
Specification composition for the
verification of message passing program
composition

J.Y. Cotronis and Z. Tsiatsoulis
Department of Informatics, University of Athens
TYPA, Panepistimiopolis, 157 71 Athens, Greece
tel. +30 1 7291885 fax +30 1 7219561
e-mail: {cotronis, zack}@di.uoa.gr

Abstract
We present a specification composition technique which supports the message passing
composition of applications by the Ensemble methodology. In Ensemble applications are built
by composing reusable executable program components designed with scalable
communication interfaces. We define reusable specifications of program components, using
coloured Petri nets, which are then composed to obtain the specification of the application.
The composition is controlled by the same script that is used to compose the application.

1 INTRODUCTION

Software composition has been suggested as a methodology for building large scale
applications. Software components having an open architecture, flexible for reuse by different
applications, are combined to compose applications. Software composition has three major
aspects (Nierstrasz and Meijler, 1995): (i) macro expansion (ii) higher order functional
composition and (iii) binding of communication channels. Significant work has been done the
past few years in the area of software composition, mainly on the first two aspects and their
implications in the framework of object oriented methodologies (Nierstrasz et al., 1992) and
less on the third (Nierstrasz, 1995).

We have developed a message passing program implementation methodology, called
Ensemble (Cotronis, 1996a; Cotronis 1996b), by which message passing applications are
composed out of reusable software components by binding their communication channels.
The emergence of Message Passing Environments (MPE), such as PVM (Geist et al., 1994),
MPI (McBryan, 1994), Parix, provide a useful abstraction of the underlying architecture
simplifying implementation. However, the software engineering step from message passing
design to implementation remains a demanding task, as it involves the programming of the

george
In Proc. Encress 97. 3rd International Conference on Reliability, Quality & Safety of Software-Intensive Systems, Chapman and Hall, May 1997

sequential parts, computing a result or providing a service, intermixed with the explicit
programming of process management: process creation and identification, process interaction,
process topologies and their mapping onto the virtual architecture. The programming imposed
by process management makes programs much more difficult to develop and maintain.
Important aspects of parallel programs, such as scalability and reusability are frequently
neglected, as they have to be explicitly programmed. Scalability is relatively easy to program
when the problem has some global regularity, usually expressed by some function; reusability
of executables is more difficult as process management is usually encoded in them and
processes may only operate within the context of one application.

Ensemble alleviates the development and maintance difficulties of message passing
programs. Ensemble is not a new message passing environment and does not even demand
any changes to MPEs; it is also independent of any MPE; it restricts, as all methodologies, the
implementation space of applications to a common software architecture. An application in
Ensemble is an ‘ensemble’ of a script, which specifies the application processes, their
topology and mapping, and of reusable executable program components, which do not involve
any process management activities, but only computations providing a result or service. The
script is interpreted by programs (tools of Ensemble) which compose the application.

However, composing message passing applications from reusable components is prone to a
number of errors: unspecified or incompatible binding of communication channels, wrong
behaviour of the composed system, wrong result, etc. These errors may emerge during
program execution in the form of undelivered messages, deadlock situations, non-terminating
programs, etc. Although, the architecture of Ensemble applications supports their efficient
debugging, the general problems of debugging (e.g. no guarantee of absence of bugs), as well
as the problems of parallel program debugging (e.g. non-deterministic behaviour of programs,
non-reproducibility of behaviour) still apply. We would like therefore to predict the behaviour
of the composed applications or even formally verify that the composed programs behave
according to the required specifications. The behaviour of a composed message passing
application cannot, in general, be analytically determined from the known behaviour of its
components. But we may compose the formal specifications of individual components to
obtain a composed formal specification of the application which may then be tested and
verified. In the debate about the usefulness of formal methods in software development we
have followed the middle way (Jackson and Wing, 1996). In the presence of numerous formal
models which all address the same problem, but very few of them are actually used (Parnas,
1996), we do not intend to present another model. We would use already developed
formalisms and their associated theory and tools which are suitable for Ensemble as software
engineering formal testing methods. We have used the Petri net formalism for expressing and
composing specifications as it is well founded, has been widely used to specify parallel
software systems and is supported by a number of tools.

