
Message-Passing Program Development by Ensemble
J.Y. Cotronis

Dept. of Informatics, Univ. of Athens, Panepistimiopolis, 157 71 Athens, GREECE.
tel.: +30 1 7230172 fax: +30 1 7219 561 e-mail: cotronis@di.uoa.gr

Abstract
We present Ensemble, a message-passing implementation methodology, applied to PVM.
Ensemble overcomes problems and complexities in developing applications in message-
passing environments (MPE). Applications are specified by scripts, which represent Process
Communication Graphs (PCG) annotated with information specific for an MPE, and by
reusable executable components. A loader program interprets the scripts and composes
applications from reusable components.

1 Motivation
The design and implementation of parallel message passing applications (MPA) have
been recognized as demanding tasks. PVM [5] and MPI [6] Message Passing
Environments (MPE) have improved the situation, as they permit the implementation
of applications independently of the underlying architecture, but the step from
application design to implementation remains, in general, a demanding task. The
implementation does not only require the programming of sequential code solving a
problem or providing a service, but also requires the explicit programming of process
management, e.g. process creation, process topologies and their mapping onto the
architecture. As MPEs differ significantly in the way they manage processes, message
passing program implementation presents a number of difficulties. MPEs impose on
application implementation their own structure to such a degree, that implementations
of the same application design (even a simple ring topology) on different MPEs, using
the same language for the sequential computations, look very different. The
implementation difficulty does not depend only on the complexity of the design, but
also on the particular MPE used. Some applications are more easily implemented on
some MPEs than on others. For example, a general tree topology is easy to implement
on PVM, but difficult on MPI. The difficulty arises from the process management
model each MPE uses. Often, the original application design is obscured in the
implementation by the required process management programming.
Consequently, implementation requires special techniques and skills, different for
each MPE. There are no methodologies for implementing applications on PVM or
MPI. Programmers have to implement relying on their experience, quite often in an ad
hoc way, developing programs that are difficult to debug, extend and modify.
Important aspects of parallel programming, such as scalability, reusability are often
neglected. Scalability is programmed only when the design has some regularity, as
expressed by some function; the degree of difficulty for programming scalability also
depends on the MPE used. Reusability of executables is limited as process
management (creation, topology, mapping, etc.) is encoded in them; processes are
programmed to operate in a fixed topology of known processes.
We have developed a message passing program implementation methodology, called
Ensemble, for overcoming the above problems. The original design is maintained in
the implementation, programs implementing the same designs in different MPEs look
similar, are easily maintainable, scalable, reusable and portable to other MPEs.

george
In Proceedings Recent Advances in PVM and MPI, M. Bubak, J. Dongarra and J. Wasniewski (eds.), LNCS 1332, 1997, pp.242-249

Ensemble comprises three aspects: 1. The annotated Process Communication Graphs
(PCG). PCGs have been extensively used in modeling, dynamic analysis and
simulation [10,11], in mapping techniques [1,8], etc. and depict the topology of the
processes involved in an application. We annotate nodes and arcs of PCGs with
information required for the process creation and communication for specific MPEs.
2. The reusable program components. Their executables are message passing library
components, as they do no involve any process management and do not rely on any
specific processes or topologies for communication; MPEs require different
techniques for developing such components. 3. The Loader. Interprets the annotated
PCGs and composes applications; the Loader visits the nodes of the annotated PCGs,
spawns processes, which are instantiations of the reusable program components, and
establishes process topologies. Each MPE requires its own Loader, but once
developed it may be used to compose applications within an MPE.
In section 2, we outline the Ensemble methodology, its techniques and tools for PVM;
in 3, we demonstrate the reusability of components and in 4, we present our
conclusions.

