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Abstract 
We present a specification composition technique which supports the message passing 
composition of applications by the Ensemble methodology. In Ensemble applications are built 
by composing reusable executable program components designed with scalable 
communication interfaces. We define reusable specifications of program components, using 
coloured Petri nets, which are then composed to obtain the specification of the application. 
The composition is controlled by the same script that is used to compose the application. 

1  INTRODUCTION 

Software composition has been suggested as a methodology for building large scale 
applications. Software components having an open architecture, flexible for reuse by different 
applications, are combined to compose applications. Software composition has three major 
aspects (Nierstrasz and Meijler, 1995): (i) macro expansion (ii) higher order functional 
composition and (iii) binding of communication channels. Significant work has been done the 
past few years in the area of software composition, mainly on the first two aspects and their 
implications in the framework of object oriented methodologies (Nierstrasz et al., 1992) and 
less on the third (Nierstrasz, 1995). 

We have developed a message passing program implementation methodology, called 
Ensemble (Cotronis, 1996a; Cotronis 1996b), by which message passing applications are 
composed out of reusable software components by binding their communication channels. 
The emergence of Message Passing Environments (MPE), such as PVM (Geist et al., 1994), 
MPI (McBryan, 1994), Parix, provide a useful abstraction of the underlying architecture 
simplifying implementation. However, the software engineering step from message passing 
design to implementation remains a demanding task, as it involves the programming of the 
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sequential parts, computing a result or providing a service, intermixed with the explicit 
programming of process management: process creation and identification, process interaction, 
process topologies and their mapping onto the virtual architecture. The programming imposed 
by process management makes programs much more difficult to develop and maintain. 
Important aspects of parallel programs, such as scalability and reusability are frequently 
neglected, as they have to be explicitly programmed. Scalability is relatively easy to program 
when the problem has some global regularity, usually expressed by some function; reusability 
of executables is more difficult as process management is usually encoded in them and 
processes may only operate within the context of one application. 

Ensemble alleviates the development and maintance difficulties of message passing 
programs. Ensemble is not a new message passing environment and does not even demand 
any changes to MPEs; it is also independent of any MPE; it restricts, as all methodologies, the 
implementation space of applications to a common software architecture. An application in 
Ensemble is an ‘ensemble’ of a script, which specifies the application processes, their 
topology and mapping, and of reusable executable program components, which do not involve 
any process management activities, but only computations providing a result or service. The 
script is interpreted by programs (tools of Ensemble) which compose the application. 

However, composing message passing applications from reusable components is prone to a 
number of errors: unspecified or incompatible binding of communication channels, wrong 
behaviour of the composed system, wrong result, etc. These errors may emerge during 
program execution in the form of undelivered messages, deadlock situations, non-terminating 
programs, etc. Although, the architecture of Ensemble applications supports their efficient 
debugging, the general problems of debugging (e.g. no guarantee of absence of bugs), as well 
as the problems of parallel program debugging (e.g. non-deterministic behaviour of programs, 
non-reproducibility of behaviour) still apply. We would like therefore to predict the behaviour 
of the composed applications or even formally verify that the composed programs behave 
according to the required specifications. The behaviour of a composed message passing 
application cannot, in general, be analytically determined from the known behaviour of its 
components. But we may compose the formal specifications of individual components to 
obtain a composed formal specification of the application which may then be tested and 
verified. In the debate about the usefulness of formal methods in software development we 
have followed the middle way (Jackson and Wing, 1996). In the presence of numerous formal 
models which all address the same problem, but very few of them are actually used (Parnas, 
1996), we do not intend to present another model. We would use already developed 
formalisms and their associated theory and tools which are suitable for Ensemble as software 
engineering formal testing methods. We have used the Petri net formalism for expressing and 
composing specifications as it is well founded, has been widely used to specify parallel 
software systems and is supported by a number of tools. 

In the next section we outline the Ensemble methodology and its tools. In section 3 we 
discuss the requirements for component specification. In section 4 we describe the general 
form of component specifications and present the composition. In section 5 we apply the com- 
position to three applications. Finally, we present our conclusions and plans for future work. 

