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Abstract 
We present Ensemble, a message-passing implementation methodology, applied to PVM. 
Ensemble overcomes problems and complexities in developing applications in message-
passing environments (MPE). Applications are specified by scripts, which represent Process 
Communication Graphs (PCG) annotated with information specific for an MPE, and by 
reusable executable components. A loader program interprets the scripts and composes 
applications from reusable components. 

1 Motivation 
The design and implementation of parallel message passing applications (MPA) have 
been recognized as demanding tasks. PVM [5] and MPI [6] Message Passing 
Environments (MPE) have improved the situation, as they permit the implementation 
of applications independently of the underlying architecture, but the step from 
application design to implementation remains, in general, a demanding task. The 
implementation does not only require the programming of sequential code solving a 
problem or providing a service, but also requires the explicit programming of process 
management, e.g. process creation, process topologies and their mapping onto the 
architecture. As MPEs differ significantly in the way they manage processes, message 
passing program implementation presents a number of difficulties. MPEs impose on 
application implementation their own structure to such a degree, that implementations 
of the same application design (even a simple ring topology) on different MPEs, using 
the same language for the sequential computations, look very different. The 
implementation difficulty does not depend only on the complexity of the design, but 
also on the particular MPE used. Some applications are more easily implemented on 
some MPEs than on others. For example, a general tree topology is easy to implement 
on PVM, but difficult on MPI. The difficulty arises from the process management 
model each MPE uses. Often, the original application design is obscured in the 
implementation by the required process management programming.  
Consequently, implementation requires special techniques and skills, different for 
each MPE. There are no methodologies for implementing applications on PVM or 
MPI. Programmers have to implement relying on their experience, quite often in an ad 
hoc way, developing programs that are difficult to debug, extend and modify. 
Important aspects of parallel programming, such as scalability, reusability are often 
neglected. Scalability is programmed only when the design has some regularity, as 
expressed by some function; the degree of difficulty for programming scalability also 
depends on the MPE used. Reusability of executables is limited as process 
management (creation, topology, mapping, etc.) is encoded in them; processes are 
programmed to operate in a fixed topology of known processes.  
We have developed a message passing program implementation methodology, called 
Ensemble, for overcoming the above problems. The original design is maintained in 
the implementation, programs implementing the same designs in different MPEs look 
similar, are easily maintainable, scalable, reusable and portable to other MPEs. 
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Ensemble comprises three aspects: 1. The annotated Process Communication Graphs 
(PCG). PCGs have been extensively used in modeling, dynamic analysis and 
simulation [10,11], in mapping techniques [1,8], etc. and depict the topology of the 
processes involved in an application. We annotate nodes and arcs of PCGs with 
information required for the process creation and communication for specific MPEs. 
2. The reusable program components. Their executables are message passing library 
components, as they do no involve any process management and do not rely on any 
specific processes or topologies for communication; MPEs require different 
techniques for developing such components. 3. The Loader. Interprets the annotated 
PCGs and composes applications; the Loader visits the nodes of the annotated PCGs, 
spawns processes, which are instantiations of the reusable program components, and 
establishes process topologies. Each MPE requires its own Loader, but once 
developed it may be used to compose applications within an MPE.  
In section 2, we outline the Ensemble methodology, its techniques and tools for PVM; 
in 3, we demonstrate the reusability of components and in 4, we present our 
conclusions. 

2 Ensemble for PVM  
PVM allows for the most general form of parallel computation, as programs may 
exhibit arbitrary communication dependencies [6]. As with all programming 
environments, though, there are program categories suited to PVM, making them easy 
to implement and others not well suited. Programs forming, in general, tree process 
communication dependencies (including master-slave, as a one level tree, and SPMD, 
as a forest of roots), where each process communicates only with its parent and its 
children processes, are well suited to PVM. Processes are spawned by parent 
processes as children-processes. Communication between parent and children 
processes is established by using their respective tids and by tagging the messages 
they exchange by the same integer identifier (tagid). Developing programs forming 
general graph process topologies is a complex task in PVM. Establishing graph 
process topologies, even a simple ring, requires the explicit programming of (a) 
creating processes according to the parent-child model, and (b) establishing process 
communication, by obtaining the tids of the processes with which they need to 
communicate; processes get their children’s tids and they may easily obtain their 
parent’s tid, but they must also obtain the rest of the tids. This explicit programming 
is an overhead effort, it burdens the original application design and it limits the 
reusability, scalability and portability of programs.  
We present Ensemble by implementing an application, the Distribution of Maximum: 
terminal processes hold an integer value and require the maximum of all values. We 
develop the following design: each terminal process sends its value to an associated 
relay process and (eventually) receives from it the global maximum (a client-server 
model). Relay processes (as servers) find the local maximum of their associated 
terminals, they exchange their local maxima, they find the global maximum and send 
it to their associated terminal processes (as clients).  