In the next section we outline the Ensemble methodology and its tools. In section 3 we
discuss the requirements for component specification. In section 4 we describe the general
form of component specifications and present the composition. In section 5 we apply the com-
position to three applications. Finally, we present our conclusions and plans for future work.

2 OUTLINE OF THE ENSEMBLE METHODOLOGY AND ITS TOOLS

We outline Ensemble using as an example the Distribution of Maximum application: terminal
processes which are each given an integer parameter and require the maximum of these

integers; each terminal process sends its value to an associated relay process and (eventually)
receives from it the required global maximum (GM). Relay processes receive values from
their terminals, find their local maximum (LM), exchange LMs with the other relays, and find
their maximum (GM); they finally send GM to their terminal processes. The Ensemble
implementation consists of the application script and the two executable reusable components,
the terminal and the relay. The application is composed by a launching program, which
interprets the scripts and sets-up the application.

2.1 The Ensemble script

The script for Distribution of Maximum application (with three relays and five terminals) is
shown in the first column of Figure 1. The script is structured in three main parts:

The first part, headed by PCG, specifies the Process Communication Graph (PCG) of the
application independent of any MPE. PCGs are a natural structure for specifying processes
and their communication dependencies and are close to program design. Nodes on a PCG
denote processes and arcs the communication channels (dependencies) between them. PCGs
have been used in modelling, in dynamic analysis and simulation, in mapping techniques, etc.
In the PCG part we first specify the components involved (e.g. T and R), then the processes
instantiated from each component (e.g. T[1],…,T[5] and R[1],…,R[3]) and finally the
communication channels between the processes.

Scalability is an important aspect of parallel programs. Usually, due to programming
complexity, we think of scalability as global factors in an application, e.g. sizes of dimensions
of a grid topology. But there may be other local scalability factors. For example, relays 1 and 2
have two terminals and relay 3 only one; if the number of terminals increases to ten, all five of
the new may be assigned to relay 3, or to two new relays, two to relay 4 and three to relay 5.
We consider these possibilities as design choices which should all be supported. In general,
scaling of applications requires replication of processes and their interconnections. For some
process topologies, such as a tours, it is sufficient to replicate identical processes each having
the same number of connections. But for other topologies, such as master/slave, each
replicated process may have a distinct number of interconnections, possibly within a range. To
support the global as well as local scalability of applications we specify for each process in the
script, its number of ports. Process ports are identified by the name of their communication
type and a unique index within the type. The terminal component, for example, has two
communications types (Sin and Sout) and all terminal processes exactly one port of each type.
The relay component however, has four communication types (Sin, Sout, Pin, Pout). All relay
processes have two ports of type Pin and Pout, but different number of ports of Sin and Sout
types. Channels are defined by one-to-one associations of process ports.

A tool program, the PCG-builder, reads the PCG part and actually generates the PCG. The
PCG for our example is depicted in Figure 1, next to the PCG part of the script. For reasons of
simplicity channels connecting Xin[i] with Yout[j] ports and Xout[i] with Yin[j] ports are
depicted as one bi-directional channel connecting X[i] with Y[j].

The second script part, headed by Parallel System, specifies the annotation of nodes
(processes) and arcs (channels) of the PCG with information required for the composition of
the application on a specific target MPE. In the example script of Figure 1 the target system is
PVM; nodes are annotated by the host name on which they will be spawned (optional in
PVM); arcs are annotated by the tag number which is required to identify the abstract PVM
channels between processes (default on the script annotates arcs by unique tags).

The third script part, headed by Sequential Components, specifies the further annotation of
nodes with process loading information. The files of the reusable executable components are
specified and for each process its command line parameters. The second and third parts are
interpreted by the annotation Builder which annotates the PCG created by the PCG builder. In
Figure 1, below the general PCG, the annotation of some of its nodes and channels is shown.

