COMPONENTS
Executable files
/* full path and name of executables*/
 R:"/home/users/bcast/relay";
 T:"/home/users/bcast/terminal;
Execution Parameters
T[1]:21; T[2]:22; T[3]:23; T[4]:24;
T[5]:25; T[6]:26; T[7]:27; T[8]:999;
Figure 3: The Ensemble script for Get Maximum

The annotated PCG depicts all the characteristics of the
application: the number of processes of each component
type and their interconnection; the processors to be loaded
on; the request identifiers uniquely specifying the tags of
messages. The annotated PCGs may now be interpreted by
the Loader program, common for all Parix applications.

3. The Parix application loader
The Parix application Loader is the program that is

responsible for launching the distributed application. It is
the universal Parix “main” program which is loaded on all
processors on the partition having a specific annotated
PCG as its command line argument. Applications will be
initialized with the run command issued from the Parix
front-end in the form:

run -a “partition” Loader “annotated PCG”

The Loader is loaded on each of the processors in the
partition. Its action is simple. Each copy first obtains the
Processor Identifier it is running on, say MyProcId. It then
visits the annotated PCG’s nodes and, if a node is allocated
to MyProcId, it loads the process denoted on the node
passing it the appropriate connectivity and command line
parameters. The connectivity parameters are a list of
values providing the connectivity information for each of
its ports. For each port two values must be provided
(ProcId, ReqId). For example when creating R[2] the port
connectivity information passed as parameters is

connectivity
parameters

port connectivity explanation

C, 1, 4, 4 port C1 connected to Proc 4; ReqId 4
C, 2, 5, 5 port C2 connected to Proc 5; ReqId 5
S, 1 , 9, 9 port S1 connected to Proc 9; ReqId 9
S, 2, 11, 10 port S2 connected to Proc 11;ReqId 10
S, 3, 0, 13 port S3 connected to Proc 0; ReqId 13

The Loader calls the Parix Execute routine, having as
first parameter the name of the executable file to be loaded
and as a second its connectivity parameter list, followed by
the command line parameter list. The processes are now
appropriately loaded. They have now to be interconnected
as specified by the parameter list. This is the responsibility
of the reusable components.

4. The reusable program components
Reusability of program components demands that, if

required by an application, any number of processes can be
instantiated on any processor. It should also be possible to
dynamically establish upon process creation the
appropriate communication channels between them. As the
number of actual processes and their communication
dependencies is not fixed, the program components should
only specify the number and type of communication
channels in a general way. A program component should
provide the means for the establishment of actual
communication channels between any process created from
it with any other compatible process without relying on
their position.

A general channel specification in Parix is defined as a
data structure, called port, storing (Processor Identifier,
Request Identifier) pairs, (ProcId, ReqId) for short. The
two elements in the port structure (ProcId; ReqId) is the
primary connectivity information of a communication
channel associated with a port. The actual port values are
provided, at process creation time, by the Loader. A
program component may manage many ports of the same
type, which are organized as an array of ports of the this
type. Furthermore, a component may have many types of
ports. All ports of all its types form the component’s
interface and all port values are organized in the structure
Interface. Each port in Interface is now identified by its
index type and its port number within the type. Without
loss of generality, all random communication routines
(e.g., SR: SendNode, RecvNode; AR: PutMessage,
GetMessage) and virtual link creation routines (e.g.,
ConnectLink) have to use as their port information
parameters elements of the Interface structure:

Interface[T].port[P].ProcId and
Interface[T].port[P].ReqId, where T is a port type and P a
port number. Structure Interface may have for each port
two more elements: one of type Link holding the link value
of a channel which link communication routines (e.g., SL:
SendLink, RecvLink) may use as their parameter the value
(Interface[T].port[P].Link) and one of type topology
holding the topology value of a link, which topology
communication routines (e.g., ST: Send, Recv; AT:
ASend, ARecv) may use as their parameter the value
(Interface[T].port[P].Top).

