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Abstract 
A message passing program composition methodology, 

called Ensemble, applied for Parix is presented. Ensemble 
overcomes the implementation problems and complexities 
in developing applications in message passing 
environments. Parallel applications are virtually specified 
by Process Communication Graphs (PCGs) annotated 
with communication information for Parix processes. 
Annotated PCGs are generated from application scripts by 
supporting tools. Reusable Parix executable components 
are defined from which all processes are created. A 
universal Parix program loader interprets the annotated 
PCGs creating the application processes from the 
reusable components and establishing their 
communication dependencies. Ensemble is applied to 
compose variations of Parix applications using the same 
reusable components. The methodology has been applied 
for PVM. 
 
Keywords: software engineering for parallel systems, 
message passing program composition, reusable message 
passing components, annotated process communication 
graphs, message passing scripts, Parix. 

1. Introduction 
Message passing programming environments, such as 

Parix [8] and PVM [5], influence the software architecture 
of applications to such a degree that two programs 
implementing the same design (e.g. a simple ring topology) 
developed in two different environments, both 
programmed in, say, C with library message passing 
extensions, appear to be dramatically distinct. Typical 
environment characteristics influencing the design of 
applications are: 1) How is the application initiated, 2) The 
structure of processes, 3) How and where processes are 
created, 4) The process identification. Curiously, the 
message passing routines themselves, that is, how 
processes communicate, interact, synchronize, etc. in each 
environment do not influence the architecture of the 
applications but they have a rather more local influence. 

Message passing environments allow for a general form 
of MIMD parallel computation, as application programs 
may possess arbitrary control and dependency structures. 
At any point in the execution of a concurrent application, 
the processes in existence may have arbitrary relationships 
between each other and in addition, any process may 

communicate and/or synchronize with any other. As in all 
programming environments, however, there are application 
types that are well suited to the characteristics of particular 
environments making them easy to implement and 
application types that are not so well suited and are thus 
much more difficult to implement. 

In this paper we present the Ensemble methodology for 
implementing message passing program designs on Parix 
by the efficient composition of reusable message passing 
components. Ensemble has been applied for PVM [5] and 
although, the methodology is in principle the same for all 
message passing environments, the development of 
supporting techniques and tools required for each, differs 
significantly and demands specific treatment. It is our 
intention to develop a methodology in which 
implementations of the same program design in different 
message passing environments look similar and are 
implemented efficiently. 

Let us examine the Parix characteristics which influence 
the application architecture. 

1.1 Parix overview  

Parix runs on PARSYTEC architectures and views them 
as a logical grid of processors. Throughout a program 
execution a set of processors, a partition or a network of 
processors, is exclusively reserved and managed as a 
private resource of the application program. 

Applications are initiated from a front-end computer by 
loading the same initial main application program on all 
processors of the partition. The main application program 
is an executable residing in the file space of the front-end 
machine. Thus, a Parix MIMD program appears as an 
SPMD program. A set of global data kept at each 
processor allows identification of the “own” processor 
position within the network. Depending on this position it 
is possible to execute different sections of the main code or 
execute identical instructions on different data. A complete 
application may well be the cooperating copies of this 
main program. 

A program may create light-weight processes, called 
also threads, handling asynchronous services. Threads are 
running concurrently in the same context, i.e. an 
environment with its own code and data, and share all 
global variables defined in the program. Variable 
protection and synchronization between threads in the 
same context may be achieved by using semaphore 
operations. Contexts cannot migrate to another processor. 
Thus an application which initially looks like an SPMD 
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application may, during run-time, become a true MIMD, as 
local threads are created in contexts. 

It is also possible to load and run an altogether different 
code at any time on a processor by issuing an Execute call. 
This call loads an executable Parix program on the 
processor the calling thread runs on and creates a new 
context completely distinct from the context of the calling 
thread; the calling thread waits for termination of the new 
context before it resumes execution. More than one 
contexts may run on the same processor each being issued 
by a different thread. 

Communication between threads may be synchronous 
(S) or asynchronous (A). Communication may be based on 
virtual links (L) which build point-to-point connections 
between threads. A set of virtual links can be combined to 
build a virtual topology (T). Communication may also be 
random (R), that is not requiring the definition of virtual 
links or topologies. There are routines for sending and 
receiving messages implementing the above 
communication types, as shown in the following table: 
 synchronous (S) asynchronous (A) 
virtual links (L) SendLink, RecvLink  
topology (T) Send, Recv ASend, ARecv 
random (R) SendNode, RecvNode ( PutMessage,  

  GetMessage ) 
There are five communication possibilities, denoted 

hereafter by SL, ST, SR, AT, AR from the corresponding 
column (S or A) and row (L, T, R). Note that there is no 
AL communication routines, that is asynchronous 
communication over links is not supported. In Parix 1.9 
running on CC machines AR are not supported either; for 
this reason routines are placed in parentheses. 