APPLICATION Distribution_Maximum;
PCG
Components

T port-types : Sin, Sout;
R port-types : Cin, Cout, Pin, Pout;

Processes
T[1], T[2], T[3], T[4], T[5] #ports=Sout:1, Sin:1;
R[1], R[2] #ports = Cout:2, Cin:2, Pout:2, Pin:2;
R[3] #ports = Cout:1, Cin:1, Pout:2, Pin:2;

Channels
T[1].Sout[1] -> R[1].Cin[1]; R[1].Cout[1] -> T[1].Sin[1];
T[2].Sout[1] -> R[1].Cin[2]; R[1].Cout[2] -> T[2].Sin[1];
T[3].Sout[1] -> R[2].Cin[1]; R[2].Cout[1] -> T[3].Sin[1];
T[4].Sout[1] -> R[2].Cin[2]; R[2].Cout[2] -> T[4].Sin[1];
T[5].Sout[1] -> R[3].Cin[1]; R[3].Cout[1] -> T[5].Sin[1];
R[1].Pout[1] -> R[2].Pin[1]; R[2].Pout[1] -> R[1].Pin[1];
R[1].Pout[2] -> R[3].Pin[1]; R[3].Pout[1] -> R[1].Pin[2];
R[2].Pout[2] -> R[3].Pin[2]; R[3].Pout[2] -> R[2].Pin[2];

P

C

G

B

u

I

l

d

e

r

Relay[1]

Relay[2]

Relay[3]

Terminal[5]

Terminal[1]
Terminal[2]

Terminal[3]

Terminal[4]

S1

P2

S1

S1

S1

S1

C1

C1

C1

C2

C2

P1

P1

P1

P2

P2

PARALLEL SYSTEM
Environment PVM3
PVM3_Annotation
 tagID : default;
PVM3_Options
 Allocation
 R[1], T[1], T[2] at euridiki;
 R[2], T[3], T[4] at kadmos;
 R[3], T[5] at lavdakos;
SEQUENTIAL COMPONENTS
Executable files
 T : path default file terminal;
 R : path default file relay;
Execution Parameters
 T[1]:6; T[2]:999; T[3]:7; T[4]:8; T[5]:9;

a
n
n
o
t
a
t
i
o
n

B
ui
ld
er

Node 1 name : T[1]
 allocation : euridiki
 file : terminal
 path : default
 parameters : 6
Node 6 name : R[1]
 allocation : euridiki
 file : relay
 path : default
 parameters : (None)
Channel 1 : 1.Sout[1] -> 6.Cin[1] tagid 1
Channel 4 : 4.Sout[1] -> 7.Cin[2] tagid 4
Channel 7 : 6.Cout[2] -> 2.Sin[1] tagid 7
Channel 11: 6.Pout[1] -> 7.Pin[1] tagid 11
Channel 14: 7.Pout[2] -> 8.Pin[2] tagid 14

Figure 1 The application script and the annotated PCG.

2.2 The reusable components

They compute a result or provide a service and do not involve any process management or
assume any topology in which they operate. They have open ports for communicating with
any compatible processes in any application. A port is a structure, which may store
communication parameters necessary for sending and receiving messages; for example in
PVM these parameters are pairs of values of task identifiers, which are unique numbers
identifying a process, and tag identifiers. Ports of the same type form arrays and arrays of all
types form the interface of the component. All send and receive operations refer to ports,
identified by a communication type and an array index. At the time of process creation the
launching program provides the actual number of ports of each type, as well as, the values for

the communication parameters for each port. Processes set-up their interface by calling
appropriate routines. Each MPE demands its own routines for setting up the component
interfaces. A common structure for components (Figure 2), has been developed which hides
these differences and unifies the appearance of components of any MPE.
void main() /* terminal */
{ InterfaceType Interface[2];
 MakePorts(Interface);
 SetInterface(Interface);
 realmain(Interface); /* main action */ }

void realmain (Interface);
{ /* terminal pseudoccode */
 send local value to relay (to Sout type)
 receive maximum from relay (from Sin type)
}

void main() /* relay */
{ InterfaceType Interface[4];
 MakePorts(Interface);
 SetInterface(Interface);
 realmain(Interface); }

void realmain(Interface);
{ /* relay pseudocode */
 receive values from terminals (from Cin type)
 find the local maximum (LM) of values
 send LM to all other relays (to Pout type)
 receive LMs from all other relays (from Pin type)
 find global maximimum (GM)
 send GM to terminals (to Cout type) }

Figure 2 The structure of Terminal and Relay program components.