2.1 The annotated PCG 
The annotated PCG of the application is specified by a script, which has three main 
parts. The first, headed by PCG, specifies the PCG of the application. The second, 



headed by PARALLEL SYSTEM, specifies the annotation of the PCG for a specific 
parallel environment (in this case PVM3). The third, headed by SEQUENTIAL 
COMPONENTS, specifies the further annotation of the PCG with information for the 
sequential components. Each of the three parts consists of sections. The script and its 
associated PCG and part of its annotation is shown in fig. 1. 
The two components, terminal and relay, and their communication dependency types 
are specified in the Components section of the PCG part. Terminal processes have 
one type of communication dependency, that with their associated relay processes, 
which we call Server type. Relay processes have two types of communication 
dependencies, one with their terminal processes, which we call Client type, and one 
with the relay processes, which we call Prop (propagation) type.  
The actual number of processes and the number of their communication dependencies 
of each type are described in the Processes section of the PCG part. Each terminal 
process communicates with its associated relay by a type Server communication. We 
say that terminal processes have one communication port, or simply port, of type 
Server. Relay processes may have any non-negative number of ports of Client and 
Prop types. We implement a solution with five terminal and three relay processes; 
relay processes have two ports of type Prop; relay[1] and relay[2] have two ports of 
type Client and relay[3] has one port of type Client. Having identified the processes 
and their ports, we specify in the Channels section of PCG the actual process topology 
by connecting ports, thus defining the channels of point-to-point communications. 
Ports are identified by unique integers within each type. For example, port 1 of type 
Server of terminal[1] ( written as ‘terminal[1].Server[1]’ ) is connected ( written as 
‘<->’ ), with port 1 of type Client[1] of relay[1] ( written as ‘relay[1].Client[1]’ ). 
A program, called PCG-Builder, parses the PCG part of the script and produces the 
corresponding PCG. In PCGs, processes are depicted by two concentric circles and 
labeled by their name. On the inner circle, each type of dependency is indicated by a 
bullet from which lines to the outer circle are drawn. The meeting points with the 
outer circle denotes the ports of the type; ports in fig. 1 are indexed by their type 
initial (Server, Client, Prop) together with their unique integer within the type. A 
channel is represented by a line joining two ports.  
The elements of the PCG described so far, specify a general application PCG 
independent of any particular MPE. In PVM3, messages are tagged by integer 
identifiers, tagids, which are used by the sending and receiving processes. The tagids 
annotate the arcs of the PCG. In the script, we specify the annotation of the arcs by 
giving them unique integer values (tagID: default). Nodes may optionally be 
annotated by host allocation information, if a process is to be spawned on a particular 
host. Finally, nodes are annotated by information for the sequential components: the 
full path name of the executables, as well as, any parameters required by the 
processes. In the script of fig. 1 we specify process allocation, give the names of the 
executables to be found in the default search path of PVM, we specify the integer 
parameters to terminal processes, being the values they hold. The maximum which all 
should receive is 999.  The annotation of two nodes representing processes relay[1] 
and terminal[1] and the annotation of five channels is shown in fig. 1 (process names 
are replaced by integers, e.g. relay[1] is replaced by 1 and terminal[1] by 4). The 
PCG-annotator parses the second and third parts of the script and annotates the PCG. 