Communication types define, explicitly or implicitly, 
communication channels between threads. All 
programming notations based on message passing between 
processes provide channels of some form and primitives 
for sending to and receiving from them [1]. A channel is an 
abstraction of the physical communication network in that 
it provides a communication path between threads. When 
virtual links are used the channels are explicitly defined by 
point-to-point links between threads. A link between two 
threads is established when each calls a connection routine 
(e.g. ConnectLink) giving as parameters each other’s 
Processor Identifier, ProcId, and a common Request 
Identifier, ReqId. Topologies group links under a topology 
name and give them unique symbolic names within a 
topology, thus defining channels explicitly and abstractly. 
In random communication the channels are implicitly 
specified by referring directly to the processor identifiers 
the two threads are running on and the unique ReqId.  

Consequently, in all communication types between two 
threads the primary communication information are the 
ProcIds of the participating threads and the ReqIds tagging 
the messages over the channel. As threads cannot migrate 
the processor identifier specifies the processor position of 
the thread and the request identifier uniquely specifies a 
particular channel of communication, as there may be more 
than one thread running on a processor, or two threads may 
communicate by more than one channel. Random 

communication directly uses the primary communication 
information; communication over links needs it to define 
the links; and topology communication uses links to define 
topologies.  

1.2 Applications in Parix 

Applications of the SPMD paradigm are easy to 
implement in PARIX. All processors are loaded with the 
same main program and each, depending on its position, 
operates on a different set of data. Also, well-structured 
applications which consist of the same program component 
loaded in all processors, each communicating with others 
is some regular way (e.g. ring, grid, complete binary tree, 
hypercube, etc.) is well suited to the Parix model. For these 
cases library routines have been defined establishing 
virtual topologies relieving the programmer from having to 
built them. By regular we mean that there are functions 
usually depending on ProcIds which determine the 
communication dependencies. 

However, programming arbitrarily structured 
application programs is not, in general, an easy task in 
PARIX. For example, when the communication 
dependencies of program components does not form 
complete binary trees. In this case the same program 
component is loaded on all processors, as before, but as 
the communication dependencies are not regular (there 
cannot be general functions determining communication of 
arbitrary tree nodes) the programmer has to program the 
particular communication dependencies individually. It is 
even more difficult when different types of program 
components are required to be loaded and the 
communication dependencies between them form arbitrary 
graphs. Establishing arbitrary structured graph-like process 
communication dependencies requires a substantial 
programming effort. The effort is twofold:  

(i) Programming the loading of the various program 
components. The main program has to load the appropriate 
program components, depending on the processor’s 
position. The programmer has to write the “main” 
application program as well as the programs to be loaded 
later. Implementations burden the design of the distributed 
application.  

(ii) Programming of the communication dependencies 
between program components directly in the source code. 
The reusability of the program components is limited since 
such components rely on the specific dependencies 
(ProcId, ReqId) they are involved in and they cannot be 
used without modification to establish a different 
communication dependency structure.  

1.3 Ensemble methodology overview 

The Ensemble methodology comprises three facets: 
1. The Process Communication Graphs (PCG), which 

are used as a natural structure for specifying the processes 
and their communication dependencies. PCGs are close to 
the program design. Nodes on a PCG denote processes and 
arcs the communication dependencies between them. 
PCGs have been used in modeling [1], in dynamic analysis 
and simulation [9,10], in mapping techniques [2,6], etc. 



 

The PCGs are annotated with appropriate information 
Parix needs for the creation and communication of its 
processes. PCGs are interpreted by a universal Parix 
Loader which initializes the applications specified by the 
PCGs. The annotated PCGs are produced from Ensemble 
scripts by two tools, the PCG-builder and the PCG-
annotator. 

2. The universal Loader acts as the “main” program for 
all Parix applications, which reads an annotated PCG and 
loads the appropriate processes on processors passing to 
them their communication and command line parameters. 
The programmer does not have to write a “main” program 
at all, only reusable components giving a result or 
providing a service. 

