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1. Introduction

Development of parallel applications is, to a large extent, an empirical process. The majority of
research efforts in the field of parallel processing are focused on the advances in architectures and
algorithms, languages, operating system interfaces or new application areas of parallel systems
[18]. Software engineering aspects (e.g. processes, methods, tools) of parallel systems have been
neglected. Tools and environments support later stages of development. Designing message
passing (MP) applications, in particular, is a complex task and involves designing the combined
behaviour of its processes, that is, their individual execution restricted by their communication
and synchronisation interactions. Message Passing Environments (MPE), such as PVM [15]
and MPI [27], provide a useful abstraction of underlying architectures, simplifying architecture
resource management. The software-engineering step, however, from design to implementation
is also a complex task, as it does not only involve programming of sequential processes, but also
latent programming for management of process topologies and architecture resources.

The Ensemble methodology [8], [9], [10], [13] was introduced for alleviating implementation
complexities due to process and particularly process topology management. Each MPE supports
its own process model and consequently process topology management does not depend only
on the design, but also on the target MPE. Implementation of the same design on distinct
MPEs requires different techniques, and the porting of applications from one MPE to another
requires special effort. The differences in process management impose different structures to
programs, to such a degree, that programs implementing the same design (e.g. a simple ring
topology), using the same sequential language on two MPEs often look very different. Differences
in communication operations cause only local syntactic variations. Furthermore, MPEs favour
the management of regular process topologies (e.g. pipeline, ring, grid, torus) and some specific
types of process topologies, those being closer to its process management model (e.g. PVM
and tree-like process topologies). Designs of irregular process topologies are much more difficult
to implement. Scaling is restricted to regular topologies by globally parameterising process
position functions. As there are no implementation guidelines, programmers have their personal
preferences and, quite often, use features of MPEs in unusual ways. For these reasons, designs
are obscured in implementations and programs are difficult to develop, debug and modify.

Ensemble provides a common software architecture for all MP applications in any MPE and
does not demand any changes to MPEs. Implementations of a design on different MPEs look
the same and may be ported mechanically from one MPE to another. The design is maintained
in the implementation, which is an “ensemble” of an application script, specifying a process
topology, and of executable components, from which application processes are spawned. A
loader program, universal within an MPE, interprets the script and establishes the topology
by creating processes and by setting communication channels. Instead of functions associating
processes to their position in a topology, the topology (regular or irregular) is composed directly
by interconnecting communication ports of the spawned processes. The loader performs all
process and resource management, as specified in the script.

Although Ensemble provides a productive framework for implementing and maintaining MP
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applications, it cannot guarantee absence of design or implementation errors. The problems of
debugging parallel programs (e.g. non- reproducibility of behaviour) and the difficulty of de-
tecting the cause of errors are well known. A number of monitoring and visualisation tools have
been developed, which provide the developer with information on process interactions, message
queues, tracing and replay mechanisms, etc. These tools, though, do not guide the developer to
find errors, but only provide requested tracing information. In addition, composition is prone to
new types of errors, such as use of wrong components and unspecified or incompatible binding
of communication channels. It was therefore desirable to validate the correct behaviour of com-
ponents as well as of the composed applications. To this end, we have proposed a specification
composition technique [11], [12], which is directly associated with the MP program composition
of Ensemble.

We determine formal specifications of program components and compose the formal speci-
fication of applications. The application scripts, which direct composition of applications, also
direct the composition of formal specifications. We have used the Petri net (PN) formalism and
in particular Coloured Petri Nets [21] for expressing and composing specifications. PNs are
well founded, have been widely used to specify parallel software systems and are supported by
a number of tools. The association of program and specification composition of Ensemble is a
foundation for validating the implementation of the application against its formal specifications.
Available PN simulators and execution monitoring tools may be integrated to work in synergy.
This approach is in accordance with Agha [1] “...the better way to think of formal methods is
as techniques that help identify bugs rather than prove programs correct...”. We also strongly
believe that the acceptance of formal methods will be facilitated when they are integrated with
software engineering tools.

In the next two sections, we outline program and specification composition in Ensemble. In 4
we demonstrate the reuse of component specifications. In section 5, we introduce the integrated
development methodology and we elaborate on the synergy between specification analysis and
program executions. In 6 we discuss related work. Finally, we present our conclusions and plans
for future work.

2. The Ensemble Methodology

We briefly outline the design and implementation of applications in Ensemble on an application
Get Maximum. The requirement is simple: Selector processes, each getting an integer parameter,
require the maximum of these integers.

We shall implement a design, called Selector-Servers-in-Ring: Selectors are connected as
client processes to associated Server processes. Each Selector sends (via port Out) its integer
parameter to its Server and, eventually, receives (via port In) the required maximum. Servers
receive (via their Cin ports) integer values from their client Selectors and find the local maximum.
Servers are connected in a ring. They find the global maximum by sending (via Pout port) their
current maximum to their next neighbour in the ring, receiving (via Pin port) the maximum of
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the previous server; they compare and select the maximum of these two values. Servers repeat
the send-receive-select cycle M-1 times, where M is the size of the ring. Finally, Servers send
(via Cout ports) the global maximum to their client Selector processes.

2.1. The Ensemble script

A topology or process communication graph (PCG) of the design for six Selectors and three
Servers is depicted in figure 1, together with the Ensemble script. The script abstractly specifies
an application: the program components; the processes and their interface; the communication
channels; the application parameters; the use of architecture resources. The script is structured
in three main parts.

The first part, headed by PCG, specifies the Process Communication Graph (PCG) of the
application, independently of any MPE or underlying architecture. The PCG part has three
sections. In the Components section, we specify abstractions of the components involved in
the topology (e.g. Selector) by their name, their communication interface and their design
parameters, explained in the sequel.

The communication interface of components supports a general scheme for scaling appli-
cations. In general, scaling of applications requires replication of processes and establishing
communication channels between their ports. Ensemble components specify communication
types and a valid scaling range of communication ports of each type (shown in brackets). Each
process may have a different number of ports. Communication types are depicted on PCGs on
the inner circle of process nodes and ports on the outer circle. We also specify parameters, which
are required for the correct behaviour of the executables and are related to the designed topol-
ogy and not to the application requirement. For this reason, they are called design parameters.
For example, Servers must repeat the send-receive-select cycle M-1 times, where M is the size
of the ring. The Processes section specifies the nodes of the PCG, naming them by uniquely
indexing component names (e.g. Selector[1],..., Selector[6] and Server[l],..., Server[3]), setting
their number of ports for each communication type and values for their design parameters. The
Channels section specifies point-to-point communication of compatible ports. For example, Cin
and Cout ports of Server are compatible with the In and Out ports of Selector.