We permit components to have a variable number of
ports of each type; the interface for each process, the
number as well as the values of its ports, will be fixed upon
its creation. The loader provides this information in the
parameters of Execute calls for process creation; the port
interface of the process on processor 10, i.e. R[2], for
example, will have the following values:
port ProcId ReqId
C.1 4 4
C.2 5 5
S.1 9 9
S.2 11 10
S.3 0 13

It is the responsibility of the components to read their

parameters and fix the shape and values of elements of
structure Interface upon process creation. All components
have a common structure, shown in Figure 4:

void main(argc, argv);
 InterfaceType Interface[N]; /* N is
#types*/
{ MakePorts(Interface);
 SetInterface(Interface);
 realMain(Interface); /* main action */ }
void realMain (Interface, argc1, argv1);
 { actions of components}
Figure 4: The common structure of components

The programmer has to fix for each component the
number N of its port types. As each process is created, it
calls the MakePorts routine which sets the appropriate
number of ports of each type. Then SetInterface routine is
called which sets the (ProcId, ReqId) values in the
appropriate ports of structure Interface. Having set up its
port interface routine realMain is called which codes the
main actions of a component. The complete application is
now running.

In the description of routine SetInterface in the previous
paragraph, it is assumed that realMain uses random
communication, as in Interface only the primary
connectivity information is stored. The Link and the
Topology fields have not been fixed. If we simply continue
the actions of SetInterface by a series of ConnectLink
calls, the components may not be reusable at all; as a
matter of fact the program may not be able to run at all,
coming to a deadlock. The reason is that for the
establishment of virtual links, symmetric synchronous calls
have to be made by the participating threads. Each thread
calls the ConnectLink routine, which in order to create the

link requires synchronous communication between the
threads. This means that both threads should be able to
reach their corresponding ConnectLink calls. The general
problem is exemplified in the Parix manual [8], chapter 10,
pg. 90-97, where a ring topology is created. There, N
processes are to be connected in a ring; each has two links,
one left and one right. If all processes try first to connect to
their left processor and then to their right, a deadlock
occurs, as all of them wait for the left process to issue a
corresponding call. The solution suggested is for the
processes residing on a even ProcId to connect to their
right first and then to their left, and for processes residing
on an odd ProcId to connect first to their left and then to
their right. This example demonstrates that for the simplest
of topologies care should be given in the order of calling
ConnectLink routines. Significant design effort and
programming is required for more complex topologies. For
program components to be completely reusable as library
components they cannot depend on any ConnectLink calls
ordering. For otherwise, components would depend on
each other, contradicting their reusability as library
components. Therefore, the alternative suggested in [8] is
followed, by which each ConnectLink call is issued by a
different thread; for each communication channel one
thread is needed, the activation of which is performed by
Parix. No extra effort is required by the programmer.

The alternative method is coded in the SetInterface
routine. Rather than having a number of ConnectLink
calls, a number of StartThread calls are issued. Each
StartThread invokes the program SetLink which takes as
parameter a port and calls ConnectLink with parameters
the port values ProcId and ReqId. The ConnectLink call
sets the Link field of the port. If in addition this link is part
of a topology, program SetLink sets the topology field of
the port. All SetLink threads are synchronized before
SetInterface exits. Then realMain may use any type of
communication permitted by Parix.

Components are now completely reusable as they only
specify general methods for setting their communication
interface, they do not assume communication with any
specific components and the virtual links between
processes are established in any application context by
asynchronous threads. Furthermore, components do not
specify on which processor processes should be loaded.
This information is specified in the script.