3. The Loader requires that the program components 
from which processes are instantiated are reusable as 
library components. Program components do not assume 
any specific communication structure in which the 
processes instantiated from them are involved, but only 
generally specify the type of their communication 
channels. A reusable program component may have many 
process instantiations in the same application, each with its 
own communication dependencies. A reusable program 
component may also be used without modification in other 
applications, where its process instantiations communicate 
with altogether different processes, which are themselves 
instantiations of other reusable library components. 

The structure of the paper is as follows: in section 2 we 
present the Process Communication Graphs, their 
annotation and their generation from Ensemble scripts; in 
section 3 we present the Parix Loader which interprets 
annotated PCGs; in section 4 we present the design of 
reusable program components in Parix; in section 5 we 
demonstrate the methodology by composing variations of 
Parix programs using the same reusable components and in 
section 6 we present our conclusions. 

2. The PCGs and their annotation 
Before we define the PCGs and their annotation let us 

describe a distributed application which we shall use as a 
demonstrating example. 

2.1 A distributed application: Get Maximum 

Processes instantiated from a terminal component 
possess a value; all terminal processes, or simply 
terminals, need to get the maximum value possessed by 
any of them. To limit the number of messages the terminals 
do not broadcast their values to all others; instead, there 
are processes, instantiated from a relay component, to 
which groups of terminals send their values. The relay 
processes, or simply relays, cooperate to find the 
maximum of the values, which they then send to their 
groups of terminals. The terminals have one 
communication dependency, that with their associated 
relay, which we call S (Server) type. The relays have two 
types of communication dependencies, one with their 
groups of terminals, which we call C (Client) type, and one 
with the relays, which we call P (Propagation) type. A 
relay may have any non negative number of C 

dependencies and P dependencies. The main actions and 
the communication dependencies of terminals and relays 
are: 

The actions of a terminal 
send local value to relay (to S type) 
receive maximum value from relay (from S type) 

The actions of a relay 
receive values from the client terminals (from C type) 
find the local maximum (LM) of values 
send LM to all other relays (to P type) 
receive LMs from all other relays (from P type) 
find the global maximum GM 
send GM to its client terminals (to C type) 

The implementation should be easily configurable, that 
is, to be possible to add or remove terminal and/or relay 
processes, without any modification of the program 
components, i.e. the terminal and relay executables. 

2.2 The elements of the PCG and their annotation 

Processes will be depicted on PCGs by nodes 
comprised of two concentric circles depicted in Figure 1: 

terminal process relay process 
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igure 1: Graphical depiction of processes. 

On the inner circle the type of dependencies are 
indicated. The inner circle depicts the general interface 
type of the program components. The arcs leaving the 
nodes indicate communication dependencies (of a specific 
type) with other processes. The points where the arcs cut 
the outer circle depict the actual interface of processes to 
other processes. Each point of intersection is called a port 
and is indexed by a unique positive integer within a port 
type. The arcs of the PCG connect ports of nodes. Let us 
assume, for example, that we have a configuration of eight 
terminals connected to four relays depicted in Figure 2. 
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Figure 2: The PCG for application Get Maximum 

The three C type ports of relay R[1] are connected with 
the S type ports of three terminals T[1], T[2] and T[3]; the 
two C type ports of relay R[2] are connected with the S 



 

type ports of two terminals T[4] and T[5]; the two C type 
ports of relay R[3] are connected with the S type ports of 
two terminals T[6] and T[7]; and finally the single C type 
port of R[4] is connected with the S type port of T[8]. All 
relays are connected to each other via their P ports. The 
elements of the PCG described so far specify a general 
PCG independent of any message passing environment. 

For a PCG to specify a complete application it needs to 
be annotated. We need to specify on which processor each 
process will be loaded. Essentially, this is the mapping of 
the application as code is assigned to processors. The 
nodes are annotated by consecutive integers starting from 
zero, which are the processor identifiers in a Parix 
partition. In the PCG representation of Figure 2 the 
ProcIds appear at the centers of the circles.  

Arcs on the PCGs represent communication channels. 
For a complete communication channel specification  
request identifiers are used by both sending and receiving 
threads. The request identifiers annotate the arcs of the 
PCG. Finally, nodes are annotated by the full path name of 
the executable component from which the process will be 
instantiated and possibly by command line parameters. For 
reasons of simplicity executable path names and 
parameters are not depicted on Figure 2. 

The annotated PCG may be produced by a graphical 
tool or by a textual description. We have developed an 
Ensemble script language and script processing programs 
which read Ensemble scripts and produce annotated PCGs. 
A program script has three parts: the first describes the 
general PCG, the second the annotation of the PCG 
specific to a parallel environment (in this case Parix) and 
the third the annotation specific to the sequential 
components. Each of the three parts is further subdivided 
into sections. 