2  OUTLINE OF THE ENSEMBLE METHODOLOGY AND ITS TOOLS 

We outline Ensemble using as an example the Distribution of Maximum application: terminal 
processes which are each given an integer parameter and require the maximum of these 



integers; each terminal process sends its value to an associated relay process and (eventually) 
receives from it the required global maximum (GM). Relay processes receive values from 
their terminals, find their local maximum (LM), exchange LMs with the other relays, and find 
their maximum (GM); they finally send GM to their terminal processes. The Ensemble 
implementation consists of the application script and the two executable reusable components, 
the terminal and the relay. The application is composed by a launching program, which 
interprets the scripts and sets-up the application. 

2.1 The Ensemble script  

The script for Distribution of Maximum application (with three relays and five terminals) is 
shown in the first column of Figure 1. The script is structured in three main parts:  

The first part, headed by PCG, specifies the Process Communication Graph (PCG) of the 
application independent of any MPE. PCGs are a natural structure for specifying processes 
and their communication dependencies and are close to program design. Nodes on a PCG 
denote processes and arcs the communication channels (dependencies) between them. PCGs 
have been used in modelling, in dynamic analysis and simulation, in mapping techniques, etc. 
In the PCG part we first specify the components involved (e.g. T and R), then the processes 
instantiated from each component (e.g. T[1],…,T[5] and R[1],…,R[3]) and finally the 
communication channels between the processes.  

Scalability is an important aspect of parallel programs. Usually, due to programming 
complexity, we think of scalability as global factors in an application, e.g. sizes of dimensions 
of a grid topology. But there may be other local scalability factors. For example, relays 1 and 2 
have two terminals and relay 3 only one; if the number of terminals increases to ten, all five of 
the new may be assigned to relay 3, or to two new relays, two to relay 4 and three to relay 5. 
We consider these possibilities as design choices which should all be supported. In general, 
scaling of applications requires replication of processes and their interconnections. For some 
process topologies, such as a tours, it is sufficient to replicate identical processes each having 
the same number of connections. But for other topologies, such as master/slave, each 
replicated process may have a distinct number of interconnections, possibly within a range. To 
support the global as well as local scalability of applications we specify for each process in the 
script, its number of ports. Process ports are identified by the name of their communication 
type and a unique index within the type. The terminal component, for example, has two 
communications types (Sin and Sout) and all terminal processes exactly one port of each type. 
The relay component however, has four communication types (Sin, Sout, Pin, Pout). All relay 
processes have two ports of type Pin and Pout, but different number of ports of Sin and Sout 
types. Channels are defined by one-to-one associations of process ports. 

A tool program, the PCG-builder, reads the PCG part and actually generates the PCG. The 
PCG for our example is depicted in Figure 1, next to the PCG part of the script. For reasons of 
simplicity channels connecting Xin[i] with Yout[j] ports and Xout[i] with Yin[j] ports are 
depicted as one bi-directional channel connecting X[i] with Y[j]. 

The second script part, headed by Parallel System, specifies the annotation of nodes 
(processes) and arcs (channels) of the PCG with information required for the composition of 
the application on a specific target MPE. In the example script of Figure 1 the target system is 
PVM; nodes are annotated by the host name on which they will be spawned (optional in 
PVM); arcs are annotated by the tag number which is required to identify the abstract PVM 
channels between processes (default on the script annotates arcs by unique tags). 



The third script part, headed by Sequential Components, specifies the further annotation of 
nodes with process loading information. The files of the reusable executable components are 
specified and for each process its command line parameters. The second and third parts are 
interpreted by the annotation Builder which annotates the PCG created by the PCG builder. In 
Figure 1, below the general PCG, the annotation of some of its nodes and channels is shown. 

APPLICATION Distribution_Maximum; 
PCG 
Components 

T port-types : Sin, Sout;  
R port-types : Cin, Cout, Pin, Pout; 

Processes 
T[1], T[2], T[3], T[4], T[5] #ports=Sout:1, Sin:1; 
R[1], R[2] #ports = Cout:2, Cin:2, Pout:2, Pin:2; 
R[3] #ports = Cout:1, Cin:1, Pout:2, Pin:2; 