The second part of the script, headed by APPLICATION PARAMETERS, specifies process
parameters required in the application. In the example script, each Selector is given an integer
parameter. Finally, the third part, headed by PARALLEL SYSTEM, specifies information
required by specific MPEs and the underlying architectures.

2.2. The reusable components

The Ensemble components compute a result or provide a service and do not involve any process
management or assume any topology in which they operate. Instead, they support a range of
open ports for point-to-point communication with any compatible port of any process in any
application and are reusable as executable library components. The ranges of their communi-
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APPLICATION Get_Max_Selector_Servers_in_Ring;
PCG
Components
Selector range: In, Out [1..1]
Server range: Pin, Pout [0..1], Cin, Cout [0..]; design: M;
Processes
Selector[1], Selector[2], Selector[3], Selector[4],
Selector[5], Selector[6] #ports = In:1, Out:1;
Server[1] #ports = Cout, Cin:1, Pout, Pin:1; M=3; QNPPMPM] SdsﬂOHJ] qdﬁfzﬂ@
Server[2] #ports = Cout, Cin:2, Pout, Pin:1; M=3;

e TN
Server[3] #ports = Cout, Cin:3, Pout, Pin:1; M=3; / / g 1&2
Channels \ hQAJ LJPbﬁt /\ }‘In” L
Selector[1].0ut[1] -> Server[1].Cin[1]; T RN f\'f/
Selector[2].0ut[1] -> Server([2].Cin[1]; S \}Q—y“i 7
Selector[3].0ut[1] -> Server[2].Cin[2]; (fyoﬁ
Selector[4].0ut[1] -> Server[3].Cin[1]; (\ [”1:'_,512‘\) Server[3]
Selector[5].0ut[1] -> Server[3].Cin[2];
Selector[6].0ut[1] -> Server[3].Cin[3]; bUWLruJ// \\(
Server[1].Cout[1] -> Selector[1].In[1]; pa /,ﬂ€I5Q SsPou - ?mveﬂz]
Server[2] .Cout[1] -> Selector[2].In[1]; ( pheut— rﬁPm ]
Server[2] .Cout[2] -> Selector[3].In[1]; \:ﬁggkﬁyht \/\\Jvtdht
Server[3].Cout[1] -> Selector[4].In[1]; - // xﬁf/ \
Server[3].Cout[2] -> Selector[5].In[1]; (,1fL\%/ \ I
Server[3].Cout[3] -> Selector[5].In[1]; / f{mﬁ)h'j / kﬁ‘?ﬂ)ﬁv
Server[1] .Pout[1] -> Server[2].Pin[1]; P L\Ex‘_ y [\ ey
Server[2] .Pout[1] -> Server[3].Pin[1]; ! fiﬁ*hﬁ paT— M
Server[3].Pout[1] -> Server[1].Pin[1]; ( N /)! Selector(2] Selector[3]
APPLICATION PARAMETERS R
Selector[1]:"6"; Selector[2]:"999"; Selector[3]:"7"; Selector[1]

Selector[4]:"8"; Selector[5]:"9"; Selector[6]:"5";
PARALLEL SYSTEM PVM3
Process Allocation

Selector[1], Server[1] at zeus;

Selector[2], Selector[3], Server[2] at gaia;

Selector[4], Selector[5], Selector[6], Server[3] at chaos;
Executable Components

Selector: path default file selector.sun4;

Server: path default file server.sun4;

Figure 1. The application script and the PCG of Selector-Servers-in-Ring

cation types are specified in the scripts. All send and receive operations in processes refer to
their interface ports, identified by a communication type and a port index within the type. The
underlying architecture and tools of Ensemble handle all the details regarding the initialisation
of component interface.

The structure of source code for Server and Selector components that is shown in figure 2 is
typical of Ensemble reusable components. The entry point of every component is the RealMain ()
function, which accepts the same parameters, as these of function main () in regular C programs,
as well as the Interface structure which contains all the necessary interfacing information. The
programmer has the option of using abstract communication functions implemented in Ensem-
ble’s libraries or to use MPE depended functions (like pvm_send (), pvm barrier() etc.). The
component executables are reusable in any application in the given MPE. In addition, if only ab-
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stract Ensemble communication functions are used, the amount of changes required to port the
source of a component to a different MPE is minimal, and in most cases requires recompilation
and relinking.

/* The common main for all reusable components */
void main(argc,argv) int argc; char x*argc;
{ struct port_struct {int tid, tagid;}
struct port_types {int PortCount; struct port_struct *port;}
typedef struct port_types InterfaceType;
extern int TypeCount;
InterfaceType Interface;

MakePorts(Interface,TypeCount) ;
SetInterface(Interface, TypeCount) ;
RealMain(Interface,argc,argv);

T
/* Selector Code */ /* Server Code */
void RealMain(Interface,argc,argv) void RealMain(Interface,argc,argv)
struct port_types *Interface; struct port_types *Interface;
int argc; char **argv; int argc; char x*argv;
{ int Typecount=2; { int Typecount=4;
GetParam(V) ; GetParam(M) ;
send(Out,1:V); LMax=0;
receive(In,1:Max); for (j=1;j<=Interface[Cin].PortCount;j++)
} { receive(Cin,j:V); if (V>LMax) Lmax=V; 3}

Gmax=Lmax;

for (i=1;i<=M-1;i++)

{ send(Pout,1:GMax); receive(Pin,1:V);
if (V>GMax) Gmax=V; 1}

for (j=1;j<=Interface[Cin].PortCount;j++;)
Send(Cout, j :Gmax) ;

}

Figure 2 The common skeleton code and the actual source code for the Selector and Server

components

Typically the programmer develops the application script. A skeleton code for each compo-
nent is generated, depicted in the top row of figure 2. The programmer adds the actual code
implementing application computations (depicted in the second row of figure 2) and builds the
executables. Ensemble tools handle all the details regarding library linking, makefile generation,
appropriate header files inclusion etc.