The script generating the annotated PCG of Figure 2, is 
presented in Figure 3. The first part, headed by PCG, 
specifies the components of the application and their types 
of dependencies; then it defines the processes, 
instantiations of components, and their number of ports for 
each type. All T nodes have one port of type S, all R nodes 
have three ports of type P; node R[1] has three ports of 
type C, nodes R[2] and R[3] two ports of type C and R[4] 
one port of type C. This part also defines the channels 
between the ports. A script processing program, called 
PCG-builder, parses this first part of the script and 
produces the PCG of the application. It is the only tool 
common for all message passing environments. 

The second part, headed by Parallel System defines the 
specific PCG annotation for Parix. The compulsory 
annotation of nodes by Process Identifiers, and of arcs by 
Request Identifiers is specified; here the default specifies 
the annotation of the nodes and arcs by unique non-
negative integers, but other generating algorithms or direct 
annotations may be defined.  

The third part, headed by Sequential System, annotates 
the nodes of the PCG with the file locations of the 
component executables from which processes are to be 
instantiated, as well as any command line parameters 
required by the processes. All T processes are passed an 

integer parameter which is the value they possess. The 
maximum is 999, the parameter of T[8]. A second script 
processing program, called PCG-annotator, parses the 
second and third parts of the script and produces the Parix 
annotated PCG of the application. 
 
Application Get_Maximum; 
PCG 
Components  
 T port-types:S; 
 R port-types:C, P; 
Processes 
/* specify for each process the number of 
ports of each type*/ 
 T[1], T[2], T[3], T[4],  
 T[5], T[6], T[7], T[8] #ports =S:1; 
 R[1]  #ports = C:3, P:3; 
 R[2], R[3] #ports = C:2, P:3; 
 R[4]  #ports = C:1, P:3; 
Channels 
/* Connect process ports */ 
 T[1].S[1] <-> R[1].C[1]; 
 T[2].S[1] <-> R[1].C[2]; 
 T[3].S[1] <-> R[1].C[3]; 
 T[4].S[1] <-> R[2].C[1]; 
 T[5].S[1] <-> R[2].C[2]; 
 T[6].S[1] <-> R[3].C[1]; 
 T[7].S[1] <-> R[3].C[2]; 
 T[8].S[1] <-> R[4].C[1]; 
 R[1].P[1] <-> R[3].P[1]; 
 R[1].P[2] <-> R[4].P[2]; 
 R[1].P[3] <-> R[2].P[1]; 
 R[2].P[2] <-> R[3].P[2]; 
 R[2].P[3] <-> R[4].P[3]; 
 R[3].P[3] <-> R[4].P[1]; 
PARALLEL SYSTEM 
Environment Parix; 
 Parix_annotation 
  ReqId: default; /* unique request Ids */ 
  ProcId: default; /* Processor Ids 0-N */ 
SEQUENTIAL COMPONENTS 
Executable files 
/* full path and name of executables*/ 
  R:"/home/users/bcast/relay"; 
  T:"/home/users/bcast/terminal; 
Execution Parameters 
T[1]:21; T[2]:22; T[3]:23; T[4]:24; 
T[5]:25; T[6]:26; T[7]:27; T[8]:999; 
Figure 3: The Ensemble script for Get Maximum 

The annotated PCG depicts all the characteristics of the 
application: the number of processes of each component 
type and their interconnection; the processors to be loaded 
on; the request identifiers uniquely specifying the tags of 
messages. The annotated PCGs may now be interpreted by 
the Loader program, common for all Parix applications. 

3. The Parix application loader 
The Parix application Loader is the program that is 

responsible for launching the distributed application. It is 
the universal Parix “main” program which is loaded on all 
processors on the partition having a specific annotated 
PCG as its command line argument. Applications will be 
initialized with the run command issued from the Parix 
front-end in the form: 

run -a “partition” Loader “annotated PCG” 



 

The Loader is loaded on each of the processors in the 
partition. Its action is simple. Each copy first obtains the 
Processor Identifier it is running on, say MyProcId. It then 
visits the annotated PCG’s nodes and, if a node is allocated 
to MyProcId, it loads the process denoted on the node 
passing it the appropriate connectivity and command line 
parameters. The connectivity parameters are a list of 
values providing the connectivity information for each of 
its ports. For each port two values must be provided 
(ProcId, ReqId). For example when creating R[2] the port 
connectivity information passed as parameters is  

connectivity 
parameters 

port connectivity explanation 

C, 1, 4, 4 port C1 connected to Proc 4; ReqId 4 
C, 2, 5, 5 port C2 connected to Proc 5; ReqId 5 
S, 1 , 9, 9 port S1 connected to Proc 9; ReqId 9 
S, 2, 11, 10 port S2 connected to Proc 11;ReqId 10 
S, 3, 0, 13 port S3 connected to Proc 0;  ReqId 13 