 
Application AllToAllRelays; PCG 
Components 
   terminal port-types: Server; 
   relay    port-types: Client, Prop; 
Processes 
 relay[1], relay[2]    #ports= Client:2, Prop:2; 
 relay[3]                   #ports= Client:1, Prop:2; 
 terminal[1], terminal[2], terminal[3], 
 terminal[4], terminal[5]      #ports= Server:1; 
Channels 
terminal[1].Server[1] <-> relay[1].Client[1]; 
terminal[2].Server[1] <-> relay[1].Client[2]; 
terminal[3].Server[1] <-> relay[2].Client[1]; 
terminal[4].Server[1] <-> relay[2].Client[2]; 
terminal[5].Server[1] <-> relay[3].Client[1]; 
relay[1].Prop[1] <-> relay[2].Prop[1]; 
relay[1].Prop[2] <-> relay[3].Prop[1]; 
relay[2].Prop[2] <-> relay[3].Prop[2]; 
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PARALLEL SYSTEM 
Environment PVM3 
PVM3_Annotation  
   tagID : default; 
PVM3_Options 
 Allocation 
 relay[1], terminal[1], terminal[2] at euridiki; 
 relay[2], terminal[3], terminal[4] at kadmos; 
 relay[3], terminal[5]              at lavdakos; 
 
SEQUENTIAL COMPONENTS 
Executable files 
   terminal : path default file terminal; 
   relay :    path default file relay; 
Execution Parameters 
 terminal[1]:6; terminal[2]:999;  
 terminal[3]:7; terminal[4]:8; terminal[5]: 9; 
 

 
 
P 
C 
G 
 
A 
N 
N 
O 
T 
A 
T 
O 
R

Node 1  Name : relay 
        instance   : 1 
        Allocation : euridiki 
        file  : relay 
        path : Default 
        Parameters : (None) 
  Node 4  Name : terminal 
        instance  : 1 
        Allocation : euridiki 
        file  : terminal 
        path : Default 
        Parameters : 6 
Channel annotation 
1 :4.Server[1]<->1.Client[1] 
2 :5.Server[1]<->1.Client[2] 
6 :1.Prop[1]<->2.Prop[1] 
7 :1.Prop[2]<->3.Prop[1] 
8 :2.Prop[2]<->3.Prop[2] 

Fig. 1.  Ensemble script, the produced PCG and part its annotation 

2.2 The Design of Reusable PVM Program Components and the PVM Loader 
Reusability of executable components in a message-passing environment demands 
that components should not assume any specific communication topology for the 
processes instantiated from them; instead they should specify an open communication 
interface. Establishing a point-to-point communication between two PVM processes 
two values are needed in each: the tid of the other process and the common tagid. We 
define a data structure, implementing a port, in which (tid, tagid) pairs are stored. A 



program component, in general, may have a number of ports of the same type, which 
are organized in an array. An executable component may have many types of ports. 
The types of ports form array Interface, the elements of which point to arrays of ports. 
Each port is now identified by an index to a type and a port index within the type. The 
parameters of communication routines (e.g. pvm_send) referring to tid and tagid are 
expressed as Interface[T].port[p].tid and Interface[T].port[p].tagid, where T and p are 
indices to a type and a port, respectively. The structure and the pseudo-code of the 
two components of the application are shown in fig. 2; they both declare Interface 
with terminal component having one and relay two communication types. 
Upon their creation processes fix their interface; two actions are involved: a. creation 
of the appropriate number of ports for each type and b. setting value pairs (tid, tagid) 
to ports. The Loader visits the PCG nodes and spawns processes; all appropriate 
information annotates each node: the associate executable, its host allocation and its 
command line parameters; also the number of ports of each type are given as 
command line parameters. The first action of a process is to get the number of ports of 
each type and create the Interface structure. This is coded in the MakePorts routine. 
The value pairs (tid, tagid) for each port cannot, in general, be sent to the processes 
just spawned, as a process with which it needs to communicate may have not been 
spawned yet and its tid would not be known. The Loader annotates the PCG node 
with the tid of the process just spawned. Having visited all nodes and spawned all 
processes, the Loader visits the nodes of the PCG once more and sends the port 
information (tid and tagid) to the processes. The processes receive the port 
information and set their Interface. This activity is coded in the SetInterface routine. 
void main(Int)               /* terminal */ 
  InterfaceType Interface[1];  
              /* 1= Server type */ 
{ MakePorts(Interface);  
  SetInterface(Interface); 
  realMain (Interface); }   
 
void realMain (Interface); { send 
Int to port Interface[1].p[1]   
receive GM from Interface[1].p[1]} 

void main( )                                    /* relay */ 
  InterfaceType Interface[2]; 
       /* 1= Client and 2=Prop types */ 
{ MakePorts(Interface); 
  SetInterface(Interface); 
  realMain(Interface); } 
 
void realMain (Interface); 
{ receive values from all ports of Interface[1]  
   find their local maximum LM  
   send LM to all ports of Interface[2] 
   receive LMs from all ports of Interface[2] 
   find the global maximum GM 
   send GM to all ports of Interface[1] } 