Channels 
T[1].Sout[1] -> R[1].Cin[1]; R[1].Cout[1] -> T[1].Sin[1]; 
T[2].Sout[1] -> R[1].Cin[2]; R[1].Cout[2] -> T[2].Sin[1]; 
T[3].Sout[1] -> R[2].Cin[1]; R[2].Cout[1] -> T[3].Sin[1]; 
T[4].Sout[1] -> R[2].Cin[2]; R[2].Cout[2] -> T[4].Sin[1]; 
T[5].Sout[1] -> R[3].Cin[1]; R[3].Cout[1] -> T[5].Sin[1]; 
R[1].Pout[1] -> R[2].Pin[1]; R[2].Pout[1] -> R[1].Pin[1]; 
R[1].Pout[2] -> R[3].Pin[1]; R[3].Pout[1] -> R[1].Pin[2]; 
R[2].Pout[2] -> R[3].Pin[2]; R[3].Pout[2] -> R[2].Pin[2]; 
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PARALLEL SYSTEM 
Environment PVM3 
PVM3_Annotation  
   tagID : default; 
PVM3_Options 
 Allocation 
   R[1], T[1], T[2] at euridiki; 
   R[2], T[3], T[4] at kadmos; 
   R[3], T[5]          at lavdakos; 
SEQUENTIAL COMPONENTS 
Executable files 
   T : path default file terminal; 
   R : path default file relay; 
Execution Parameters 
   T[1]:6; T[2]:999; T[3]:7; T[4]:8; T[5]:9; 
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Node 1  name          : T[1] 
              allocation   : euridiki 
              file             : terminal 
              path            : default 
              parameters : 6 
Node 6  name          : R[1] 
              allocation   : euridiki 
              file             : relay 
              path            : default 
              parameters : (None) 
Channel 1  : 1.Sout[1] -> 6.Cin[1] tagid 1 
Channel 4  : 4.Sout[1] -> 7.Cin[2] tagid 4 
Channel 7  : 6.Cout[2] -> 2.Sin[1] tagid 7 
Channel 11: 6.Pout[1] -> 7.Pin[1] tagid 11 
Channel 14: 7.Pout[2] -> 8.Pin[2] tagid 14 

 
Figure 1   The application script and the annotated PCG. 

2.2 The reusable components  

They compute a result or provide a service and do not involve any process management or 
assume any topology in which they operate. They have open ports for communicating with 
any compatible processes in any application. A port is a structure, which may store 
communication parameters necessary for sending and receiving messages; for example in 
PVM these parameters are pairs of values of task identifiers, which are unique numbers 
identifying a process, and tag identifiers. Ports of the same type form arrays and arrays of all 
types form the interface of the component. All send and receive operations refer to ports, 
identified by a communication type and an array index. At the time of process creation the 
launching program provides the actual number of ports of each type, as well as, the values for 



the communication parameters for each port. Processes set-up their interface by calling 
appropriate routines. Each MPE demands its own routines for setting up the component 
interfaces. A common structure for components (Figure 2), has been developed which hides 
these differences and unifies the appearance of components of any MPE. 
void main()                                /* terminal */ 
{ InterfaceType Interface[2]; 
  MakePorts(Interface); 
  SetInterface(Interface); 
  realmain(Interface);             /* main action */  } 
 
void realmain (Interface);  
{ /* terminal pseudoccode */ 
    send local value to relay (to Sout type) 
    receive maximum from relay (from Sin type)  
} 

void main()                              /* relay */ 
{ InterfaceType  Interface[4]; 
  MakePorts(Interface); 
  SetInterface(Interface); 
  realmain(Interface); } 
 
void realmain(Interface);  
{ /* relay pseudocode  */ 
    receive values from terminals (from Cin type) 
    find the local maximum (LM) of values 
    send LM to all other relays (to Pout type) 
    receive LMs from all other relays (from Pin type) 
    find global maximimum (GM) 
    send GM to terminals (to Cout type)  } 

Figure 2   The structure of Terminal and Relay program components. 

For each component we declare the number of communication types that it requires, indicated 
by the size of the array Interface. Terminals have two and Relays four communication types. 
Processes first call MakePorts to set-up the appropriate number of ports in Interface, then call 
SetInteface to set values to ports of Interface and they call their realmain actions. The 
component executables are reusable in any application in the given MPE. 