For each component we declare the number of communication types that it requires, indicated
by the size of the array Interface. Terminals have two and Relays four communication types.
Processes first call MakePorts to set-up the appropriate number of ports in Interface, then call
SetInteface to set values to ports of Interface and they call their realmain actions. The
component executables are reusable in any application in the given MPE.

2.3 The Launcher program

It is the program that actual composes applications, universal for all applications in the same
MPE, one Launcher program for each MPE. The Launcher visits the annotated PCG nodes
and spawns processes providing to each spawned process the number of its ports of each type
(to be processed by MakePorts), the port information (to be processed by SetInterface) and its
command line parameters. Now the parallel program is composed and running.

We have only outlined the aspects of Ensemble methodology and its tools which are
relevant in the context of this paper. A detailed description of Ensemble in PVM and Parix
may be found in (Cotronis, 1996a) and (Cotronis, 1996b), respectively.

3 REQUIREMENTS FOR SPECIFICATIONS AND THEIR COMPOSITION

Our aim is to support the Ensemble methodology with formal tools for testing and verifying
programs prior to their execution. To reflect the Ensemble architecture of parallel programs
we need to define component specifications, process specifications (instantiations of
component specifications) and their composition. Component specifications specify the
behaviour of program components. They should be reusable, permitting the generation of
process specifications, as required by the script. Component specifications should have
scalable interfaces, specifying the valid range of values for each of their communication types,
e.g. fixed (as Sin of terminals) or any positive integer (as Cin of relays) or any non-negative
integer (as Pin of relays). They should identify their input and output ports as well as the type
of data that is sent and received through them. Process specifications should be generated

from component specifications as mechanically as processes are generated from program
components. At the time of their generation the number of ports specified in the script should
be validated and their interface should be fixed.

Specification composition involves the port interconnections integrating individual process
specifications into one. During composition we have to check the compatibility of port
interconnections: that each output port is connected to a single input port and vice-versa, and
that the data expected on the connected ports is of the same type. In general, the compatibility
of port connections also depends on being synchronous or asynchronous. We restrict our
presentation to asynchronous communications. At the end of the composition we have to
check for unconnected ports. Until this step all testing and validation is static.

Having composed the specifications we verify their integrated behaviour, that is to say the
dynamic aspects of the composed system. Analytical tools may be employed proving general
properties, such as absence of deadlock; causal graphs may be produced or simulations may
be performed. We may only provide guidelines on using these tools in the context of message
passing applications and Ensemble. For example, we may verify the number and ordering of
the send/receive actions, which are the main reason for the ill-behaviour of message passing
applications, such as deadlocks and non-termination. If more send than receive operations are
performed some messages will be undelivered, if more receives are specified then there will
be a deadlock. If the wrong order of send and receives is specified then the system may not
deadlock, but produce a wrong result.

Having tested or verified the dynamic properties of the composed specification we may test
its functionality, the correctness of the result it computes or the service it provides. We are not
only concerned with send/receive operations but with internal non-communication actions.

4 COMPOSITION OF SPECIFICATIONS SUPPORTING ENSEMBLE

We have used the Petri net formalism for expressing and composing specifications. Petri-nets
have a well founded theory, have been widely used to specify parallel software systems and
are supported by a number of tools. Petri-net semantics have been shown to be suitable for the
composition of specifications of message passing applications. In (Kindler, 1996) the
composition of Petri net components is modelled with place fusion, which corresponds to
asynchronous message passing. In (Best et al., 1995) large High Level nets are constructed
from smaller components, by transition synchronisation, which allows composition in a
manner similar to process algebras like CCS. We use Coloured Petri nets which allow the
modeller to create simple and easily manageable descriptions, without losing the ability of
formal analysis (Jensen, 1990).