Fig. 2. The common structure and the pseudo-code of terminal and relay 

3 A Variation on the Distribution of Maximum Application 
In the implementation of the previous section, all relay processes are connected with 
each other via their Prop ports, each exchanging with the others their local maxima. 
The same components will now be reused to compose a different design, in which 
relay processes form a tree topology; we use eight terminal and four relay processes. 
Relay[1] and relay[2] each have two Client ports connected with terminal[1], 
terminal[2] and terminal [3], terminal[4], respectively. The Prop ports of relay[1] and 



relay[2] are connected with Client ports 3 and 4 of relay[3], respectively. Relay[3] has 
four Client ports connected with terminal[5], terminal[6], relay[1] and relay[2]; the 
Prop port of relay[3] is connected to Client port 3 of relay[4]. Finally, relay[4], which 
is the root, has three Client ports connected with terminal[7], terminal[8] and relay[3] 
and no Prop port. The PCG part of the script and its graphical depiction are shown in 
fig.3. Let us note, that the Client and  Prop types are compatible, as only one integer 
value is sent and received through them. At each level the relay processes receive the 
values from their client processes (terminal or relay), select their maximum and 
propagate it to their parent-relay. The root selects the global maximum and sends it to 
its client processes. The relay processes below the root do the same until the global 
maximum reaches all terminal processes.  
 
Application TreeRelays; 
PCG 
Components 
   terminal port-types: Server; 
   relay    port-types: Client, Prop; 
Processes 
 relay[1], relay[2]#ports= Client:2, Prop:1; 
 relay[3]           #ports= Client:4, Prop:1; 
 relay[4]           #ports= Client:3, Prop:0; 
 terminal[1], terminal[2], terminal[3], 
 terminal[4], terminal[5], terminal[6],  
 terminal[7], terminal[8]   #ports= Server:1; 
Channels 
 terminal[1].Server[1] <-> relay[1].Client[1]; 
 terminal[2].Server[1] <-> relay[1].Client[2]; 
 terminal[3].Server[1] <-> relay[2].Client[1]; 
 terminal[4].Server[1] <-> relay[2].Client[2]; 
 terminal[5].Server[1] <-> relay[3].Client[1]; 
 terminal[6].Server[1] <-> relay[3].Client[2]; 
 terminal[7].Server[1] <-> relay[4].Client[1]; 
 terminal[8].Server[1] <-> relay[4].Client[2]; 
 relay[1].Prop[1] <-> relay[3].Client[3]; 
 relay[2].Prop[1] <-> relay[3].Client[4]; 
 relay[3].Prop[1] <-> relay[4].Client[3]; 
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Fig. 3.  The PCG part of the script and its graphic depiction 

4 Conclusions 
We have outlined Ensemble, an implementation methodology, applied to PVM 
programs with static process topologies. We demonstrated the flexibility of the 
methodology, by composing two solutions to the Distribution of Maximum 
application. In [3], more design variations are presented. We constructed reusable 
PVM library components, which may have any number of process instantiations either 
in the same or in other PVM programs; each instantiated process may have its own 
communication dependencies. The application topology is specified in scripts. By 