2.3 The Launcher program  

It is the program that actual composes applications, universal for all applications in the same 
MPE, one Launcher program for each MPE. The Launcher visits the annotated PCG nodes 
and spawns processes providing to each spawned process the number of its ports of each type 
(to be processed by MakePorts), the port information (to be processed by SetInterface) and its 
command line parameters. Now the parallel program is composed and running.  

We have only outlined the aspects of Ensemble methodology and its tools which are 
relevant in the context of this paper. A detailed description of Ensemble in PVM and Parix 
may be found in (Cotronis, 1996a) and (Cotronis, 1996b), respectively.  

3  REQUIREMENTS FOR SPECIFICATIONS AND THEIR COMPOSITION 

Our aim is to support the Ensemble methodology with formal tools for testing and verifying 
programs prior to their execution. To reflect the Ensemble architecture of parallel programs 
we need to define component specifications, process specifications (instantiations of 
component specifications) and their composition. Component specifications specify the 
behaviour of program components. They should be reusable, permitting the generation of 
process specifications, as required by the script. Component specifications should have 
scalable interfaces, specifying the valid range of values for each of their communication types, 
e.g. fixed ( as Sin of terminals) or any positive integer ( as Cin of relays) or any non-negative 
integer (as Pin of relays). They should identify their input and output ports as well as the type 
of data that is sent and received through them. Process specifications should be generated 



from component specifications as mechanically as processes are generated from program 
components. At the time of their generation the number of ports specified in the script should 
be validated and their interface should be fixed. 

Specification composition involves the port interconnections integrating individual process 
specifications into one. During composition we have to check the compatibility of port 
interconnections: that each output port is connected to a single input port and vice-versa, and 
that the data expected on the connected ports is of the same type. In general, the compatibility 
of port connections also depends on being synchronous or asynchronous. We restrict our 
presentation to asynchronous communications. At the end of the composition we have to 
check for unconnected ports. Until this step all testing and validation is static. 

Having composed the specifications we verify their integrated behaviour, that is to say the 
dynamic aspects of the composed system. Analytical tools may be employed proving general 
properties, such as absence of deadlock; causal graphs may be produced or simulations may 
be performed. We may only provide guidelines on using these tools in the context of message 
passing applications and Ensemble. For example, we may verify the number and ordering of 
the send/receive actions, which are the main reason for the ill-behaviour of message passing 
applications, such as deadlocks and non-termination. If more send than receive operations are 
performed some messages will be undelivered, if more receives are specified then there will 
be a deadlock. If the wrong order of send and receives is specified then the system may not 
deadlock, but produce a wrong result.  

Having tested or verified the dynamic properties of the composed specification we may test 
its functionality, the correctness of the result it computes or the service it provides. We are not 
only concerned with send/receive operations but with internal non-communication actions. 

4  COMPOSITION OF SPECIFICATIONS SUPPORTING ENSEMBLE 

We have used the Petri net formalism for expressing and composing specifications. Petri-nets 
have a well founded theory, have been widely used to specify parallel software systems and 
are supported by a number of tools. Petri-net semantics have been shown to be suitable for the 
composition of specifications of message passing applications. In (Kindler, 1996) the 
composition of Petri net components is modelled with place fusion, which corresponds to 
asynchronous message passing. In (Best et al., 1995) large High Level nets are constructed 
from smaller components, by transition synchronisation, which allows composition in a 
manner similar to process algebras like CCS. We use Coloured Petri nets which allow the 
modeller to create simple and easily manageable descriptions, without losing the ability of 
formal analysis (Jensen, 1990). 

4.1 Program component specifications: template CPN 

The formalisms described in the previous section are, in a way, very close to our needs. We 
use Petri net components, which represent the specifications of program components of 
Ensemble applications, and compose them directed by Ensemble scripts. In the case where the 
interface of a component is fixed, as for example in the terminal component (it has one port of 
types Sin and Sout) its specification can be modelled directly with CPNs. The general case, 
however, where the interface of a component is parametric, cannot be directly modelled using 
CPNs, since CPNs must have a fixed structure (specific number of places and connections 
with transitions). Thus, we need to extend the component specifications with open scalable 



interfaces for them to be reusable and to generate process specifications. We define template 
CPNs, which resemble CPN formalism but also contain additional information to specify the 
interface parametrically. The template CPN is a parametric net-structure having a unique 
name, from which process component names may be generated by unique indexing. Similar to 
the Ensemble program components they also have two kinds of parameters: port interface 
parameters (the number of ports of each communication type) and application parameters (like 
the integer value of terminal components).  