4.1 Program component specifications: template CPN

The formalisms described in the previous section are, in a way, very close to our needs. We
use Petri net components, which represent the specifications of program components of
Ensemble applications, and compose them directed by Ensemble scripts. In the case where the
interface of a component is fixed, as for example in the terminal component (it has one port of
types Sin and Sout) its specification can be modelled directly with CPNs. The general case,
however, where the interface of a component is parametric, cannot be directly modelled using
CPNs, since CPNs must have a fixed structure (specific number of places and connections
with transitions). Thus, we need to extend the component specifications with open scalable

interfaces for them to be reusable and to generate process specifications. We define template
CPNs, which resemble CPN formalism but also contain additional information to specify the
interface parametrically. The template CPN is a parametric net-structure having a unique
name, from which process component names may be generated by unique indexing. Similar to
the Ensemble program components they also have two kinds of parameters: port interface
parameters (the number of ports of each communication type) and application parameters (like
the integer value of terminal components).

Template R;
port-types

Cin.range : 1..;
Cout.range: 1..;
Pin.range : 0..;
Pout.range: 0..;

color data = index D with 1..Cin.#ports;
color clm = index LM with..Pin.#ports;
color lm, gm = int;
color control = with c;

[Pout]

1`c
1`c

1`c
1`c

1`c

[Cin]

[Cout]

[Pin]

1`gm

1`gm

1`[D]

1`lm

1`[LM]

1`gm

color data = int;
color control = with c;
var d : data;

Template T(v : int);
port-types

Sin.range = 1..1;
Sout.range = 1..1;

[Sout]
[Sin]1`d

1`d

1`v

1`c
1`c

1`c
1`c

1`lm
1`lm

Figure 3 The template CPNs for Terminal and Relay Components.

Application parameters appear in parentheses at the heading of the template and also
symbolically index the initial place of the net structure (Figure 3). The symbolic initial
marking will be replaced by actual values when process specifications are generated.
Following the heading of the template the valid range of ports for each communication type is
specified. We have used a simple notation from..to, where from could be any non-negative
number and from<=to. In the case where a communication type has fixed number of ports,
say N, the expression becomes N..N. For example see template T in Figure 3 (Sin and Sout
have a range 1..1). In the case of parametrically specified number of ports the value of from
could be either 1 or 0. The former specifies that the component can have at least one port of
this type and the latter that it may not have any ports of this type. If the value for to is
unspecified then there is no upper bound on the number of ports. In Figure 3, R is specified to
have a 1.. range for its Cin and Cout port types and a 0.. range for its Pin and Pout port types.
Usually the number of ports is required as a parameter in the net. For this the P.#ports symbol
is used to indicate the number of ports of type P.

Templates name their interface places according to the corresponding port types of the
component, enclosed in square brackets distinguishing them from other places. The bracket
notation is used for variables in the inscriptions on the arcs joining interface places, which are
distinct for each port. The template structure has a local declaration node, represented as a
dotted line rectangle, which contains definitions of colour sets, variables, values etc.,
representing data types and tokens. All generic parts of a template, are enclosed in a solid line
(Figure 3).

4.2 Process specifications: composable CPN

Process specifications, which are composable CPNs are instantiated from their corresponding
template CPN by providing actual values for its instance number, number of ports of each
type and application parameters. All of these exist in the Ensemble script. Composable CPNs
are normal coloured Petri nets uniquely named by indexing the template name with an
instance number. Figure 4 illustrates the composable CPNs for components T[1] and R[3] as

specified in the script in Figure 1. Appearance of the number of ports in local declarations are
replaced by their actual values. The net structure is generated by replicating interface places
and the input and output arcs to and from these places along with their inscriptions. Upon
replication the brackets are removed and the names in the brackets are indexed by unique
integers.

T[1]

Sout [1]
Sin [1]1`d

1`d

1`6

1`c
1`c

1`c
1`c

color data = int;
color control = with c;
var d : data;

R[3]

color data = index D with 1..1;
color clm = index LM with 1..2;
color lm, gm = int;
color control = with c;

1`D[1]1`c
1`c

1`c
1`lm

1`lm

1`lm

1`LM[2]

Pout[1]

Cin[1]

1`gm Cout[1]

1`c

1`c
1`gm

1`gm
Pin[2]

Pout[2]

Pin[1]

1`lm

1`LM[1]

Figure 4 The composable CPNs for T[1] and R[3].