2.3. Composition of applications

An Ensemble tool called the Loader interprets the script, spawns processes from component
executables and establishes their interconnection scheme. There is one universal Loader program
for all applications in each MPE. In this section we outlined the basic aspects of Ensemble
methodology and its tools, which are relevant in the context of this paper. Ensemble tools
for PVM [8], [10], Parix [9] and MPI [13] have been developed. Additional information on
Ensemble and its tools may be found on http://www.di.uoa.gr/&nsemble.
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3. Specifications and their Composition

To reflect the Ensemble architecture of parallel applications we have defined specification compo-
nents, process specifications (instantiations of specification components) and their composition,
corresponding to reusable program components, processes and the composed application, re-
spectively.

Specification components are themselves reusable, permitting the generation of process spec-
ifications, as required by scripts. Specification components have scalable interfaces, specifying
the valid range of ports for each of their communication types, i.e. always fixed (as In of Selec-
tors), or any positive integer (as Cin of servers), or any non-negative integer (as Pin of Servers).
They identify their input and output ports, the type of data that is send and received through
them as well as any design or application parameters.

Process specifications are generated from specification components as mechanically as pro-
cesses are generated from program components. At the time of their generation, the actual
number of ports of each type in their interface is validated and the values for all parameters are
provided.

Specification composition is based on modelling point-to-point communication by binding
interface ports. During composition, compatibility of ports is validated, e.g. binding output to
input ports passing messages of the same type.

We have used the Coloured Petri Net (CPN) formalism for expressing and composing speci-
fications. Various classes of high-level PNs (HLPNs) are well founded, have been widely used to
specify parallel software systems and are supported by a number of tools for validation, simula-
tion, analysis and verification. Furthermore, HLPNs allow designers to create simple and easily
manageable descriptions, without losing the ability of formal analysis [21], they have been
extended with hierarchy constructs which resemble the notion of components in a composed
system and are supported by a number of tools e.g. design/CPN [22], PEP [4], [19], LOOPN
[24], SYROCO [32] and others.The definition of CPNs according to [21] is the following:

Definition 3.1. A Coloured Petri Net is a tuple CPN = (X,P,T,A,C,G,E,I) where:

(a) X is a finite set of non-empty types, called colour sets
(b) P is a finite set of places
(c) T is a finite set of transitions with P N T = ()
(d) A is s finite set of arcs such that ACP x TUT x Pand AN (PUT) =10
(e) C is a colour function, C : P — X
where C(p) = C* forp € P and C* € ¥
(f) G is a guard function, G : T — expr
where V t € T : [Type(G(t)) = bool A Type(Var(G(t))) C X]
(g) E is an arc expression function, E: P x TU T x P — expr
where E(x;,x2) = 0 if (x1,x2) € A
and Va € A : [Type(E(a)) = C(p(a))ms A Type(Var(E(a))) C 3]
where p(a) is the place of arc a
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(h) I is an initialisation function, I : P — expr
where I(p) is a closed expression (i.e. it contains no free variables)
and V p € P : [Type(I(p)) = C(p)ms]-

In the above definition, the MS subscript denotes that the expression must evaluate to multisets
over the type of the associated place.

In the following three paragraphs we elaborate on composition of Petri Nets. In paragraph
3.1 we present the techniques we have used for modelling the ranges of ports of the components.
In paragraph 3.2 we formally define specification components and in paragraph 3.3 we present
the algorithm for specification composition by Ensemble scripts.

3.1. Place Fusion and Place Unlification

The derivation of specification components is done manually, i.e. the specification components
are designed in a way that represents the behaviour of the associated program component. Heiner
has studied in [20] the association of the metanotions of a “reduced grammar for code state-
ments” to PN constructs. We will use these associations to derive our specification components.
As an example, figure 3 depicts the CPN Server component.

Interface ) i

Cin <EXpression=

07 GatherFromClients
ReceivingCpmpleted

I_i] SelectMax

BeforeLoop

BeforeLoopBogy

EnterLodp I:r/ ExitLoop
POUL expressions
047 SendToPeer

Waiting
Pin

<expression>
Ok RecyFromPger

AfterLoopBodk é—DSelecAndlter

iafterLoop
Cout <EXpression:
Oﬂ—— MultiCastToClients)
éTerm inated

Figure 3. The CPN for the Server component

The doted rectangle surrounds the interface of the component. The remaining elements of
the net are the static net structure, which corresponds to the internal actions of the component.
In CPNs, communication operations are modelled by transitions connected to interface places,
which model interface ports. Collective communication operations (e.g. gather and multicast)
are modelled by a single transition for conciseness. For example in figure 3, transitions Gather-
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fromClients and MultiCastToClients, model receive and, respectively, send operations from and
to all client processes.

The interface places and the arcs connecting collective communication transitions denote a
communication type, having a range of ports. In generating process specifications from speci-
fication components, the actual number of ports is specified. In our earlier work [11], [12], we
modelled the ranges of ports by replication of interface places and their connecting arc. Com-
position was based on place fusion. This approach is depicted on the left- hand side of figure 4
(in which the static net structure is even more simplified) and models point-to-point channels
explicitly. This approach leads to an explosion of interface places.

Replication of Interface Places  Replication of Interface Arc Inscriptions

cini Interface Static Interface
1 O <datas Net Structure

—_— <data> O

<data>
Pout]1] ——§
<data>
<data>
Coutf1]
<dataz

Coutpd("y

O

<l data,Cin[1]>,....<| data Cinfx]>

08

A

o B R ER

Pout]
«Pout][1] data,?>

O

SRR EE RS

Pin
<l data,Pin[1]>

<Cout[1]data,?>,... <Cout[x],data,?>

O PO

020

Figure 4. The two approaches to modelling the interface

In this paper, we model ranges of ports within a communication type by maintaining a single
interface place and replicating inscriptions on the connecting arc, as depicted on the right hand
side of figure 4. Ports within a type are identified by the tokens in the inscriptions of the arcs
connecting interface places. The tokens have the structure of <SendPort,data,ReceivePort>.
The data field represents messages. To realise open interfaces of components, SendPort in the
tokens of the input arc inscriptions is left unspecified, denoted by !, as for example in the input
arc of Cin in figure 4. Similarly, ReceivePort in the tokens of the output arc inscriptions is also
left unspecified, denoted by ?, as for example in the output arc of Cout in figure 4. Composition
is based on unification of all interface places into a single environment place, maintaining arcs
and their inscriptions. Point-to-point channels are modelled implicitly by coupling tokens of
replicated inscriptions on the connecting arcs. By coupling tokens T1 and T2 of input and
output arcs respectively, we mean the substitution of ! in T1 by the SendPort of T2 and
the substitution of ? in T2 by the ReceivePort of T1. The common names of SendPort and
ReceivePort in T1 and T2 uniquely determine their point-to-point channel.