The Loader calls the Parix Execute routine, having as 
first parameter the name of the executable file to be loaded 
and as a second its connectivity parameter list, followed by 
the command line parameter list. The processes are now 
appropriately loaded. They have now to be interconnected 
as specified by the parameter list. This is the responsibility 
of the reusable components. 

4. The reusable program components  
Reusability of program components demands that, if 

required by an application, any number of processes can be 
instantiated on any processor. It should also be possible to 
dynamically establish upon process creation the 
appropriate communication channels between them. As the 
number of actual processes and their communication 
dependencies is not fixed, the program components should 
only specify the number and type of communication 
channels in a general way. A program component should 
provide the means for the establishment of actual 
communication channels between any process created from 
it with any other compatible process without relying on 
their position. 

A general channel specification in Parix is defined as a 
data structure, called port, storing (Processor Identifier, 
Request Identifier) pairs, (ProcId, ReqId) for short. The 
two elements in the port structure (ProcId; ReqId) is the 
primary connectivity information of a communication 
channel associated with a port. The actual port values are 
provided, at process creation time, by the Loader. A 
program component may manage many ports of the same 
type, which are organized as an array of ports of the this 
type. Furthermore, a component may have many types of 
ports. All ports of all its types form the component’s 
interface and all port values are organized in the structure 
Interface. Each port in Interface is now identified by its 
index type and its port number within the type. Without 
loss of generality, all random communication routines 
(e.g., SR: SendNode, RecvNode; AR: PutMessage, 
GetMessage) and virtual link creation routines (e.g., 
ConnectLink) have to use as their port information 
parameters elements of the Interface structure: 

Interface[T].port[P].ProcId and 
Interface[T].port[P].ReqId, where T is a port type and P a 
port number. Structure Interface may have for each port 
two more elements: one of type Link holding the link value 
of a channel which link communication routines (e.g., SL: 
SendLink, RecvLink) may use as their parameter the value 
(Interface[T].port[P].Link) and one of type topology 
holding the topology value of a link, which topology 
communication routines (e.g., ST: Send, Recv; AT: 
ASend, ARecv) may use as their parameter the value 
(Interface[T].port[P].Top).  

We permit components to have a variable number of 
ports of each type; the interface for each process, the 
number as well as the values of its ports, will be fixed upon 
its creation. The loader provides this information in the 
parameters of Execute calls for process creation; the port 
interface of the process on processor 10, i.e. R[2], for 
example, will have the following values: 
port  ProcId ReqId 
C.1 4 4 
C.2 5 5 
S.1 9 9 
S.2 11 10 
S.3 0 13 

 
It is the responsibility of the components to read their 

parameters and fix the shape and values of elements of 
structure Interface upon process creation. All components 
have a common structure, shown in Figure 4: 

  
void main(argc, argv); 
  InterfaceType Interface[N]; /* N is 
#types*/ 
{ MakePorts(Interface); 
  SetInterface(Interface); 
  realMain(Interface); /* main action */ } 
void realMain (Interface, argc1, argv1); 
 { actions of components} 
Figure 4: The common structure of components 

The programmer has to fix for each component the 
number N of its port types. As each process is created, it 
calls the MakePorts routine which sets the appropriate 
number of ports of each type. Then SetInterface routine is 
called which sets the (ProcId, ReqId) values in the 
appropriate ports of structure Interface. Having set up its 
port interface routine realMain is called which codes the 
main actions of a component. The complete application is 
now running. 