2 Ensemble for PVM
PVM allows for the most general form of parallel computation, as programs may
exhibit arbitrary communication dependencies [6]. As with all programming
environments, though, there are program categories suited to PVM, making them easy
to implement and others not well suited. Programs forming, in general, tree process
communication dependencies (including master-slave, as a one level tree, and SPMD,
as a forest of roots), where each process communicates only with its parent and its
children processes, are well suited to PVM. Processes are spawned by parent
processes as children-processes. Communication between parent and children
processes is established by using their respective tids and by tagging the messages
they exchange by the same integer identifier (tagid). Developing programs forming
general graph process topologies is a complex task in PVM. Establishing graph
process topologies, even a simple ring, requires the explicit programming of (a)
creating processes according to the parent-child model, and (b) establishing process
communication, by obtaining the tids of the processes with which they need to
communicate; processes get their children’s tids and they may easily obtain their
parent’s tid, but they must also obtain the rest of the tids. This explicit programming
is an overhead effort, it burdens the original application design and it limits the
reusability, scalability and portability of programs.
We present Ensemble by implementing an application, the Distribution of Maximum:
terminal processes hold an integer value and require the maximum of all values. We
develop the following design: each terminal process sends its value to an associated
relay process and (eventually) receives from it the global maximum (a client-server
model). Relay processes (as servers) find the local maximum of their associated
terminals, they exchange their local maxima, they find the global maximum and send
it to their associated terminal processes (as clients).

2.1 The annotated PCG
The annotated PCG of the application is specified by a script, which has three main
parts. The first, headed by PCG, specifies the PCG of the application. The second,

headed by PARALLEL SYSTEM, specifies the annotation of the PCG for a specific
parallel environment (in this case PVM3). The third, headed by SEQUENTIAL
COMPONENTS, specifies the further annotation of the PCG with information for the
sequential components. Each of the three parts consists of sections. The script and its
associated PCG and part of its annotation is shown in fig. 1.
The two components, terminal and relay, and their communication dependency types
are specified in the Components section of the PCG part. Terminal processes have
one type of communication dependency, that with their associated relay processes,
which we call Server type. Relay processes have two types of communication
dependencies, one with their terminal processes, which we call Client type, and one
with the relay processes, which we call Prop (propagation) type.
The actual number of processes and the number of their communication dependencies
of each type are described in the Processes section of the PCG part. Each terminal
process communicates with its associated relay by a type Server communication. We
say that terminal processes have one communication port, or simply port, of type
Server. Relay processes may have any non-negative number of ports of Client and
Prop types. We implement a solution with five terminal and three relay processes;
relay processes have two ports of type Prop; relay[1] and relay[2] have two ports of
type Client and relay[3] has one port of type Client. Having identified the processes
and their ports, we specify in the Channels section of PCG the actual process topology
by connecting ports, thus defining the channels of point-to-point communications.
Ports are identified by unique integers within each type. For example, port 1 of type
Server of terminal[1] (written as ‘terminal[1].Server[1]’) is connected (written as
‘<->’), with port 1 of type Client[1] of relay[1] (written as ‘relay[1].Client[1]’).
A program, called PCG-Builder, parses the PCG part of the script and produces the
corresponding PCG. In PCGs, processes are depicted by two concentric circles and
labeled by their name. On the inner circle, each type of dependency is indicated by a
bullet from which lines to the outer circle are drawn. The meeting points with the
outer circle denotes the ports of the type; ports in fig. 1 are indexed by their type
initial (Server, Client, Prop) together with their unique integer within the type. A
channel is represented by a line joining two ports.
The elements of the PCG described so far, specify a general application PCG
independent of any particular MPE. In PVM3, messages are tagged by integer
identifiers, tagids, which are used by the sending and receiving processes. The tagids
annotate the arcs of the PCG. In the script, we specify the annotation of the arcs by
giving them unique integer values (tagID: default). Nodes may optionally be
annotated by host allocation information, if a process is to be spawned on a particular
host. Finally, nodes are annotated by information for the sequential components: the
full path name of the executables, as well as, any parameters required by the
processes. In the script of fig. 1 we specify process allocation, give the names of the
executables to be found in the default search path of PVM, we specify the integer
parameters to terminal processes, being the values they hold. The maximum which all
should receive is 999. The annotation of two nodes representing processes relay[1]
and terminal[1] and the annotation of five channels is shown in fig. 1 (process names
are replaced by integers, e.g. relay[1] is replaced by 1 and terminal[1] by 4). The
PCG-annotator parses the second and third parts of the script and annotates the PCG.