The use of a single interface place for the composition of PetriNets was proposed in [6].
The unified environment place resembles modelling the tuple space of Linda [17]. However, the
tuple space in Linda does not define channels, whereas in the aforementioned approach point
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to point channels are implicitly defined. If we omit the SendPort and ReceivePort fields of the
tokens, this approach will be very close to Linda’s paradigm.

3.2. Specification Components

A component specification can be modelled by standard CPNs when its interface is fixed, as
for example in the Selector component (it has one port of types In and Out), but parametric
interfaces cannot be directly modelled using CPNs. We extend CPNs by template CPNs, which
contain additional information for open scalable interfaces. Template CPNs are very close to
the notion of pages in [21], [22] as they are also “flat” non- hierarchical structures, although
Template CPNs are parametric. A template CPN has a unique name, from which process
specifications, called composable CPNs, can be instantiated, as a page having several page
instances. Instantiation of composable CPNs from templates involves structural modification of
the net, whilst page instances are exact copies of the original page. The formal definition of the
template CPN is the following:

Definition 3.2. A Template CPN is a tuple TPN = (NAME,SNS.IS) where:

(a) NAME is the name of the template.
(b) SNS (Static Net Structure) is a coloured Petri Net (X,P,T,A,C,G,E,I)
(c) IS is an Interface Specification (IP,IA,IE)
(i) IP is a set of interface places such that
IPN(PUTUA)=0,PTand A € SNS
The elements of IP have the same names as the communication types
of the component, as used in the Components section of the script.
Furthermore, the elements of IP are of two distinct sorts {input,output}:
V p € IP, if *p = () then sort(p) = input else if p* = 0 then sort(p) = output.
(ii) TA is a set of interface arcs such that
IAC (IP x T) U (T x IP)
(iii) IE is an interface arc expression function,
IE : TA — interf-expr, such that V a € IA,
if sort(p(a)) = output then IE(a) = <p(a),expr,?>
else if sort(p(a)) = input then IE(a) = <!.expr,p(a)>
and [Type(IE(a)) = C(p(a))rs A Type(Var(IE(a))) C LA
Var(IE(a)) € Var(SNS) U {portindex}]
where Type(portindex) = integer and p(a) is the place of arc a.

In the above definition, we use an integer variable named portindex, which is used to index port
names in tokens of inscriptions in order to indicate scaling of interfaces. The MS subscript,
again, denotes that the expression must evaluate to multisets over the type of the associated
place.

We have defined a syntactic form for expressing template CPNs, which is suitable for me-
chanical composition. We use a variation of EBNF notation to present this syntactic form of
the template CPNs:
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Template TemplateName (#ports {ctypename:int,}+;[design {dpname:colour,}+;]
[application {apname:colour,}+;]);
Declarations
val {Sname:=actual-value;}+
type {colour=datatype;}+
var {{variable,}+:colour;}+
Interface
{Ctype ctypename;
range: from..to;
arc: {{output TransitionName inscription <port,expression,?>;}|
{input TransitionName inscription <! ,expression,port>;}}
End Ctype }+
Net Structure
Places {PlaceName(colour),}+;
Transitions { TransitionName([quard,/[action]),}+;
Arcs
{PlaceName> TransitionName inscription ezpression;}+
{TransitionName> PlaceName inscription ezpression;}+
Marking {PlaceName(Sname);}+
End Template

In figure 5 we give the description of template Selector of figure 1 together with its graphical
equivalent. In the sequel, we will use the graphical representation in figures for the sake of con-
ciseness. The heading of the template CPN is an abstract description of the script components.
The name is given after the keyword Template. Similar to the Ensemble program components,
template CPNs have also three kinds of parameters: port interface parameters (the number of
ports of each communication type), design parameters (related to the topology) and application
parameters. These parameters appear in parentheses at the heading of the template, immedi-
ately after its name. The keyword #ports is followed by a formal parameter list of the number
of interface ports for each communication type. Keywords design and application precede
the design and application parameters respectively. Design and application parameters also
symbolically index the initial place of the net structure. The symbolic initial markings and the
#ports parameters will be replaced by actual values when process specifications are generated.
The port interface parameters need to be validated for being within accepted range.

Following the heading of the template there is a Declarations part, where all constants
(val), data types (type) and variables (var) of the net are specified. The data types are the
basic data types i.e. integer, real, character and boolean, as well as composite data types, i.e.
arrays, sets and structures.

The next part is the Interface part, where we specify communication types. For every
communication type we define a Ctype construct. The first element in the construct is the
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type data=int;
type s=string;
type msg=s*data™s;
type dot=with »;
val value=ival
varvidata;

value

Initial clata

Wait

<> <ly In>
Recewe

Terminated

<> <Quty,?>
Send 4@"”59
<oz

Template Selectorfiports in:int,Outintdesign N:int,
application ivalind,
Declarations
type data = int, 5= string, dot={s};
type msg = structure(sendport : s, v . data, recwport: s);
val vaive ;= ival,
var v data,
Interface
Ctype In;
range: 7.7,
arc : input Receive inscription <infportindexj,v,2>;
End Ctype
Ctype Out,
range: 7.7,
arc : output Send inscription <Ly, Outlportindexjs;
End Ctype
Net Structure
Places
Initial(data), Wait{dot), Terminate(data);
Transitions
Send(), Receive(),
Arcs
Initiaf>Send inscription v,
Send>¥Waitinscriptions;
Wait>Receice inscription »;

RecelvesTerminate inscription v,
Marking

Initialfvalue);
End Template

Figure 5. The template CPN of selector component in textual and graphical form

range declaration. It specifies the valid range of ports for this communication type. We have
used a simple notation from..to, where from could be any non-negative number and fromleqto.
When a communication type has fixed number of ports, say N, the expression becomes N..N.
As an example, refer to the range declaration part of Selector in figure 1, where In and Out
are defined to have a range 1..1. When the value of from is zero, the component may have no
ports of this type. If the value for to is unspecified then there is no upper bound on the number
of ports. In figure 1, Server is defined to have a 0.. range for its Cin and Cout port types
and a 0..1 range for its Pin and Pout port types. Next, an arc declaration is included, which
defines the arc that connects the interface place of Ctype with the net structure together with
its inscription. There are two alternatives for the arc declaration, depending on being an input
or output interface place. Keywords input and output denote the direction of the arc and the
transition of the static net structure to which it is connected. The inscription part declares
the tokens that are exchanged, as described in section 3.1. The variables in the exzpression must
be declared in the Declarations part of the template. As we mentioned before, we assume a
predefined local variable named portindex of type int, which indexes port names in tokens of
inscriptions to indicate scaling of interfaces. Variable portindex may also be used to index array
variables.