Running the Parix Loader with the annotated PCG of
Get Maximum as input we get the following output; the
first part is produced by the Loader, as it spawns
processes, and the second by the terminal processes:

Spawn process 1 (terminal) on Proc 1
Spawn process 2 (terminal) on Proc 2
Spawn process 3 (terminal) on Proc 3
Spawn process 4 (terminal) on Proc 4
Spawn process 5 (terminal) on Proc 5
Spawn process 6 (terminal) on Proc 6
Spawn process 7 (terminal) on Proc 7
Spawn process 8 (terminal) on Proc 8
Spawn process 9 (relay) on Proc 9
Spawn process 10 (relay) on Proc 10
Spawn process 11 (relay) on Proc 11
Spawn process 12 (relay) on Proc 0

[Proc 1] The maximum value is 999
[Proc 2] The maximum value is 999
[Proc 3] The maximum value is 999
[Proc 8] The maximum value is 999
[Proc 4] The maximum value is 999
[Proc 6] The maximum value is 999
[Proc 5] The maximum value is 999
[Proc 7] The maximum value is 999

As the twelve processes, eight terminal and four relay
are spawned, the Parix Loader prints the processor they
run on; the terminal processes print the global maximum of
their parameters. All terminal processes print the same
maximum of 999 which was the parameter of T[8].

For a Parix program to behave correctly, the nodes on
the PCG and the actual program components must be
compatible, that is, they should specify, the former
virtually and the latter actually, the same number of types
of ports. Furthermore, the connections between ports
should be of compatible type, that is they agree on the type
of messages they exchange and their management. The
present version of the Loader does not check the
compatibility of the connections. We are currently
investigating formal methods for describing and testing
compatibility, which will be integrated in the Loader.

Having developed reusable components we may use
them in scripts to compose new applications. The script
language is flexible and permits the rapid composition of
Parix programs. It is straight forward to edit scripts to
scale a program by adding and connecting new
components, to change the allocation of processes to
processors, to change the topology of the components, etc.,
without modifying the program components. In the next
section we demonstrate the flexibility of the script
language to compose applications by reusing components
in different topologies.

5 Variations of Get Maximum
The specification for the Get Maximum program in

section 2 did not specify any particular topology by which
the relay processes should be connected. In the solution of
section 2 we had adopted a topology in which all relay
processes are connected with each other. We may achieve
the required functionality by adopting different topologies.
We shall present two variations, one in which relay
processes form a star topology and a second in which they
form a tree topology. For these variations we will modify
the scripts and reuse the terminal and relay components.

5.1 Get Maximum by star topology

In this solution we use an extra relay process to which the
old four relay processes will be connected. The four relay
processes have now only one P port, through which they
send the maximum value received from their terminals.
The new relay process, let us call it central, has four ports
of type C (clients). The P type ports of the four relay
processes are connected to the C type ports of the central
process! Let us note, that the C and the P ports of the relay
processes are compatible, as only one value is sent and one
value is received through them. The PCG for this
configuration is depicted in Figure 5:

3

6

7

8

9

12

1

R[1]

C

P 1
2

3

9
2

1

S

T[8]

1

8

1

12

R[5]
C P 1

2
3

R[2] C
P

1 2

10

10

1

R[3]

C

P 1

2
11

4
11

T[4]
T[5]

S S
1 1

4 5

4
5

T[2]

T[1]

T[3]

S

S

S

1

1

1

1

2

3

1

R[4] C

P

1

0

T[6]

T[7]

S

S

1

1

6

7

Figure 5: The PCG of Get Maximum by Star
Let us describe the behavior of the program: the four

relay processes, as before, select the local maximum of the
values of their clients and propagate it via their single port
of type P to the central relay process. The central process
receives values from its C ports and selects their
maximum. There are no P ports to send the maximum. It
then sends its maximum to its C ports. What actually sends
is the global maximum, as it is the maximum of all
maxima. Each relay receives the global maximum, but,
according to the algorithm, they act as if it is the local
maximum of a relay process. They compare it with their
own maximum, select the value they have received and
send it to their client ports. The PCG part of the modified
script is in Figure 6:
Application Get-Maximum-Star;
PCG
Components
 T port-types:S;
 R port-types: C, P;
Processes
 T[1], T[2], T[3], T[4],
 T[5], T[6], T[7], T[8] #ports = S:1;
 R[1] #ports = C:3, P:1;
 R[2], R[3] #ports = C:2, P:1;
 R[4] #ports = C:1, P:1;
 R[5] #ports = C:4, P:0;
Channels
 T[1].S[1] <-> R[1].P[1];
 T[2].S[1] <-> R[1].P[2];
 T[3].S[1] <-> R[1].P[3];
 T[4].S[1] <-> R[2].P[1];
 T[5].S[1] <-> R[2].P[2];
 T[6].S[1] <-> R[3].P[1];
 T[7].S[1] <-> R[3].P[2];
 T[8].S[1] <-> R[4].P[1];
 R[1].P[1] <-> R[5].S[1];
 R[2].P[1] <-> R[5].S[2];
 R[3].P[1] <-> R[5].S[3];
 R[4].P[1] <-> R[5].S[4];
Figure 6 The PCG for Get Maximum by Star