Template R;
port-types

Cin.range : 1..;
Cout.range: 1..;
Pin.range : 0..;
Pout.range: 0..;

color data = index D with 1..Cin.#ports;
color clm = index LM with..Pin.#ports;
color lm, gm = int;
color control = with c;

[Pout]

1`c
1`c

1`c
1`c

1`c

[Cin]

[Cout]

[Pin]

1`gm

1`gm

1`[D]

1`lm

1`[LM]

1`gm

color data = int;
color control = with c;
var d : data;

Template T(v : int);
port-types

Sin.range = 1..1;
Sout.range = 1..1;

[Sout]
[Sin]1`d

1`d

1`v

1`c
1`c

1`c
1`c

1`lm
1`lm

 
Figure 3   The template CPNs for Terminal and Relay Components. 

Application parameters appear in parentheses at the heading of the template and also 
symbolically index the initial place of the net structure (Figure 3). The symbolic initial 
marking will be replaced by actual values when process specifications are generated. 
Following the heading of the template the valid range of ports for each communication type is 
specified. We have used a simple notation from..to, where from could be any non-negative 
number and from<=to. In the case where a communication type has fixed number of ports, 
say N, the expression becomes N..N. For example see template T in Figure 3 (Sin and Sout 
have a range 1..1). In the case of parametrically specified number of ports the value of from 
could be either 1 or 0. The former specifies that the component can have at least one port of 
this type and the latter that it may not have any ports of this type. If the value for to is 
unspecified then there is no upper bound on the number of ports. In Figure 3, R is specified to 
have a 1.. range for its Cin and Cout port types and a 0.. range for its Pin and Pout port types. 
Usually the number of ports is required as a parameter in the net. For this the P.#ports symbol 
is used to indicate the number of ports of type P.  

Templates name their interface places according to the corresponding port types of the 
component, enclosed in square brackets distinguishing them from other places. The bracket 
notation is used for variables in the inscriptions on the arcs joining interface places, which are 
distinct for each port. The template structure has a local declaration node, represented as a 
dotted line rectangle, which contains definitions of colour sets, variables, values etc., 
representing data types and tokens. All generic parts of a template, are enclosed in a solid line 
(Figure 3).  

4.2 Process specifications: composable CPN  

Process specifications, which are composable CPNs are instantiated from their corresponding 
template CPN by providing actual values for its instance number, number of ports of each 
type and application parameters. All of these exist in the Ensemble script. Composable CPNs 
are normal coloured Petri nets uniquely named by indexing the template name with an 
instance number. Figure 4 illustrates the composable CPNs for components T[1] and R[3] as 



specified in the script in Figure 1. Appearance of the number of ports in local declarations are 
replaced by their actual values. The net structure is generated by replicating interface places 
and the input and output arcs to and from these places along with their inscriptions. Upon 
replication the brackets are removed and the names in the brackets are indexed by unique 
integers.  

T[1]

Sout [1]
Sin [1]1`d

1`d

1`6

1`c
1`c

1`c
1`c

color data = int;
color control = with c;
var d : data;

R[3]

color data = index D with 1..1;
color clm = index LM with 1..2;
color lm, gm = int;
color control = with c;

1`D[1]1`c
1`c

1`c
1`lm

1`lm

1`lm

1`LM[2]

Pout[1]

Cin[1]

1`gm Cout[1]

1`c

1`c
1`gm

1`gm
Pin[2]

Pout[2]

Pin[1]

1`lm

1`LM[1]

 

Figure 4   The composable CPNs for T[1] and R[3]. 

4.3 The application specification: composed CPN 

The composable CPNs may now be composed in order to produce the complete application 
specification, which we call composed CPN. The composition of the composable CPNs is 
performed according to the channel section of the script. The names of the interface places are 
the same as the names of the corresponding ports in the script. Furthermore the name of each 
composable CPN is the same as the name of the corresponding process in the script. By 
prefixing the name of the composable CPN to the name of the interface place, a full unique 
name for each interface place is constructed. For each channel between two ports defined in 
the script the corresponding places of the composable CPNs are fused. 