4.3 The application specification: composed CPN

The composable CPNs may now be composed in order to produce the complete application
specification, which we call composed CPN. The composition of the composable CPNs is
performed according to the channel section of the script. The names of the interface places are
the same as the names of the corresponding ports in the script. Furthermore the name of each
composable CPN is the same as the name of the corresponding process in the script. By
prefixing the name of the composable CPN to the name of the interface place, a full unique
name for each interface place is constructed. For each channel between two ports defined in
the script the corresponding places of the composable CPNs are fused.

5 COMPOSING APPLICATION SPECIFICATIONS

In this section we present three example applications where the proposed technique is applied.
All three applications use the template CPNs for terminal and relay components.

5.1 An erroneous application

In the first example we demonstrate the composition of an erroneous script; its PCG is:
Components
 T port-types Sout, Sin; R port-types Cout, Cin, Pout, Pin;
Processes
 T[1], T[2] #ports = Sout:1, Sin:1;
 R[1] #ports = Cout:1, Cin:1, Pout:1, Pin:1;
Channels
 T[1].Sout[1] -> R[1].Cin[1]; R[1].Cout[1] -> T[1].Sin[1];
 T[2].Sout[1] -> R[1].Pin[1]; R[1].Pout[1] -> T[2].Sin[1];

There are two terminals and one relay. The Sout[1] and Sin[1] ports of T[1] are connected with
the Cin[1] and Cout[1] ports of R[1], respectively. But ports Sout[1] and Sin[1] of T[2] are

connected with the Pin[1] and Pout[1] ports of R[1] respectively, instead of Cin[2] and Cout[2]
ports respectively. The ports are compatible, they exchange integer values, but the behaviour
of the application as specified by the script is not correct. The composition of the application
is depicted in Figure 5

R[1].Cin[1]&T[1].Sout[1]

R[1].Pin[1]&T[2].Sout[1]

R[1].Pout[1]&T[2].Sin[1]

R[1].Cout[1]&T[1].Sin[1]

T[2]

color data = int;
color control = with c;
var d : data;1`d

1`d

1`9

1`c
1`c

1`c
1`c

T[1]

color data = int;
color control = with c;
var d : data;1`d

1`d

1`6

1`c
1`c

1`c
1`c

1`D[1]R[1] 1`c
1`c

1`c

1`lm

1`lm

1`lm

1`LM[2]

1`gm

1`c

1`c
1`gm

1`gm

color data = index D
 with 1..1;

color clm = index LM
with 1..1;

color lm, gm = int;
color control = with c;

Figure 5 The composed specification of an erroneous script.

The causality graph of the composed specification will depict that the number and order of
send and receive operations is not correct. R[1] performs one send to its Pout[1] port and one
receive from its Pin[1] port, but there is no other relay in the application. Also R[1] performs a
send to its Pout[1] port before a receive from T[2]. What actually happens is that T[1] gets the
global maximum, but T[2] gets the value of T[1].

5.2 Distribution of maximum application

The Ensemble script is given in Figure 1. We use a box notation for the composable CPNs,
which hides their internal structure concentrating to their interface connections. Each
composable CPN-box has the same name as the composable CPN and its ports are depicted by
black dots in the boundaries of the box, along with their names. The net is shown in Figure 6.
By using CPN tools we may verify that the behaviour of the composed specification is correct.

R[2]

Cin[1]
Cout[1]

Pin[1]

Pin[2]
Pout[2]

Pout[1]

Cin[2]
Cout[2]

T[3]

Sin[1]

Sout[1]

T[4]

Sin[1]

Sout[1]

R[1]

Cin[1]
Cout[1]

Pin[1]

Pin[2]
Pout[2]

Pout[1]

Cin[2]
Cout[2]

Sout[1]

Sin[1]

T[1]

Sout[1]

Sin[1]

T[2]

R[3]

Cin[1] Cout[1]

Pin[1] Pin[2]

Pout[2]Pout[1]

T[5]

Sin[1]Sout[1]

Figure 6 The composed CPN for Distribute Maximum by all-to-all topology.