For this solution no changes are needed for the terminal
and the relay program components, but only to the script.
The executables of the terminal and relay program
component were reused. The new program script was
produced rapidly by modifying the program script of the

version of section 2. The annotated PCG was produced
from the script, which was given as input to the Loader.

5.2 Get Maximum by tree topology

In this variation we maintain the relationship of the
eight terminals to the four relay processes having, as in the
star solution, one P port. The P ports of R[1] and R[2] are
connected with the C ports of R[5] and the P ports R[3]
and R[4] are connected with the C ports of R[6]. Both R[5]
and R[6] have two C ports and one P port; their P ports are
connected to the two C ports of R[7], which does not have
any P ports. The process structure is a tree of height 3: the
terminal processes are the leafs; R[1], R[2], R[3] and R[4]
at level two; R[5] and R[6] at level one; and R[7] as the
root. At each level, the relay processes receive the values
from their clients, select the maximum and propagate it to
the next level up. The root selects the maximum and sends
it to its client processes. The relay processes below the
root do the same until the maximum reaches the terminal
processes. The PCG part of the script is shown in Figure 7:

Application Get-Maximum-Tree;
PCG
Components
 T port-types:S;
 R port-types: C, P;
Processes
 T[1], T[2], T[3], T[4],
 T[5], T[6], T[7], T[8] #ports= S:1;
 R[1] #ports= C:3,P:1;
 R[2], R[3], R[5], R[6] #ports= C:2,P:1;
 R[4] #ports= C:1,P:1;
 R[7] #ports= C:2,P:0;
Channels
 T[1].S[1] <-> R[1].C[1];
 T[2].S[1] <-> R[1].C[2];
 T[3].S[1] <-> R[1].C[3];
 T[4].S[1] <-> R[2].C[1];
 T[5].S[1] <-> R[2].C[2];
 T[6].S[1] <-> R[3].C[1];
 T[7].S[1] <-> R[3].C[2];
 T[8].S[1] <-> R[4].C[1];
 R[1].P[1] <-> R[5].C[1];
 R[2].P[1] <-> R[5].C[2];
 R[3].P[1] <-> R[6].C[1];
 R[4].P[1] <-> R[6].C[2];
 R[7].C[1] <-> R[5].P[1];
 R[7].C[2] <-> R[6].P[1];
Figure 7: The PCG for Get Maximum by Tree

The PCG part of the script is close to the design of the
message passing application, the other two parts are more
closely to the detailed design and the implementation of
the application.

6. Conclusions and future work
The Ensemble methodology applied to Parix is

presented. Ensemble is a message passing program
implementation methodology by which the programming
overhead effort required for creating arbitrary structured
parallel applications in Parix is overcome. In Ensemble
parallel applications are virtually specified by Process
Communication Graphs (PCGs) interpreted by a universal
Parix Loader, which acts as a universal Parix “main”

program. The loader automatically creates the appropriate
processes establishing their communication dependencies.
Program component structures have been developed
permitting their reusability as library components.

The Ensemble methodology “removes” from message
passing environments the aspects that most influence the
architecture of applications, namely process management.
They are “removed” in the sense that it is not required for
program components to define topologies, the processors
they are running on, etc. All process management aspects
are expressed in the scripts, which are virtual
representations of applications. Consequently, Ensemble
“removes” the effort of programming most of the
architectural idiosyncrasies of message passing
environments.