The Net Structure part defines static, non-interface elements. In the Places section, the
places of the net are defined along with their associated colour. In the Transitions section,
we declare the transitions and their guards. The guard is a condition that must hold for the
transition to fire. The Arcs section declares the directed arcs that connect places to transitions
and transitions to places. The annotations of these arcs are also defined in the inscription
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declaration. The final part of the template is the Marking part, where the initial marking of
the net is specified. The marking of a place is a multiset of tokens of the place colour.

3.3. Composition of Specifications

We now present the composition of specifications, directed by Ensemble scripts. The algorithm
for the composition has four steps.
Algorithm

1. Retrieve the Template CPNs of the components in the script.
2. Create the Composable CPNs:

(a) for each process in the script, make a copy of the corresponding template and name
it by indexing NAME of the TPN with the instance number of the process,

(b) for each TPN instance, NAME;, check the validity of port interface parameters. If
the interface is valid create the process specifications. For each communication type
q, create the expression replication list ERL(a,n), where n is the actual number
of interface ports and a € IA of NAME; with p(a)=q.
The expression replication list is:

ERL(a,n) = IE(a);,IE(a)2,...,.JE(a), if n> 0
ERL(a,n) = € if n=0,
where TE(a); = <q[i], expr;,?> or <!, expr;, q[i]> such that any occurrence of portin-

dex in the interface expression is substituted by 3.

(c) Read values for design and application parameters from the script.

3. Create the composed CPN i.e.
Merge the Composable CPNs according to the Channels section of the script, by coupling
the elements of the expression replication list associated with channels i.e. <q[i],expr;,?>
or <l,expr;,q[j]> and unifying all interface places of all Composable CPNs into a single
environment place.

(a) Coupling is performed by substituting ! and ? in expressions with a place that
constitutes a channel along with the specified port q[i] or q[j].

(b) Unify all interface places into a single environment place, by substituting the place
of all interface arcs with the environment place:

V NAME;, V a € TA, p(a) = environment
(¢) C(environment) = U C(p;), p; € IP, (V NAME;).

4. Validate composition, i.e.
Check if there exists an interface arc expression that contains 7 or ! instead of actual port
names, that is check if all ports specified in the script are actually connected.
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The composed CPN, corresponding to the script of figure 1 is illustrated in figure 6. Only
Server[1] and Selector[1] are depicted analytically as composable CPNs. For brevity all other
components are depicted in a “box” representation, where only the interface arcs and their
inscriptions are visible.
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Figure 6. The composed CPN of Get Maximum Selector Servers in ring

4. Reuse of Specification Components

In this section, we demonstrate the reusability of specification components. We design a variation
of Get Maximum, which reuses the template CPNs for Selector and Server. As in the Selector-
Servers-in-Ring we use three Servers and six Selectors. In this variation, Server processes are
organised in a tree, with Server[3] being the root, which has no Pout and Pin ports. Server[l]
and Server[2] have one Pout and one Pin ports which are connected to the Cin and Cout ports,
respectively, of their parent Server[3]. Server[3] has also Selector[6] connected as a client process.
Server[1] has Selector[l] and Selector[2] as its client processes and Server[2] has Selector[3],
Selector[4] and Selector[5] as its client processes. The process structure is a tree of height 2: the
Selector processes 1,2,3,4,5 are at level one; Server[1], Server[2] and Selector[6] are at level two;
and Server|[3] is the root. The application script and the PCG of the application are depicted
in figure 7.

Server[l] and Server[2] receive values from their clients, find their local maximum and send
it to their Pout port, which is connected to a Cin port of Server[3]. Server[3] finds the global
maximum, and as it is not connected in a ring, it directly sends the global maximum to its
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APPLICATION Get_Max_Selectors_and_Servers_in_Tree
PCG
Components
Selector range: In, Out [1..1], design: N;
Server range: Pin, Pout [0..1], Cin, Cout [0..], design: M;
Processes
Selector[1], Selector[2], Selector[3], Selector[4],
Selector[5], Selector[6] #ports = In, Out:1;
Server[1] #ports = Cout, Cin:2, Pout, Pin:1, M=2;
Server[2] #ports = Cout, Cin:3, Pout, Pin:1, M=2;
Server[3] #ports = Cout, Cin:3, Pout, Pin:0, M=1;
Channels
Selector[1].0ut[1] -> Server[1].Cin[1];
Selector[2].0ut[1] -> Server[1].Cin[2];
Selector[3].0ut[1] -> Server[2].Cin[1];
Selector[4].0ut[1] -> Server[2].Cin[2];
Selector[5].0ut[1] -> Server[2].Cin[3];
Selector[6].0ut[1] -> Server[3].Cin[1]; . / ¥ ‘;f}m »
Server[1].Cout[1] -> Selector[1].In[1]; (: ! f)bTL { (: ) J N ‘ IR
Server[1].Cout[2] -> Selector[2].In[1]; ol NI R N
Server[2] .Cout[1] -> Selector([3].In[1]; Selector|l] Belectorf2]  Selector(s]  Selectorld] - Selector(3]
Server[2] .Cout[3] -> Selector[5].In[1];
Server[3].Cout[1] -> Selector[6].In[1];
Server[3].Cout[2] -> Server[1].Pin[1];
Server[3].Cout[3] -> Server[2].Pin[1]
Server[1] .Pout[1] -> Server[3].Cin[2];
Server[2] .Pout[1] -> Server[3].Cin[3];
APPLICATION PARAMETERS
Selector[1]:"6"; Selector[2]:"999"; Selector[3]:"7";
Selector[4]:"8"; Selector[5]:"9"; Selector[6]:"5";

Figure 7. The application script and PCG for Get Maximum Selectors and Servers in tree

clients. Selector[6] gets the global maximum, as well as Server[1] and Server[2]. Server[l] and
Server[2] “select” the global maximum and send it to their client processes.