Application AllToAllRelays; PCG
Components
 terminal port-types: Server;
 relay port-types: Client, Prop;
Processes
 relay[1], relay[2] #ports= Client:2, Prop:2;
 relay[3] #ports= Client:1, Prop:2;
 terminal[1], terminal[2], terminal[3],
 terminal[4], terminal[5] #ports= Server:1;
Channels
terminal[1].Server[1] <-> relay[1].Client[1];
terminal[2].Server[1] <-> relay[1].Client[2];
terminal[3].Server[1] <-> relay[2].Client[1];
terminal[4].Server[1] <-> relay[2].Client[2];
terminal[5].Server[1] <-> relay[3].Client[1];
relay[1].Prop[1] <-> relay[2].Prop[1];
relay[1].Prop[2] <-> relay[3].Prop[1];
relay[2].Prop[2] <-> relay[3].Prop[2];

P
C
G

B
U
I
L
D
E
R

Relay[1]

Relay[2]

Terminal[1]
Terminal[2]

Terminal[3]

Terminal[4]

S1

P2

S1

S1

S1

C1

C1

C2

C2

P1

P1

P2

Relay[3]

Terminal[5]

S1
C1

P1
P2

PARALLEL SYSTEM
Environment PVM3
PVM3_Annotation
 tagID : default;
PVM3_Options
 Allocation
 relay[1], terminal[1], terminal[2] at euridiki;
 relay[2], terminal[3], terminal[4] at kadmos;
 relay[3], terminal[5] at lavdakos;

SEQUENTIAL COMPONENTS
Executable files
 terminal : path default file terminal;
 relay : path default file relay;
Execution Parameters
 terminal[1]:6; terminal[2]:999;
 terminal[3]:7; terminal[4]:8; terminal[5]: 9;

P
C
G

A
N
N
O
T
A
T
O
R

Node 1 Name : relay
 instance : 1
 Allocation : euridiki
 file : relay
 path : Default
 Parameters : (None)
 Node 4 Name : terminal
 instance : 1
 Allocation : euridiki
 file : terminal
 path : Default
 Parameters : 6
Channel annotation
1 :4.Server[1]<->1.Client[1]
2 :5.Server[1]<->1.Client[2]
6 :1.Prop[1]<->2.Prop[1]
7 :1.Prop[2]<->3.Prop[1]
8 :2.Prop[2]<->3.Prop[2]

Fig. 1. Ensemble script, the produced PCG and part its annotation

2.2 The Design of Reusable PVM Program Components and the PVM Loader
Reusability of executable components in a message-passing environment demands
that components should not assume any specific communication topology for the
processes instantiated from them; instead they should specify an open communication
interface. Establishing a point-to-point communication between two PVM processes
two values are needed in each: the tid of the other process and the common tagid. We
define a data structure, implementing a port, in which (tid, tagid) pairs are stored. A

program component, in general, may have a number of ports of the same type, which
are organized in an array. An executable component may have many types of ports.
The types of ports form array Interface, the elements of which point to arrays of ports.
Each port is now identified by an index to a type and a port index within the type. The
parameters of communication routines (e.g. pvm_send) referring to tid and tagid are
expressed as Interface[T].port[p].tid and Interface[T].port[p].tagid, where T and p are
indices to a type and a port, respectively. The structure and the pseudo-code of the
two components of the application are shown in fig. 2; they both declare Interface
with terminal component having one and relay two communication types.
Upon their creation processes fix their interface; two actions are involved: a. creation
of the appropriate number of ports for each type and b. setting value pairs (tid, tagid)
to ports. The Loader visits the PCG nodes and spawns processes; all appropriate
information annotates each node: the associate executable, its host allocation and its
command line parameters; also the number of ports of each type are given as
command line parameters. The first action of a process is to get the number of ports of
each type and create the Interface structure. This is coded in the MakePorts routine.
The value pairs (tid, tagid) for each port cannot, in general, be sent to the processes
just spawned, as a process with which it needs to communicate may have not been
spawned yet and its tid would not be known. The Loader annotates the PCG node
with the tid of the process just spawned. Having visited all nodes and spawned all
processes, the Loader visits the nodes of the PCG once more and sends the port
information (tid and tagid) to the processes. The processes receive the port
information and set their Interface. This activity is coded in the SetInterface routine.
void main(Int) /* terminal */
 InterfaceType Interface[1];
 /* 1= Server type */
{ MakePorts(Interface);
 SetInterface(Interface);
 realMain (Interface); }

void realMain (Interface); { send
Int to port Interface[1].p[1]
receive GM from Interface[1].p[1]}

void main() /* relay */
 InterfaceType Interface[2];
 /* 1= Client and 2=Prop types */
{ MakePorts(Interface);
 SetInterface(Interface);
 realMain(Interface); }

void realMain (Interface);
{ receive values from all ports of Interface[1]
 find their local maximum LM
 send LM to all ports of Interface[2]
 receive LMs from all ports of Interface[2]
 find the global maximum GM
 send GM to all ports of Interface[1] }