5  COMPOSING APPLICATION SPECIFICATIONS 

In this section we present three example applications where the proposed technique is applied. 
All three applications use the template CPNs for terminal and relay components. 

5.1 An erroneous application  

In the first example we demonstrate the composition of an erroneous script; its PCG is: 
Components 
 T port-types Sout, Sin;    R port-types Cout, Cin, Pout, Pin; 
Processes 
 T[1], T[2]   #ports = Sout:1, Sin:1; 
 R[1]       #ports = Cout:1, Cin:1, Pout:1, Pin:1; 
Channels 
 T[1].Sout[1] -> R[1].Cin[1];   R[1].Cout[1] -> T[1].Sin[1]; 
 T[2].Sout[1] -> R[1].Pin[1];  R[1].Pout[1] -> T[2].Sin[1];  

There are two terminals and one relay. The Sout[1] and Sin[1] ports of T[1] are connected with 
the Cin[1] and Cout[1] ports of R[1], respectively. But ports Sout[1] and Sin[1] of T[2] are 



connected with the Pin[1] and Pout[1] ports of R[1] respectively, instead of Cin[2] and Cout[2] 
ports respectively. The ports are compatible, they exchange integer values, but the behaviour 
of the application as specified by the script is not correct. The composition of the application 
is depicted in Figure 5 

R[1].Cin[1]&T[1].Sout[1]

R[1].Pin[1]&T[2].Sout[1]

R[1].Pout[1]&T[2].Sin[1]

R[1].Cout[1]&T[1].Sin[1]

T[2]

color data = int;
color control = with c;
var d : data;1`d

1`d

1`9

1`c
1`c

1`c
1`c

T[1]

color data = int;
color control = with c;
var d : data;1`d

1`d

1`6

1`c
1`c

1`c
1`c

1`D[1]R[1] 1`c
1`c

1`c

1`lm

1`lm

1`lm

1`LM[2]

1`gm

1`c

1`c
1`gm

1`gm

color data = index D
 with 1..1;

color clm = index LM
with 1..1;

color lm, gm = int;
color control = with c;

 
Figure 5   The composed specification of an erroneous script. 

The causality graph of the composed specification will depict that the number and order of 
send and receive operations is not correct. R[1] performs one send to its Pout[1] port and one 
receive from its Pin[1] port, but there is no other relay in the application. Also R[1] performs a 
send to its Pout[1] port before a receive from T[2]. What actually happens is that T[1] gets the 
global maximum, but T[2] gets the value of T[1]. 

5.2 Distribution of maximum application 

The Ensemble script is given in Figure 1. We use a box notation for the composable CPNs, 
which hides their internal structure concentrating to their interface connections. Each 
composable CPN-box has the same name as the composable CPN and its ports are depicted by 
black dots in the boundaries of the box, along with their names. The net is shown in Figure 6. 
By using CPN tools we may verify that the behaviour of the composed specification is correct. 

R[2]

Cin[1]
Cout[1]

Pin[1]

Pin[2]
Pout[2]

Pout[1]

Cin[2]
Cout[2]

T[3]

Sin[1]

Sout[1]

T[4]

Sin[1]

Sout[1]

R[1]

Cin[1]
Cout[1]

Pin[1]

Pin[2]
Pout[2]

Pout[1]

Cin[2]
Cout[2]

Sout[1]

Sin[1]

T[1]

Sout[1]

Sin[1]

T[2]

R[3]

Cin[1] Cout[1]

Pin[1] Pin[2]

Pout[2]Pout[1]

T[5]

Sin[1]Sout[1]

 
Figure 6   The composed CPN for Distribute Maximum by all-to-all topology. 