Ensemble does not suggest a new message passing
environment and does not demand any changes to message
passing environments but acts like a shell to them.
Ensemble does not cause any execution overhead, apart
from the execution of the loader interpreting PCGs, which
is minimal compared with the saved programmer’s
development time. Ensemble is independent of any design,
visualization, performance, etc. tools.

Ensemble provides a flexible and efficient means for
composing applications. Although, the script language is
still under development it was shown to be flexible and
permitted the rapid composition of Parix programs. It is
straight forward to edit the script to scale a program by
adding and connecting new components, to change the
allocation of processes to processors, the topology, etc.

Ensemble separates all elements of a message passing
application: the process topology, the architecture, the
mapping of the processes onto processors and the activity
of the application giving the required result or providing a
service. The first three are described in the script and the
last by the program components. As they are separated
they may be modified independently of one another, thus
simplifying program debugging and maintenance. Script
modifications permit rapid program variations, thus
allowing to ask “what if” type of questions to test the
performance and fine tune the application.

Ensemble defines reusable message passing library
components with scalable communication interfaces and
uses them in the composition of applications in a “soft
LOGO” manner.

We demonstrated the flexibility of the methodology, by
composing various solutions to the Get Maximum
problem. Having constructed the program components for
the first solution we used them to compose and execute
other Parix programs solving the same problem but by a
different design.

The methodology may be applied to other message
passing environments by developing suitable PCG
annotation principles, structure of reusable components
and Loaders. We have applied it for PVM [5]. Although
PVM imposes an altogether different process management
model than Parix based, for example, on parent-child
creation of processes, it was possible to apply, in principle,
the same methodology. Ensemble implementations of the

same design look similar and components identical. Also,
the portability of applications from one environment to the
other is possible and in some cases is done automatically.
We shall compare implementations of the methodology
under PVM and Parix in a future report.

Future plans include the development of Ensemble for
MPI, parametric topology descriptions, more type of
process interactions. Ensemble is related to the
composition of Object Oriented systems by using objects
and scripts [7] encouraging a component oriented
approach to application development. The PCGs may be
viewed as the scripts that bind components together. We
shall pursue this comparison further in the future.

References
[1] G.R.Andrews: ‘Paradigms for Process Interaction in

Distributed Programs’, ACM Computing Surveys, Vol. 23,
No.1, March 91.

[2] F. Berman, L.Snyder, ‘On mapping parallel algorithms into
parallel architectures’, J. Parall. Distrib. Comput. 4, 5, 439-
458.

[3] J.Y. Cotronis: A Methodology for Initiating Arbitrary
Structured Programs in Parix by Interpreting Graphs, ZEUS
95, Parallel Programing and Applications, ed. P. Fritzon and
L. Finmo, IOS Press 1995.

[4] J.Y.Cotronis: Efficient composition and automatic
initialization of arbitrary structured PVM programs, IFIP
Proceedings of the 1st Workshop on Software Engineering
for Parallel and Distributed Systems, ICSE 96, Berlin, March
96.

[5] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek,
Vaidy Sunderam, ‘PVM 3 User’s guide and Reference
Manual’, ORNL/TM-12187, May 1994.

[6] M.G.Norman, P.Thanisch, ‘Mapping in Multicomputers’,
ACM Computing Surveys, Vol25, No.3, September 93.

[7] O. Nierstratz, D. Tsichritzis, V. de Mey, M. Stadelmann,
‘Objects + Scripts = Applications’, in Proceedings, Esprit
1991 Conference, Kluwer Academic Publishers, 1991, pp.
534-552.

[8] Parix1.2, Manual.
[9] P.Pouzet, J.Paris, V.Jorrand, ‘Parallel Application Design:

The Simulation Approach with HASTE’, Proc. High
Performance Computing and Networking, Munich, April 18-
20, 1994, Vol II, pp. 379-393.

[10] C. Scheidler, L.Schaefers, ‘TRAPPER: A Graphical
Programming Environment for Industrial High-Performance
Applications’, PARLE Conf., Munich, 403-413, 1993.