5.3 Distribution of maximum by tree topology

In this variation of the Distribution of Maximum application we maintain the relationship of
the five terminals to the three relay processes, but relay processes are organised in a tree, with
R[3] being the root. Relays 1 and 2 have only one Pout and one Pin ports which are connected

to the Cin and Cout ports, respectively, of their parent Relay 3, which has no Pout and Pin ports.
The process structure is a tree of height 2: the terminal processes 1,2,3,4 are at level two;
R[1], R[2], T[5] at level one; and R[3] is the root. The PCG part of the application script is:
Components
T port-types Sout, Sin; R port-types Cout, Cin, Pout, Pin;
Processes
T[1], T[2], T[3], T[4], T[5] #ports = Sout:1, Sin:1;
R[1], R[2] #ports = Cout:1, Cin:1, Pout:1, Pin:1;
R[3] #ports = Cout:3, Cin:3, Pout:0, Pin:0;
Channels
R[1].Cout[1] -> T[1].Sin[1]; T[1].Sout[1] -> R[1].Cin[1];
R[1].Cout[2] -> T[2].Sin[1]; T[2].Sout[1] -> R[1].Cin[2];
R[2].Cout[1] -> T[3].Sin[1]; T[3].Sout[1] -> R[2].Cin[1];
R[2].Cout[2] -> T[4].Sin[1]; T[4].Sout[1] -> R[2].Cin[2];
R[3].Cout[3] -> T[5].Sin[1]; T[5].Sout[1] -> R[3].Cin[3];
R[3].Cout[1] -> R[1].Pin[1]; R[1].Pout[1] -> R[3].Cin[1];
R[3].Cout[2] -> R[2].Pin[1]; R[2].Pout[1] -> R[3].Cin[2];

R[3]

Cin[3] Cout[3]Cout[1]

Cin[2]

Cout[2]
Cin[1]

T[5]

Sin[1]Sout[1]

R[2]
Cin[1]

Cout[1]

Pin[1]
Pout[1]

Cin[2]
Cout[2]

T[3]

Sin[1]

Sout[1]

T[4]

Sin[1]

Sout[1]

R[1]
Cin[1]
Cout[1]

Pin[1]
Pout[1]

Cin[2]
Cout[2]

Sout[1]

Sin[1]

T[1]

Sout[1]

Sin[1]

T[2]

Figure 7 The composed CPN for Distribute Maximum by tree topology.

At each level, the relay processes receive the values from their clients, select the maximum
and propagate it to the next level up. The root selects the maximum and sends it to its client
processes, the two relays and T[5]. The relay processes below the root do the same until the
maximum reaches their terminal processes. The composed specification net is shown in
Figure 7. Again by using CPN tools we may verify that this solution of the Distribution of
Maximum application is valid. We demonstrated that although terminal and relay template
specifications were originally designed for one solution, they are reused to verify that the tree
solution to the Distribution Maximum application is also correct.

6 CONCLUSIONS- FUTURE WORK

We have presented a specification composition technique which supports the message passing
program composition of the Ensemble methodology. We have defined descriptions of CPNs
with scalable interfaces, called template CPNs, to specify the behaviour of scalable reusable
program components. From the template CPNs we generate composable CPNs, which are
pure CPN descriptions. We have used the PN composition technique of (Kindler, 1996)
adapted to the composition of Ensemble applications as described by the script. During
composition static information as specified by the script is validated (for example, the number
of communication ports within the range and the compatibility of port interconnections). The

composition is directed by the script. The correspondence of program and specification
composition is depicted in Figure 8. In the middle there is the application script, which is used
by the application Launcher to compose applications (left hand side). The script is also used
by the specification composer to compose application specifications (right hand side).

Figure 8 Ensemble methodology supported by composition of specifications.

We are currently implementing tools for designing template CPNs, generating from them
composable CPNs and composing them according to Ensemble scripts. Our effort does not
simply aim to support the Ensemble methodology by a formal specification tool. We envisage
of using Ensemble and its associated tools as a viable means of bridging the gap between the
disjoint worlds of specifications and program executions. Usually specifications are obtained
before program design and program implementation. But this view is not valid in the software
composition approach. Programs and their specification are composed together. Especially in
Ensemble both may be independently produced from the script. In a sense the composed
specifications are the semantics of composed programs under the assumption that the
component specifications are correct.