The composed CPN obtained from the script of application get maximum selectors and
servers in tree is illustrated in figure 8. Components are depicted in the “box” representation.

As can be seen in figures 6,8 the structure of the composed CPNs of the two variations of
Get Maximum are almost identical; they differ in their interface arc inscriptions.

We demonstrated that although Server and Selector template specifications were originally
designed for the needs to Selector-Servers-in-Ring, they are reused in a different design of Get
Maximum application.

5. Implementation and Testing Methodology

Ensemble supports the design and implementation phases of the software development life cy-
cle. Gorton and Jelly present in [18] a number of challenges that must be addressed by a
distributed systems designer. The architecture of Ensemble deals with a number of these chal-
lenges: scalability requirements, inter-component communications, design validation, choosing
synchronisation and MP mechanisms, portability constraints. In this section, we propose the in-
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Figure 8. The composed CPN of application get maximum selectors and servers in tree

tegration of formal methods and execution analysis which will cover challenges that apply to the
testing and debugging phase of software development life-cycle. An overview of the framework
of the proposed methodology is depicted in figure 9.

The row headed by specification represents the formal design phase of Ensemble, as described
in section 3. The components cell contains the reusable specification components that participate
in the application. The script drives the composition performed by the specification compositor.
The Composed specifications may then be validated (analysed and/or simulated) by PN tools.

The row headed by program represents the implementation phase of Ensemble. In fact, the
implementation of an Ensemble application requires the implementation (or reuse) of individual
components, and of the PARALLEL SYSTEM part of the script, which contains information
about the execution environment. The PCG and APPLICATION PARAMETERS parts of
script are the same as in the composition of the specifications. This can be seen in the script
column, where the rectangle representing the script is common except from the part distin-
guished by a dotted line, which represents the extra information for the execution environment,
described in section 2.1. The application is actually composed by the Loader (section 2.3). The
vertical dimension refers to the software-engineering step from design to implementation. In the
components column, the grey ellipse depicts the testing and debugging of individual components
and in synergy of tools column testing and debugging of composed applications. The testing
and debugging involves the use of formal analysis and visualisation or monitoring tools in syn-
ergy under the general framework of the methodology, and will be elaborated in the subsequent
sections.

In Ensemble, errors may fall in three categories: (i) design related errors, which can be
detected by specification analysis, (ii) implementation related errors, which can be detected by
testing individual program components and (iii) faults related to the execution environment,
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Figure 9. Overview of the development methodology

which can be detected during execution of composed applications.

5.1. Implementation, Testing and Debugging of Program Components

Implementation of program components is guided by the associated specification components.
The specification components may reflect various levels of abstraction. Their interface part must
be represented in detail, even at the highest abstraction level. If we are interested only in the
behaviour of the application that is related to its parallel nature, there is no need to use a detailed
representation for the internal actions. The highest abstraction level that can be used, is the
explicit modelling of the communication operations. All other operations may be represented
“abstractly”, since their participation in the behaviour of the application is restricted in the
internal behaviour of the components. Heiner in [20] associates all usual program constructs,
such as for loops, if-then-else statements etc. to specific PN constructs. If required, we can
model program constructs in detail by using these associations.

5.1.1. Implementation of Program Components

The implementation of Program Components is based on the skeleton described in section 2.2
and involves providing their interface and their sequential code (RealMain actions). The interface
consists of the communication types and their range, as specified in the Interface part of the
specification components. Implementation of RealMain actions is guided by the corresponding
specification component’s internal structure.
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5.1.2. Testing Individual Components

For a message passing component to be tested it must have some interconnections with other
components. We provide a testing environment, which will simulate the actual environment
by providing interconnections for the component. The testing environment consists of “stub”
environment processes that involve message passing activities of components. Environment
processes may be either input or output, respectively connected to input and output ports of
the component.

The testing environment itself is based on Ensemble and consists of “stub” environment
components, from which environment processes are generated, and of test scripts specifying the
interconnection of the program component under test to environment processes. An environment
component defines a simple port interface compatible with the ports of the component to which
it will be connected. An input process gets input values interactively and sends them to the
process under test. Similarly, an output process receives values from the process under test
and displays them. FEnvironment components are simple to implement and in certain cases
are produced automatically. Environment components may be reused. The test scripts should
specify typical values in the range of the ports of the program component, in order to test its
behaviour in different positions of a topology (e.g. for a grid topology there are 9 different
positions for a component). The loader will compose the testing application and the results of
the execution are validated.

The testing environment along with the program component is in fact a downsized parallel
program. The program components may be “instrumented” and monitoring, visualisation, and
computation steering tools, e.g. [16], [26] are used to analyse parallel aspects of program
behaviour. Special breakpoints can be inserted before and after each communication operation
when producing the executable code of the program component. A computation steering tool
may use these breakpoints to steer computations into states of particular interest.

We introduce a more advanced testing, based on the synergistic error detection of specifi-
cation and program components, which is depicted in figure 10 together with the environment
components and the test script. Also depicted are analysis and simulation tools of specifications,
as well as monitoring and debugging tools of programs. Specification and execution tools co-
operate. On the one hand, tracing information of the composed application drives the simulation
of the specification component. The simulator detects invalid events and gives the earliest possi-
ble warning. On the other hand, the specification simulator is used as an advanced computation
steering tool to direct the execution of the program. The specification simulator may be used
to derive valid (i.e. reachable) states or other properties of the system, driving the computation
steering tool to reach corresponding program states. Any errors should be detected immediately,
since the monitoring tool will report the failure of the execution to reach that state.

For the synergistic testing of specifications and program components the corresponding spec-
ification testing environment must be provided, consisting of specification environment compo-
nents. The test scripts are the same. The specification environment components consist of an
initial state (place), a single send or receive transition that will consume or produce tokens, a
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Figure 10. Synergistic testing of program and specification components

final state and an interface place. The type of the environment component, i.e. input or output,
the colour of the tokens and the number of ports corresponding to the interface place must be
specified.