Fig. 2. The common structure and the pseudo-code of terminal and relay

3 A Variation on the Distribution of Maximum Application
In the implementation of the previous section, all relay processes are connected with
each other via their Prop ports, each exchanging with the others their local maxima.
The same components will now be reused to compose a different design, in which
relay processes form a tree topology; we use eight terminal and four relay processes.
Relay[1] and relay[2] each have two Client ports connected with terminal[1],
terminal[2] and terminal [3], terminal[4], respectively. The Prop ports of relay[1] and

relay[2] are connected with Client ports 3 and 4 of relay[3], respectively. Relay[3] has
four Client ports connected with terminal[5], terminal[6], relay[1] and relay[2]; the
Prop port of relay[3] is connected to Client port 3 of relay[4]. Finally, relay[4], which
is the root, has three Client ports connected with terminal[7], terminal[8] and relay[3]
and no Prop port. The PCG part of the script and its graphical depiction are shown in
fig.3. Let us note, that the Client and Prop types are compatible, as only one integer
value is sent and received through them. At each level the relay processes receive the
values from their client processes (terminal or relay), select their maximum and
propagate it to their parent-relay. The root selects the global maximum and sends it to
its client processes. The relay processes below the root do the same until the global
maximum reaches all terminal processes.

Application TreeRelays;
PCG
Components
 terminal port-types: Server;
 relay port-types: Client, Prop;
Processes
 relay[1], relay[2]#ports= Client:2, Prop:1;
 relay[3] #ports= Client:4, Prop:1;
 relay[4] #ports= Client:3, Prop:0;
 terminal[1], terminal[2], terminal[3],
 terminal[4], terminal[5], terminal[6],
 terminal[7], terminal[8] #ports= Server:1;
Channels
 terminal[1].Server[1] <-> relay[1].Client[1];
 terminal[2].Server[1] <-> relay[1].Client[2];
 terminal[3].Server[1] <-> relay[2].Client[1];
 terminal[4].Server[1] <-> relay[2].Client[2];
 terminal[5].Server[1] <-> relay[3].Client[1];
 terminal[6].Server[1] <-> relay[3].Client[2];
 terminal[7].Server[1] <-> relay[4].Client[1];
 terminal[8].Server[1] <-> relay[4].Client[2];
 relay[1].Prop[1] <-> relay[3].Client[3];
 relay[2].Prop[1] <-> relay[3].Client[4];
 relay[3].Prop[1] <-> relay[4].Client[3];

C4

C3

C1 C2

P1

P1
P1

Relay[1]

Terminal[1]

Terminal[2]S1 S1

C1 C2
Relay[2]

Terminal[3] Terminal[4]

S1 S1

C1 C2

Terminal[6]
S1

C3

C1 C2

Terminal[5]

S1

Terminal[7]

S1

Terminal[8]

S1

Relay[4]

Relay[3]

Fig. 3. The PCG part of the script and its graphic depiction

4 Conclusions
We have outlined Ensemble, an implementation methodology, applied to PVM
programs with static process topologies. We demonstrated the flexibility of the
methodology, by composing two solutions to the Distribution of Maximum
application. In [3], more design variations are presented. We constructed reusable
PVM library components, which may have any number of process instantiations either
in the same or in other PVM programs; each instantiated process may have its own
communication dependencies. The application topology is specified in scripts. By