In the description of routine SetInterface in the previous 
paragraph, it is assumed that realMain uses random 
communication, as in Interface only the primary 
connectivity information is stored. The Link and the 
Topology fields have not been fixed. If we simply continue 
the actions of SetInterface by a series of ConnectLink 
calls, the components may not be reusable at all; as a 
matter of fact the program may not be able to run at all, 
coming to a deadlock. The reason is that for the 
establishment of virtual links, symmetric synchronous calls 
have to be made by the participating threads. Each thread 
calls the ConnectLink routine, which in order to create the 



 

link requires synchronous communication between the 
threads. This means that both threads should be able to 
reach their corresponding ConnectLink calls. The general 
problem is exemplified in the Parix manual [8], chapter 10, 
pg. 90-97, where a ring topology is created. There, N 
processes are to be connected in a ring; each has two links, 
one left and one right. If all processes try first to connect to 
their left processor and then to their right, a deadlock 
occurs, as all of them wait for the left process to issue a 
corresponding call. The solution suggested is for the 
processes residing on a even ProcId to connect to their 
right first and then to their left, and for processes residing 
on an odd ProcId to connect first to their left and then to 
their right. This example demonstrates that for the simplest 
of topologies care should be given in the order of calling 
ConnectLink routines. Significant design effort and 
programming is required for more complex topologies. For 
program components to be completely reusable as library 
components they cannot depend on any ConnectLink calls 
ordering. For otherwise, components would depend on 
each other, contradicting their reusability as library 
components. Therefore, the alternative suggested in [8] is 
followed, by which each ConnectLink call is issued by a 
different thread; for each communication channel one 
thread is needed, the activation of which is performed by 
Parix. No extra effort is required by the programmer. 

The alternative method is coded in the SetInterface 
routine. Rather than having a number of ConnectLink 
calls, a number of StartThread calls are issued. Each 
StartThread invokes the program SetLink which takes as 
parameter a port and calls ConnectLink with parameters 
the port values ProcId and ReqId. The ConnectLink call 
sets the Link field of the port. If in addition this link is part 
of a topology, program SetLink sets the topology field of 
the port. All SetLink threads are synchronized before 
SetInterface exits. Then realMain may use any type of 
communication permitted by Parix.  

Components are now completely reusable as they only 
specify general methods for setting their communication 
interface, they do not assume communication with any 
specific components and the virtual links between 
processes are established in any application context by 
asynchronous threads. Furthermore, components do not 
specify on which processor processes should be loaded. 
This information is specified in the script. 

Running the Parix Loader with the annotated PCG of 
Get Maximum as input we get the following output; the 
first part is produced by the Loader, as it spawns 
processes, and the second by the terminal processes: 

Spawn process 1 (terminal) on Proc 1 
Spawn process 2 (terminal) on Proc 2 
Spawn process 3 (terminal) on Proc 3 
Spawn process 4 (terminal) on Proc 4 
Spawn process 5 (terminal) on Proc 5 
Spawn process 6 (terminal) on Proc 6 
Spawn process 7 (terminal) on Proc 7 
Spawn process 8 (terminal) on Proc 8 
Spawn process 9 (relay) on Proc 9 
Spawn process 10 (relay) on Proc 10 
Spawn process 11 (relay) on Proc 11 
Spawn process 12 (relay) on Proc 0 

[Proc 1] The maximum value is 999 
[Proc 2] The maximum value is 999 
[Proc 3] The maximum value is 999 
[Proc 8] The maximum value is 999 
[Proc 4] The maximum value is 999 
[Proc 6] The maximum value is 999 
[Proc 5] The maximum value is 999 
[Proc 7] The maximum value is 999 

As the twelve processes, eight terminal and four relay 
are spawned, the Parix Loader prints the processor they 
run on; the terminal processes print the global maximum of 
their parameters. All terminal processes print the same 
maximum of 999 which was the parameter of T[8].  

For a Parix program to behave correctly, the nodes on 
the PCG and the actual program components must be 
compatible, that is, they should specify, the former 
virtually and the latter actually, the same number of types 
of ports. Furthermore, the connections between ports 
should be of compatible type, that is they agree on the type 
of messages they exchange and their management. The 
present version of the Loader does not check the 
compatibility of the connections. We are currently 
investigating formal methods for describing and testing 
compatibility, which will be integrated in the Loader.  

Having developed reusable components we may use 
them in scripts to compose new applications. The script 
language is flexible and permits the rapid composition of 
Parix programs. It is straight forward to edit scripts to 
scale a program by adding and connecting new 
components, to change the allocation of processes to 
processors, to change the topology of the components, etc., 
without modifying the program components. In the next 
section we demonstrate the flexibility of the script 
language to compose applications by reusing components 
in different topologies. 

5 Variations of Get Maximum 
The specification for the Get Maximum program in 

section 2 did not specify any particular topology by which 
the relay processes should be connected. In the solution of 
section 2 we had adopted a topology in which all relay 
processes are connected with each other. We may achieve 
the required functionality by adopting different topologies. 
We shall present two variations, one in which relay 
processes form a star topology and a second in which they 
form a tree topology. For these variations we will modify 
the scripts and reuse the terminal and relay components. 