To alleviate possible discrepancies between component specifications and component
implementations we may use one to test the other. On the one hand, tracing information of the
composed application may be passed to a simulator of the composed specifications. Thus, the
behaviour of the application is not only monitored as it is running, but actually tested. The
programmer is not obliged any more to inspect detailed and confusing charts, visualisation of
executions, but the simulation system may check against the specifications either
automatically in the background or by analysing a trace file of erroneous behaviour. The use
of tracing information in conjunction with specification simulation information should always
be used during individual component development. On the other hand, the specification
simulator may be used as an advanced breakpoint mechanism which controls the execution of
the actual program. Specifications and programs are not in disjoint worlds any more, but are
inter-related. We believe that in this scheme the extra effort of designing specifications of
reusable components is justified as it assures reliability and reduction of production costs of
message passing applications.

Reachability
graphs

S
C
R
I
P
T

Specifications CompositionApplication Composition

CPN FormalismApplication Execution

Monitoring
Execution

Monitoring
Message

Queue Simulation
tools

Invariant
Analysis

Occurrence
graphs

APPLICATIONS SPECIFICATIONS

Program
Components

Specification
Components

?

7 REFERENCES

Best, E., Fleischhack, H., Fraczak, W., Hopkins, R.P., Klaudel, H. and Pelz, E. (1995) A Class
of Composable High Level Nets, Application and Theory of Petri Nets ´95.

Cotronis, J.Y. (1996a) Efficient Composition and Automatic Initialization of Arbitrarily
Structured PVM Programs, in Software Engineering for Parallel and Distributed Systems
(ed. I. Jelly, I. Gorton and P. Croll), Chapman & Hall.

Cotronis, J.Y. (1996b) Efficient Program Composition on Parix by the Ensemble
Methodology, Euromicro Conference 96, IEEE Computer Society Press, Prague.

Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R. and Sunderam, V. (1994) PVM
3 User’s guide and Reference Manual, ORNL/TM-12187.

Jackson, D. and Wing, J. (1996) Lightweight Formal Methods, IEEE Computer Magazine,
29(4).

Jensen, K. (1990) Coloured Petri Nets: A High Level Language for System Design and
Analysis, in Advances in Petri nets, (ed. G. Rozenberg), Lecture Notes in Computer
Science, 483, Springer-Verlag.

Kindler, E. (1996) A Compositional Partial Order Semantics for Petri Net Components. SFB-
Bericht 342/06/96 A, Technische Universitaet Muenchen.

McBryan, O. A. (1994) An overview of Message Passing Environments, Parallel Computing,
20, 417-444.

Nierstrasz, O. (1995) Regular Types for Active Objects, in Object-Oriented Software
Composition, (eds. O. Nierstrasz and D. Tsichritzis) Prentice Hall.

Nierstrasz, O. and Meijler, T.D. (1995) Research Directions in Software Composition. ACM
Computing Surveys, 27(2).

Nierstrasz, O., Gibbs, S. and Tsichritzis, D. (1992) Component-Oriented Software
Development. Communications of the ACM, 35(9).

Parnas, D.L. (1996) Mathematical Methods: What We Need and Don’t Need. IEEE Computer
Magazine, 29(4).

8 BIOGRAPHY

Dr. J.Y. Cotronis obtained his Ph.D. in Computer Science in 1982 from the Computing
Laboratory, University of Newcastle-upon-Tyne, where he worked as a Research Associate in
projects in the area of parallelism. He has been involved in a number of R&D projects in
industry and academia. He is an Assistant Professor and his current research interests are on
methodologies and supporting tools for composing and porting parallel applications.

Zacharias Tsiatsoulis studied Informatics at the University of Athens. He received his B.Sc.
degree from the Department of Informatics in 1993. He is currently a Ph.D. student at the
Department of Informatics, University of Athens. His research interests include specification,
testing and verification of composed message passing applications.