editing the scripts we scale programs, we change the allocation of processes to hosts 
or even change the topology of the processes, without modifying the program 
components.  
Ensemble does not suggest a new MPE and does not demand any changes to MPEs, 
but acts like a shell to them. Ensemble does not cause any execution overhead, apart 
from the execution of the loader interpreting PCGs, which is negligible compared 
with the saved programmer’s development time for establishing topologies. Ensemble 
is independent of any design, visualization, performance, or any other tools which 
may be used with an MPE.  
The methodology may be applied to any message-passing environment. We have 
applied it [2,4] on Parix [9] running on Parsytec GC3/512 and CC machines. Parix 
imposes altogether different constraints to programs than PVM, thus requiring a 
different PCG annotation, its own techniques of reusable program components and its 
own Loader. Ensemble implementations of the same design look similar in PVM and 
Parix. Also, the rewriting (porting at source level) of applications from one 
environment to the other is mechanical and in some cases may be automated. The 
Ensemble for MPI is currently under development. As MPI does not deal with 
dynamic process creation Ensemble does not constrain possible implementations, as 
in PVM.  
Ensemble separates the elements of a message passing application: the process 
topology, the architecture, the mapping of the processes onto processors and the 
computations giving the required result or providing the service. The first three are 
described in the script and the last by the program components. As they are separated, 
they may be modified independently of one another, thus simplifying program 
debugging and maintenance. Script modifications permit rapid program variations, 
thus allowing to ask “what if” type of questions to test the performance and fine tune 
the application. Consequently, Ensemble “removes” from message passing 
implementations the aspects that most influence the structure of applications, namely 
process management. They are “removed” in the sense that it is not required to 
program process management, since process topologies are specified in the scripts. 
Consequently, Ensemble “removes” the effort of programming most of the 
architectural idiosyncrasies of message passing environments.  
Ensemble provides a flexible and efficient means for composing applications. 
Although, the script language is still under development it was shown to be flexible 
and permitted the rapid composition of PVM programs. It is straight forward to edit 
scripts to either scale programs, in a regular or irregular ways, by adding and 
connecting new components, or to change the allocation of processes to processors, or 
to modify the topology, etc. This approach is related to the composition of object 
oriented applications by using objects and scripts [7], as it encourages a component 
oriented approach to application development. The Ensemble reusable components 
are used in the composition of applications in a “soft LOGO” manner. The 
programmer has only to code the sequential computations of applications. 
PVM and MPI, support the portability of applications to a number of architectures 
meaning that programs may run without modifications on these architectures. 
Portability does not necessarily imply that applications run efficiently on any 
architecture. For a ported program to run efficiently it has to be adapted and fine-



tuned for performance. Implementations of programs with Ensemble do not only lose 
the portability offered by MPEs but also, provide the infrastructure for extensive 
structural changes, such as change of granularity of processes.  
Future work includes high level parametric topology descriptions in scripts, support 
for dynamic process creation, tools for porting applications to different MPEs. 

References 
[1] F. Berman, L.Snyder, ‘On mapping parallel algorithms into parallel architectures’, 

J. P. Distr. Comput. 4, 5, 439-458. 
[2] J.Y. Cotronis: A Methodology for Initiating Arbitrary Structured Programs in 

Parix by Interpreting Graphs, ZEUS 95, Parallel Programming and Applications, 
ed. P. Fritzon and L. Finmo, IOS Press 1995. 

[3] J.Y.Cotronis: Efficient composition and automatic initialization of arbitrary 
structured PVM programs, in IFIP Proceedings of the 1st Workshop on Software 
Engineering for Parallel and Distributed Systems, (held in association with ICSE 
96), Berlin, March 1996. 

[4] J.Y.Cotronis: Efficient Program Composition on Parix by the Ensemble 
Methodology, 22nd Euromicro Conference 96, Prague. 

[5] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, Vaidy Sunderam, 
‘PVM 3 User’s guide and Reference Manual’, ORNL/TM-12187, May 1994. 

[6] MPI: A Message-Passing Interface Standard, Message Passing Interface Forum, 
June 12, 1995. 

[7] O. Nierstratz, D. Tsichritzis, V. de Mey, M. Stadelmann, ‘Objects + Scripts = 
Applications’, in Proceedings, Esprit 1991 Conference, Kluwer Academic 
Publishers, 1991, pp. 534-552. 

[8] M.G.Norman, P.Thanisch, ‘Mapping in Multicomputers’, ACM Computing 
Surveys, Vol25, No.3, Sept. 93. 

[9] Parix, Manuals Parix 1.2, 1.9, Parsytec Gmbh. 
[10] P.Pouzet, J.Paris, V.Jorrand, ‘Parallel Application Design: The Simulation 

Approach with HASTE’, Proc. High Performance Computing and Networking, 
Munich, April 18-20, 1994, Vol II, pp. 379-393. 

[11] C. Scheidler, L.Schaefers, ‘TRAPPER: A Graphical Programming Environment 
for Industrial High-Performance Applications’, PARLE Conf., Munich, 403-413, 
1993. 

 