Eisenstadt in [14] presents the results of a study on the reasons of the difficulty to trap
errors, as well as the techniques used to locate the errors. The main reasons errors are difficult
to locate fall in four categories. (i) Cause/effect chasm (ii) Tools inapplicable or hampered
(iii) WYSIPIG (what you see is probably illusory governor) (iv) Faulty assumption/model or
misdirected blame. Eisenstadt reports also four major error detection techniques. (i) Gather
data (ii) Inspeculation (inspection- hand simulation-speculation) (iii) Ezpert recognised Clichés
(iv) Controlled experiments.

The proposed testing and debugging of program components conforms and improves the
techniques to locate errors reported by Eisenstadt. The simple testing of a component by using
environment components corresponds to controlled experiments and inspeculation. Testing the
instrumented component by monitoring, computation steering and visualisation tools correspond
to data gathering. Finally, the synergistic testing of specification and program components
corresponds to expert recognised clichés, but analysis of the specifications and programs in
synergy results into objective conclusions about the errors, instead of subjective conclusions
made by a person.

The difficulties to trap errors are also alleviated. The cause/effect chasm is reduced since
the analysis of the specification components will detect the error when it occurs, even if its
effect will appear much later in the execution. Thus, the notion of immediacy in debugging as
presented by Ungar et al. in [34] is satisfied. The specification analysis and the monitoring tools
do not interfere in the execution and do not alter program states. Furthermore, the WYSIPIG
and faulty assumption cases are covered from the specifications as they are modelling the actual
behaviour of the system.
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5.2. Testing Composed Ensemble Applications

The composed application is tested to detect errors related to execution environment that could
not be detected in the previous stages of testing. Errors related to design and implementation
of program components that have not been detected, because previous tests failed to generate
their enabling conditions, may also be detected. Monitoring and visualisation tools are used,
which provide the developer with information of process interactions, message queues, tracing
and replay mechanisms, etc. These tools on their own do not guide the developer to find
errors, but merely provide requested tracing information. The direct association of program and
specification composition of Ensemble is a foundation for validating the implementation of the
application against its formal specifications.

Available simulation tools and program execution monitoring tools may work in synergy,
using the same co-operation principles we used in testing individual components. Tracing in-
formation of the composed application may be passed to drive the specification simulator of
the composed specifications. The simulator detects invalid events and gives the earliest possible
warning. Thus, the behaviour of the application is not only monitored, but also actually vali-
dated as it is running. The developer is not obliged to inspect detailed views of visualisation of
executions, since the simulator validates the execution against the specifications. The validation
may be performed in the background, as the application is running, or by analysing a trace file
suspected of erroneous behaviour.

The specification simulator may be also used as an advanced computation steering tool to
direct the execution of the program. Specification simulation may steer the program directly,
analysing programs by a “bisimulation” principle. The breakpoints are already set in the pro-
gram components. In addition, specification properties (e.g. reachable states) may be used to
validate associated program properties.

Figure 11, depicts the proposed testing strategy of composed applications. If during execu-
tion an error occurs, we first check if the error can be detected in the specifications. In this
case, we modify the initial design. If the error cannot be detected in the specifications, we first
check if the error can be detected in component implementations. In this case the components
are modified accordingly. If it cannot be detected, then we attribute it to execution environ-
ment factors. In order to correct an execution environment error, we may have to modify the
specifications or the program component implementation, or the PARALLEL SYSTEM part of
the script.

Let us exemplify the three cases of environment errors. Consider asynchronously sending a
long message over a buffer smaller than the message. In some MPI implementations the system
automatically switches to synchronous mode, in order to send the complete long message in
smaller packets. This may result into a deadlock, that could not be detected in any of the
previous stages. In this stage, the specification analysis will show that the design is valid,
the implementation monitoring will depict the specific problem, and the user may immediately
detect that the error is due to this automatic conversion of the communication mode. Thus, the
programmer should modify the design of the application, by using synchronous communication.
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Figure 11. Testing Strategy under Ensemble

An error that requires modification of the program component is an overflow of some data type,
e.g. an assumed 64-bit integer implementation instead of an actual 32-bit one. Correction
involves the variable definition to be modified from integer to long. Finally, an example of an
error that must be corrected in the PARALLEL SYSTEM part of he script, is the case where
a host specified is inoperable. The designer must modify the script, in order to use some other
host.

6. Relative Work

A number of formalisms have been proposed for the composition of PN. In our approach of
particular interest is modelling of communication since we compose PN components through
binding of communication channels. Most of the proposed formalisms model asynchronous
communication via fusion of places, and hence model the explicit point to point communication
scheme.

In [23], a partial order semantics for Petri net components has been proposed and com-
ponents and composition of systems are formally defined. A Petri net component is a Petri
net equipped with distinguished interface, input and output places. A component communi-
cates with its environment through the interface places. The fusion of components at input
and output places corresponds to asynchronous Message Passing. The basic difference from our
approach is that the communication interface in [23] is static, in contrast to the open scalable
interface of our approach.

In [31] Sibertin-Blanc proposes communicative and cooperative nets. Components, defined
as a variation of PNs, have an interaction layer in order to communicate and cooperate. Some
places of the communicative net are declared as accept-place where any net can put tokens.
Transitions may have an action: a function call, creation of a new object or sending a token
to an accept-place of another object. Cooperative nets are a variation of Communicative nets.
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The major difference is that the interaction mechanism is changed from the message passing
paradigm to the client/server paradigm. Thus, accept-places are replaced by a couple of places
for each service, an accept-place for receiving the parameters of requests and a return-place for
the produced results; services are requested by request-transitions, which act as send-transitions;
retrieve transitions are needed, whose occurrences take a token from a return-place. Hence, the
interactions are always asynchronous. Furthermore, in [30] in order to overcome the problem
that tokens of different data types may occur in the accept places, Sibertin-Blanc uses the
definition of the specialisation of a data type: the type t of the tokens in the accept place
specialises the type t’ of the accept place, that is Dom(t) C Dom(t’). In a sense, this is similar
to the unification of places we have defined in section 3.

Although our template CPNs resemble objects, we did not use object oriented notations
[6], [25], [32]. Template CPNs are “flat” like the pages in HCPNs [21], [22] and since our
composed CPN is build automatically, we do not need any further abstraction or other organ-
isational structures. Furthermore, the analysis tools support flat representations of elementary
PNs or restricted versions of CPNs.