5.1 Get Maximum by star topology 

In this solution we use an extra relay process to which the 
old four relay processes will be connected. The four relay 
processes have now only one P port, through which they 
send the maximum value received from their terminals. 
The new relay process, let us call it central, has four ports 
of type C (clients). The P type ports of the four relay 
processes are connected to the C type ports of the central 
process! Let us note, that the C and the P ports of the relay 
processes are compatible, as only one value is sent and one 
value is received through them. The PCG for this 
configuration is depicted in Figure 5:  



 

3 

6 

7 

8 

9 

12

1 

R[1]

C 

P 1 
2 

3 

9 
2 

1 

S 

T[8]

1 

8 

1 

12

R[5]
C P 1 

2 
3 

R[2] C 
P 

1 2 

10

10

1 

R[3]

C 

P 1 

2 
11

4 
11

T[4]
T[5]

S S 
1 1 

4 5 

4 
5 

T[2]

T[1]

T[3]

S 

S 

S 

1 

1 

1 

1 

2 

3 

1 

R[4] C 

P 

1 

0 

T[6]

T[7]

S 

S 

1 

1 

6 

7 

Figure 5: The PCG of Get Maximum by Star  
Let us describe the behavior of the program: the four 

relay processes, as before, select the local maximum of the 
values of their clients and propagate it via their single port 
of type P to the central relay process. The central process 
receives values from its C ports and selects their 
maximum. There are no P ports to send the maximum. It 
then sends its maximum to its C ports. What actually sends 
is the global maximum, as it is the maximum of all 
maxima. Each relay receives the global maximum, but, 
according to the algorithm, they act as if it is the local 
maximum of a relay process. They compare it with their 
own maximum, select the value they have received and 
send it to their client ports. The PCG part of the modified 
script is in Figure 6: 
Application Get-Maximum-Star; 
PCG 
Components  
 T port-types:S; 
 R port-types: C, P; 
Processes 
 T[1], T[2], T[3], T[4], 
 T[5], T[6], T[7], T[8] #ports = S:1; 
 R[1]  #ports = C:3, P:1; 
 R[2], R[3] #ports = C:2, P:1; 
 R[4]  #ports = C:1, P:1; 
 R[5]  #ports = C:4, P:0; 
Channels 
   T[1].S[1] <-> R[1].P[1]; 
   T[2].S[1] <-> R[1].P[2]; 
   T[3].S[1] <-> R[1].P[3]; 
   T[4].S[1] <-> R[2].P[1]; 
   T[5].S[1] <-> R[2].P[2]; 
   T[6].S[1] <-> R[3].P[1]; 
   T[7].S[1] <-> R[3].P[2]; 
   T[8].S[1] <-> R[4].P[1]; 
   R[1].P[1] <-> R[5].S[1]; 
   R[2].P[1] <-> R[5].S[2]; 
   R[3].P[1] <-> R[5].S[3]; 
   R[4].P[1] <-> R[5].S[4]; 
Figure 6 The PCG for Get Maximum by Star  

For this solution no changes are needed for the terminal 
and the relay program components, but only to the script. 
The executables of the terminal and relay program 
component were reused. The new program script was 
produced rapidly by modifying the program script of the 

version of section 2. The annotated PCG was produced 
from the script, which was given as input to the Loader. 

5.2 Get Maximum by tree topology 

In this variation we maintain the relationship of the 
eight terminals to the four relay processes having, as in the 
star solution, one P port. The P ports of R[1] and R[2] are 
connected with the C ports of R[5] and the P ports R[3] 
and R[4] are connected with the C ports of R[6]. Both R[5] 
and R[6] have two C ports and one P port; their P ports are 
connected to the two C ports of R[7], which does not have 
any P ports. The process structure is a tree of height 3: the 
terminal processes are the leafs; R[1], R[2], R[3] and R[4] 
at level two; R[5] and R[6] at level one; and R[7] as the 
root. At each level, the relay processes receive the values 
from their clients, select the maximum and propagate it to 
the next level up. The root selects the maximum and sends 
it to its client processes. The relay processes below the 
root do the same until the maximum reaches the terminal 
processes. The PCG part of the script is shown in Figure 7: 