editing the scripts we scale programs, we change the allocation of processes to hosts
or even change the topology of the processes, without modifying the program
components.
Ensemble does not suggest a new MPE and does not demand any changes to MPEs,
but acts like a shell to them. Ensemble does not cause any execution overhead, apart
from the execution of the loader interpreting PCGs, which is negligible compared
with the saved programmer’s development time for establishing topologies. Ensemble
is independent of any design, visualization, performance, or any other tools which
may be used with an MPE.
The methodology may be applied to any message-passing environment. We have
applied it [2,4] on Parix [9] running on Parsytec GC3/512 and CC machines. Parix
imposes altogether different constraints to programs than PVM, thus requiring a
different PCG annotation, its own techniques of reusable program components and its
own Loader. Ensemble implementations of the same design look similar in PVM and
Parix. Also, the rewriting (porting at source level) of applications from one
environment to the other is mechanical and in some cases may be automated. The
Ensemble for MPI is currently under development. As MPI does not deal with
dynamic process creation Ensemble does not constrain possible implementations, as
in PVM.
Ensemble separates the elements of a message passing application: the process
topology, the architecture, the mapping of the processes onto processors and the
computations giving the required result or providing the service. The first three are
described in the script and the last by the program components. As they are separated,
they may be modified independently of one another, thus simplifying program
debugging and maintenance. Script modifications permit rapid program variations,
thus allowing to ask “what if” type of questions to test the performance and fine tune
the application. Consequently, Ensemble “removes” from message passing
implementations the aspects that most influence the structure of applications, namely
process management. They are “removed” in the sense that it is not required to
program process management, since process topologies are specified in the scripts.
Consequently, Ensemble “removes” the effort of programming most of the
architectural idiosyncrasies of message passing environments.
Ensemble provides a flexible and efficient means for composing applications.
Although, the script language is still under development it was shown to be flexible
and permitted the rapid composition of PVM programs. It is straight forward to edit
scripts to either scale programs, in a regular or irregular ways, by adding and
connecting new components, or to change the allocation of processes to processors, or
to modify the topology, etc. This approach is related to the composition of object
oriented applications by using objects and scripts [7], as it encourages a component
oriented approach to application development. The Ensemble reusable components
are used in the composition of applications in a “soft LOGO” manner. The
programmer has only to code the sequential computations of applications.
PVM and MPI, support the portability of applications to a number of architectures
meaning that programs may run without modifications on these architectures.
Portability does not necessarily imply that applications run efficiently on any
architecture. For a ported program to run efficiently it has to be adapted and fine-

tuned for performance. Implementations of programs with Ensemble do not only lose
the portability offered by MPEs but also, provide the infrastructure for extensive
structural changes, such as change of granularity of processes.
Future work includes high level parametric topology descriptions in scripts, support
for dynamic process creation, tools for porting applications to different MPEs.

References
[1] F. Berman, L.Snyder, ‘On mapping parallel algorithms into parallel architectures’,

J. P. Distr. Comput. 4, 5, 439-458.
[2] J.Y. Cotronis: A Methodology for Initiating Arbitrary Structured Programs in

Parix by Interpreting Graphs, ZEUS 95, Parallel Programming and Applications,
ed. P. Fritzon and L. Finmo, IOS Press 1995.

[3] J.Y.Cotronis: Efficient composition and automatic initialization of arbitrary
structured PVM programs, in IFIP Proceedings of the 1st Workshop on Software
Engineering for Parallel and Distributed Systems, (held in association with ICSE
96), Berlin, March 1996.

[4] J.Y.Cotronis: Efficient Program Composition on Parix by the Ensemble
Methodology, 22nd Euromicro Conference 96, Prague.

[5] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, Vaidy Sunderam,
‘PVM 3 User’s guide and Reference Manual’, ORNL/TM-12187, May 1994.

[6] MPI: A Message-Passing Interface Standard, Message Passing Interface Forum,
June 12, 1995.

[7] O. Nierstratz, D. Tsichritzis, V. de Mey, M. Stadelmann, ‘Objects + Scripts =
Applications’, in Proceedings, Esprit 1991 Conference, Kluwer Academic
Publishers, 1991, pp. 534-552.

[8] M.G.Norman, P.Thanisch, ‘Mapping in Multicomputers’, ACM Computing
Surveys, Vol25, No.3, Sept. 93.

[9] Parix, Manuals Parix 1.2, 1.9, Parsytec Gmbh.
[10] P.Pouzet, J.Paris, V.Jorrand, ‘Parallel Application Design: The Simulation

Approach with HASTE’, Proc. High Performance Computing and Networking,
Munich, April 18-20, 1994, Vol II, pp. 379-393.

[11] C. Scheidler, L.Schaefers, ‘TRAPPER: A Graphical Programming Environment
for Industrial High-Performance Applications’, PARLE Conf., Munich, 403-413,
1993.