The algebra of M-nets was introduced in [2] as an abstract and flexible metalanguage for the
definition of compositional semantics of concurrent programming languages. M-nets have been
applied [3] to the B(PN)? programming language [5]. B(PN)? is a language for the specification
of concurrent algorithms, parallel or distributed systems, which incorporates within a simple
syntax many of the constructs used in concurrent programming languages.

The most distinguishing feature of M-nets is given by the rich set of composition operators
they provide. These allow the compositional construction of complex nets from simple ones,
thereby satisfying various algebraic properties. M-nets are a mixture of coloured net features
and low level labelled net ones. The main difference between M-nets and coloured nets [21] is
that M-nets carry additional information in their place and transition inscriptions to support
composition operations. Annotation of places (set of allowed tokens), arcs (multiset of structured
annotations) and transitions (occurrence conditions) support the unfolding of an M-net into an
elementary net. Communication capabilities are denoted by additional labelling of transitions
(communication interface), whilst additional labelling of places denotes their interface capabili-
ties (status). Furthermore a composition technique for M-nets via a single interface place, called
refinement, has been proposed in [6].

Based on these semantics a programming environment for B(PN)? programs including ver-
ification of program properties by model checking has been developed within the PEP project
[4], [19]. PEP is a Programming Environment based on Petri Nets, which supports different
types of objects in order to model parallel systems, such as low level nets (Petri Boxes), M-nets,
Parallel Finite Automata (PFA), Petri Box Calculus terms, and B(PN)? programs. Furthermore,
PEP allows the user to define a set of temporal logic formulas, in order to check a custom de-
signed system property. The PEP system consists of a number of editors for the different object
types, a number of compilers between the different object types (e.g. B(PN)? = M-net, M-net
= Petri Box etc.), simulators for B(PN)? programs, M-nets, Petri Boxes etc., a verification
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component with some standard algorithms (i.e. checking the free choice/T-system properties,
liveness, deadlock freeness, reachability and reversibility) and some model checking algorithms
that can determine whether a PN satisfies a custom property given in terms of a temporal logic
formula and, finally, a reference component which controls the interplay between the different
object types (e.g. transforms program formulas into net formulas or triggers program simulation
by net simulation).

PEP provides a powerful environment for designing and verifying parallel algorithms and
systems. Our approach is more Software Engineering oriented. Our primary goal is not the
formal verification of algorithms, but error detection (i.e. testing and debugging supported by
formal methods) of actual message passing programs. Furthermore, our methodology applies
to real programs running under several popular MPEs (e.g. PVM, MPI, Parix [29]) on actual
parallel machines. The compositional approach can be considered as a structured way to derive
and validate complete parallel program, by testing and composing the semantics of sequential
components. Thus we derive the semantics only of sequential components, which have open and
scalable interfaces. In [33] we have presented a mechanical way to derive these specification com-
ponents from the corresponding program components, when using a specific tool (i.e. GRADE).
Our aim is to correlate the execution of programs with simulation/analysis of specifications.

In the context of reusable software components, Corba, JavaBeans [28] etc. have been de-
veloped specifically for distributed environments. These models are based on object oriented
features, their interface is fixed and communication is achieved through Remote Method Invo-
cation. The reusable components of Ensemble are designed for the Message Passing model of
parallel programming, their interface is adapting to the specifications of the applications, and
their interface ports send and receive plain data over channels in order to communicate. The
relevance of Corba etc. in the context of our methodology will be investigated in the future.

7. Conclusions - Future Work

The integration of formal methods with software engineering methods improves testing and
debugging of message passing applications. The proposed methodology takes advantage of the
direct association of Ensemble specifications and programs. They are both composed from
reusable components and their composition is directed by the PCG part of the script, which
specifies the application topology.

The compositional approach facilitates the construction of application specifications, as we
need only to construct specifications of sequential components. Implementation is similarly
simplified since it requires only the implementation of the sequential actions and the interface
of the components, together with a part of the script, that provides information about the
execution environment.

We have presented a composition technique based on pair-wise “coupling” of the interface arc
inscriptions and the “unification” of all interface places into a single common environment place.
Thus, channels are implicitly determined by arc inscriptions. In our previous work composition
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was based on replication of interface places and channels were explicitly determined by the pair-
wise fusion of input and output places. The two approaches have advantages and disadvantages.
In the place fusion approach, it is relatively easy to incorporate ordering of messages over the
same channel: either require interface places of capacity 1 or model fused places by a FIFO
queue. In the place unification approach ordering of messages is more difficult since it requires
the environment place to be modelled by multiple queues, one for each implicitly determined
channel. The place fusion approach leads to an explosion of replicated places, whereas the place
unification approach only replicates arc inscriptions to and from the environment place. In fact,
the number of tokens is the same in the two approaches, but the place unification approach
requires more complex tokens that, nevertheless, have a common structure.

The proposed synergistic testing and debugging methodology is applied to individual pro-
gram components as well as to composed applications. The synergy of formal and program
execution tools detects errors in the design, in the implementation of program components and
in the execution environment. This synergy also provides objective conclusions about the cause
of errors and reveals any discrepancies between design and implementation. The extra effort of
designing specifications for message passing components is justified as it assures reliability and
reduction of production costs of message passing applications.

At the present we have completed the specification composer, which composes template
CPNs (in the textual form presented in paragraph 3.2) driven by the same script that drives the
composition of the actual parallel program. Our next task is to investigate the integration of
existing tools (simulators, visualisation and computation steering tools) with our methodology.
The features of the PEP tool are very close to our needs. We consider the possibility to derive our
specification components and their associated sequential program components automatically, by
using the B(PN)? specification language to model the specifications. PEP can automatically
produce the associated M-net as well as some form of C-Code that implements the algorithm.
The effort to extend or modify the relevant PEP modules in order to derive the Ensemble
components is justified from the fact that in this case, we could use the already implemented
tools and the interplay mechanism of PEP to handle the interaction between program executions
and specification simulations.

We intend to further extend our methodology for performance evaluation of the Message
Passing applications. Our long-term aim is to create an integrated software engineering support
tool (that uses advanced monitoring/debugging or computation steering systems driven by a
specification simulator/analyser etc.) for the development of reliable message passing applica-
tions.
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