5.3 Distribution of maximum by tree topology 

In this variation of the Distribution of Maximum application we maintain the relationship of 
the five terminals to the three relay processes, but relay processes are organised in a tree, with 
R[3] being the root. Relays 1 and 2 have only one Pout and one Pin ports which are connected 



to the Cin and Cout ports, respectively, of their parent Relay 3, which has no Pout and Pin ports. 
The process structure is a tree of height 2: the terminal processes 1,2,3,4 are at level two; 
R[1], R[2], T[5] at level one; and R[3] is the root. The PCG part of the application script is:  
Components 
T port-types Sout, Sin;      R port-types Cout, Cin, Pout, Pin; 
Processes 
T[1], T[2], T[3], T[4], T[5]   #ports = Sout:1, Sin:1; 
R[1], R[2]   #ports = Cout:1, Cin:1, Pout:1, Pin:1; 
R[3]      #ports = Cout:3, Cin:3, Pout:0, Pin:0; 
Channels 
R[1].Cout[1] -> T[1].Sin[1]; T[1].Sout[1] -> R[1].Cin[1]; 
R[1].Cout[2] -> T[2].Sin[1]; T[2].Sout[1] -> R[1].Cin[2]; 
R[2].Cout[1] -> T[3].Sin[1]; T[3].Sout[1] -> R[2].Cin[1]; 
R[2].Cout[2] -> T[4].Sin[1]; T[4].Sout[1] -> R[2].Cin[2]; 
R[3].Cout[3] -> T[5].Sin[1]; T[5].Sout[1] -> R[3].Cin[3]; 
R[3].Cout[1] -> R[1].Pin[1]; R[1].Pout[1] -> R[3].Cin[1]; 
R[3].Cout[2] -> R[2].Pin[1]; R[2].Pout[1] -> R[3].Cin[2]; 
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Cin[3] Cout[3]Cout[1]
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Figure 7   The composed CPN for Distribute Maximum by tree topology. 

At each level, the relay processes receive the values from their clients, select the maximum 
and propagate it to the next level up. The root selects the maximum and sends it to its client 
processes, the two relays and T[5]. The relay processes below the root do the same until the 
maximum reaches their terminal processes. The composed specification net is shown in 
Figure 7. Again by using CPN tools we may verify that this solution of the Distribution of 
Maximum application is valid. We demonstrated that although terminal and relay template 
specifications were originally designed for one solution, they are reused to verify that the tree 
solution to the Distribution Maximum application is also correct.  

6  CONCLUSIONS- FUTURE WORK 

We have presented a specification composition technique which supports the message passing 
program composition of the Ensemble methodology. We have defined descriptions of CPNs 
with scalable interfaces, called template CPNs, to specify the behaviour of scalable reusable 
program components. From the template CPNs we generate composable CPNs, which are 
pure CPN descriptions. We have used the PN composition technique of (Kindler, 1996) 
adapted to the composition of Ensemble applications as described by the script. During 
composition static information as specified by the script is validated (for example, the number 
of communication ports within the range and the compatibility of port interconnections). The 



composition is directed by the script. The correspondence of program and specification 
composition is depicted in Figure 8. In the middle there is the application script, which is used 
by the application Launcher to compose applications (left hand side). The script is also used 
by the specification composer to compose application specifications (right hand side).  

Figure 8   Ensemble methodology supported by composition of specifications. 

We are currently implementing tools for designing template CPNs, generating from them 
composable CPNs and composing them according to Ensemble scripts. Our effort does not 
simply aim to support the Ensemble methodology by a formal specification tool. We envisage 
of using Ensemble and its associated tools as a viable means of bridging the gap between the 
disjoint worlds of specifications and program executions. Usually specifications are obtained 
before program design and program implementation. But this view is not valid in the software 
composition approach. Programs and their specification are composed together. Especially in 
Ensemble both may be independently produced from the script. In a sense the composed 
specifications are the semantics of composed programs under the assumption that the 
component specifications are correct.  

To alleviate possible discrepancies between component specifications and component 
implementations we may use one to test the other. On the one hand, tracing information of the 
composed application may be passed to a simulator of the composed specifications. Thus, the 
behaviour of the application is not only monitored as it is running, but actually tested. The 
programmer is not obliged any more to inspect detailed and confusing charts, visualisation of 
executions, but the simulation system may check against the specifications either 
automatically in the background or by analysing a trace file of erroneous behaviour. The use 
of tracing information in conjunction with specification simulation information should always 
be used during individual component development. On the other hand, the specification 
simulator may be used as an advanced breakpoint mechanism which controls the execution of 
the actual program. Specifications and programs are not in disjoint worlds any more, but are 
inter-related. We believe that in this scheme the extra effort of designing specifications of 
reusable components is justified as it assures reliability and reduction of production costs of 
message passing applications. 
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