 
Application Get-Maximum-Tree; 
PCG 
Components 
 T port-types:S; 
 R port-types: C, P; 
Processes 
 T[1], T[2], T[3], T[4], 
 T[5], T[6], T[7], T[8] #ports= S:1; 
 R[1]  #ports= C:3,P:1; 
 R[2], R[3], R[5], R[6] #ports= C:2,P:1; 
 R[4]  #ports= C:1,P:1; 
 R[7]  #ports= C:2,P:0; 
Channels 
   T[1].S[1] <-> R[1].C[1]; 
   T[2].S[1] <-> R[1].C[2]; 
   T[3].S[1] <-> R[1].C[3]; 
   T[4].S[1] <-> R[2].C[1]; 
   T[5].S[1] <-> R[2].C[2]; 
   T[6].S[1] <-> R[3].C[1]; 
   T[7].S[1] <-> R[3].C[2]; 
   T[8].S[1] <-> R[4].C[1]; 
   R[1].P[1] <-> R[5].C[1]; 
   R[2].P[1] <-> R[5].C[2]; 
   R[3].P[1] <-> R[6].C[1]; 
   R[4].P[1] <-> R[6].C[2]; 
   R[7].C[1] <-> R[5].P[1]; 
   R[7].C[2] <-> R[6].P[1]; 
Figure 7: The PCG for Get Maximum by Tree  

The PCG part of the script is close to the design of the 
message passing application, the other two parts are more 
closely to the detailed design and the implementation of 
the application.  

6. Conclusions and future work 
The Ensemble methodology applied to Parix is 

presented. Ensemble is a message passing program 
implementation methodology by which the programming 
overhead effort required for creating arbitrary structured 
parallel applications in Parix is overcome. In Ensemble 
parallel applications are virtually specified by Process 
Communication Graphs (PCGs) interpreted by a universal 
Parix Loader, which acts as a universal Parix “main” 



 

program. The loader automatically creates the appropriate 
processes establishing their communication dependencies. 
Program component structures have been developed 
permitting their reusability as library components.  

The Ensemble methodology “removes” from message 
passing environments the aspects that most influence the 
architecture of applications, namely process management. 
They are “removed” in the sense that it is not required for 
program components to define topologies, the processors 
they are running on, etc. All process management aspects 
are expressed in the scripts, which are virtual 
representations of applications. Consequently, Ensemble 
“removes” the effort of programming most of the 
architectural idiosyncrasies of message passing 
environments.  

Ensemble does not suggest a new message passing 
environment and does not demand any changes to message 
passing environments but acts like a shell to them. 
Ensemble does not cause any execution overhead, apart 
from the execution of the loader interpreting PCGs, which 
is minimal compared with the saved programmer’s 
development time. Ensemble is independent of any design, 
visualization, performance, etc. tools.  

Ensemble provides a flexible and efficient means for 
composing applications. Although, the script language is 
still under development it was shown to be flexible and 
permitted the rapid composition of Parix programs. It is 
straight forward to edit the script to scale a program by 
adding and connecting new components, to change the 
allocation of processes to processors, the topology, etc.  

Ensemble separates all elements of a message passing 
application: the process topology, the architecture, the 
mapping of the processes onto processors and the activity 
of the application giving the required result or providing a 
service. The first three are described in the script and the 
last by the program components. As they are separated 
they may be modified independently of one another, thus 
simplifying program debugging and maintenance. Script 
modifications permit rapid program variations, thus 
allowing to ask “what if” type of questions to test the 
performance and fine tune the application. 

Ensemble defines reusable message passing library 
components with scalable communication interfaces and 
uses them in the composition of applications in a “soft 
LOGO” manner. 

We demonstrated the flexibility of the methodology, by 
composing various solutions to the Get Maximum 
problem. Having constructed the program components for 
the first solution we used them to compose and execute 
other Parix programs solving the same problem but by a 
different design.  

The methodology may be applied to other message 
passing environments by developing suitable PCG 
annotation principles, structure of reusable components 
and Loaders. We have applied it for PVM [5]. Although 
PVM imposes an altogether different process management 
model than Parix based, for example, on parent-child 
creation of processes, it was possible to apply, in principle, 
the same methodology. Ensemble implementations of the 

same design look similar and components identical. Also, 
the portability of applications from one environment to the 
other is possible and in some cases is done automatically. 
We shall compare implementations of the methodology 
under PVM and Parix in a future report. 

Future plans include the development of Ensemble for 
MPI, parametric topology descriptions, more type of 
process interactions. Ensemble is related to the 
composition of Object Oriented systems by using objects 
and scripts [7] encouraging a component oriented 
approach to application development. The PCGs may be 
viewed as the scripts that bind components together. We 
shall pursue this comparison further in the future. 
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